
Flask cheat sheet v3.0
Got some of this from blog.miguelgrinberg.com/post/the-flask-mega-tutorial

Naming things is hard

First, come up with two names for your project: one which will be referred to as “the site name,” and
one as “the app name.” The difference between these two names, and why there even are two names,
is weird and confusing. Just do your best and come up with two names. (If your site has to do with
basketball, for example, you could use “hoopsSite” for the site name and “basketball” for the app
name.)

From this point forward in the instructions, whenever I say to type mysite, substitute
your site name (e.g., hoopsSite). Whenever I say to type myapp, substitute your app name
(e.g., basketball).

Install

Python virtual environment

It’s just good practice to use virtual environments.

$ mkdir mysite
$ cd mysite
$ python -m venv venv
$ source venv/bin/activate

git repo

It’s just good practice to use a git repo.

$ git init .

Also create a .gitignore file using vim, with these contents:

.gitignore
venv
__pycache__

Also create a README.md file, also using vim, with these contents:

give it these contents:

A sample Flask app. (...or whatever you want it to say...)

and commit it to your repo:

$ git add README.md
$ git commit -m "Initial commit."

Make sure you can run the “git log” and “git status” commands correctly before continuing.

Flask

$ pip install flask

Tip: when you create your alias to start up Flask, have it include “source venv/vin/activate”
before “export FLASK_APP=myapp” and “flask run”. The alias in my .bashrc for starting the Ben
& Jerry’s project looks like this:

alias run="cd /mydir ; source venv/bin/activate ; export FLASK_APP=bj ; pwd ; flask run"

After I’ve got all the stuff below setup, I will then be able to simply type “run” at the command line
and it will start my Flask server at port 5000.

“Hello world”

Create scaffolding

Make a new directory mysite (if you didn’t just do that), and create these files inside it:

• __init__.py with contents:

from flask import Flask
myapp = Flask(__name__)
from mysite import routes

• myapp.py with one line: “from mysite import myapp”
• routes.py with contents:

from mysite import myapp
@myapp.route("/")
def index():

return "Hello world!"

Run “hello world”

Either execute your alias (in my case, “run”), if you made one as suggested above, or else type:

$ export FLASK_APP=myapp
$ flask run

Then go to http://localhost:5000.

(Sometimes you’ll see people instead pip install python-dotenv and then add “FLASK_APP=myapp.py”
in a new .flaskenv file in the mysite directory. This way, you can simply type “flask run” to start
your app, without having to specify FLASK_APP each time. Either way works. I prefer my alias. If you
do this .flaskenv thing, you’ll probably want to include “.flaskenv” in your .gitignore file.)

Basic dynamic web page

Flask uses the Jinja template engine, which has lots of powerful and convenient features. Here’s the
very very basics:

1. Create a templates directory in mysite.

2. In templates, create a basic.html with double-curly (“durly”) markup:

<HTML>
...

I have {{ numPairs * 2 }} total shoes.
...
</HTML>

3. In routes.py:

from flask import render_template
...
def index():

...
return render_template("basic.html", numPairs=17)

Now restart flask, refresh your browser, and see what that did.

4. Can iterate through collections in a template like this:

<HTML>
...

{% for hobby in hobbies %}
...stuff in here with tables, lists, etc., using "hobby"...

{% endfor %}
...
</HTML>

5. Can use if-statement-like syntax in a template like this:

<HTML>
...

{% if hobby == "skydiving" %}
...stuff...

{% elif hobby == "paperclip collecting" %}
...stuff...

{% else %}
...stuff...

{% endif %}
...
</HTML>

6. A very common need in a dynamic web page is to generate a URL (often to another dy-
namic web page). The basic HTML syntax for this uses the <a> (for “anchor”) tag (Go UMW!).

But in a Jinja template, it is convenient to call the Flask url_for() function to accomplish this. Its
first argument is the function in your routes.py that you want to URL to go to. Other (keyword)
arguments may follow, in which case url_for() will automatically escape any necessary characters
and glom them on as HTTP parameters to the end of the URL.

For example, if you had this in your routes.py:

def show_ingr():
the_recipe = request.args['recipe']
...

and this in a Flask template:

Love Mom's lemon pie!

then when rendered, the template will produce this output:

Love Mom's lemon pie!

which is exactly what you want.

Beyond the basics

There’s lots, lots more Jinja features to explore.

Using template inheritance

Coming soon!

HTML forms

Coming soon!

Session management

Client-side storage.

In encrypted cookie value, stored in each browser, dutifully returned to the server whenever another
request is sent.

1. In order to enable this, you need to have this one line somewhere in your __init__.py:

myapp.secret_key = "Some random string better than this!"

2. Import session from flask, and then this variable is available to you as a dict-like object holding
key/value pairs only for the current users. (All other users have their own key/value session pairs
which do not interfere with each other. This magic is achievable through cookie passing.

Server-side storage.

Coming soon!

https://flask.palletsprojects.com/en/2.0.x/api/?highlight=url_for#flask.url_for
https://jinja.palletsprojects.com/en/3.0.x/templates/

An important weirdness with sessions “knowing” they’ve been updated. The issue is this.
If you change one of the key/value pairs in the session — and by that I mean you change which
object a key is referring to — then Flask “knows” you changed the session and dutifully sends the
updated version to the client for storage, as it should.

However, if you only modify what’s in one of the object values, rather than changing which object that
key points to, Flask plays dumb and thinks you haven’t changed the session.

For this reason, you’ll need to add this line of Python code (see p. line 25 of routes.py in the class
github repo):

session.modified = True

on the line immediately after changing merely the contents of a collection, rather than substituting
an entirely different collection object some session value. (And if that’s confusing, realize that
session.modified = True is always a safe operation.)

Running on the Cloud

Coming soon!

	Flask cheat sheet v3.0
	Naming things is hard
	Install
	Python virtual environment
	git repo
	Flask

	“Hello world”
	Create scaffolding
	Run “hello world”

	Basic dynamic web page
	Beyond the basics

	Using template inheritance
	HTML forms
	Session management
	Client-side storage.
	Server-side storage.

	Running on the Cloud

