MongoDB Cheat Sheet v2.11

Test

$ mongosh

test> use bunny

bunny> db.rabbit.insertOne({ name:"Bugs" })
bunny> db.rabbit.find({})

(Make sure you get the Bugs document back.)

Meta

test> show dbs
test> use bunny
bunny> show collections

Be careful with these!

test> db.dropDatabase (dbname)

test> db.collName.drop()

Importing data from a JSON file

$ mongoimport --db nameOfDatabase --collection nameOfCollection --file pathToFile.json

If it’s a list, add the —-—jsonArray flag at the end.

Common queries
Query based on field value

db.awards.find({ year: 1999 })

db.awards.find({ year: { $1t: 1990 }3})

db.awards.find({ year: { $in: [1992, 1997 1}})
db.awards.find({ year: { $not: { $in: [1992, 1997 1}}})

In addition to $1t, also available are $1te, $gt, $gte, and $ne, all with guessable meanings.

Query based on existence of field

db.heroes.find({ sidekick: { $exists: true }})

Retrieve only certain fields

Pass a second argument to .find (), which is a dict of boolean values (or 0’s/1’s). You can pass either
0’s, indicating the fields you don’t want, or 1’s, indicating those you do.

db.heroes.find({ gender: "male" }, { name:true, planet:true }) <-- or 1 instead of true

(To get rid of _id, add _id:false.)

Retrieve only unique values

db.starwars.distinct("lightsaber color")

Size of collection or query result

db.starwars.countDocuments ()
db.starwars.countDocuments(. ..any query...)

Multiple conditions

db.awards.find({ year: 1994, award: "Cy Young" }) <- AND
db.awards.find({ $or: [{ year: 1990 }, { year:1984 } 1 }) <- OR
db.awards.find({ $and: [{ year: 1990 }, { award: "MVP" }] }) <- AND alternative
Queries in nested elements

In nested dictionary

db.starwars.find({ "relations.Leia": "sister" })

In this case, we’re finding documents with a relations field which is a dictionary and which has a
"Leia":"sister" key-value pair. (You must have the quotes when using this dot syntax.)

In nested list

db.starwars.find({ episodes: "VI" })

Somewhat counterintuitively, but happily, the above query matches any document whose episodes
list has a "VI" element in it somewhere. (If you want to match the entire list, in order, specify a list
instead of a string as the value.)

In nested list of dictionaries

db.courses.find({ "roster.first": "Brian" })

This finds documents with a roster field which is a list of documents, at least one of which contains a
first field whose value is Brian.

Based on (exact) size of nested list

db.courses.find({ "roster": { $size: 20 }})

This finds all courses with exactly 20 students in them. To query on a range, you’ll have to create a
“counter” field that you $inc every time elements are added /removed.

Regular expressions

db.awards.find({ name: /regex/ 1})

Limit and skip (like SQL’s LIMIT and OFFSET)
db.awards.find(...any query...).1limit(10).skip(25)

This will retrieve documents 26 through 36, according to whatever order MongoDB has the documents
in internally (no guarantee this will be associated with any attribute, the order in which they were
inserted, or anything else).

Aggregate (like SQL’s “GROUP BY”)!

Count the number of characters of each distinct race:

db.starwars.aggregate([{$group: {_id:'$race', count:{$sum:1}}}1)

Get a total cartons ordered for each base flavor:

db.bj.aggregate ([{$group: {_id:'$baseFlavor', totcarts:{$sum:"$cartonsordered"}}}])
Also available are the aggregation operators $min, $max, and $avg.

It’s also common to first “match” (select) only certain documents, and then do the aggregation on that
subset:

db.bj.aggregate([{$match: {"releaseDate":{$gt:2015}}}, {$group: {_id:'$baseFlavor', totcarts:{$s

This technique is called an “aggregation pipeline” and has many other options. The reason the syntax
calls for a list inside the aggregate() call is that it contains the list of stages in the pipeline, to be
executed in order.

Inserting/updating/deleting documents

db.stadiums.insertOne({ name:"Wrigley Field", loc:"Chicago"})
db.stadiums.insertMany([{ name:"Wrigley Field", loc:"Chicago"},
{ name:"Comiskey Park", loc:"Chicago"1}])
db.stadiums.deleteOne({loc:"Chicago"})
db.stadiums.deleteMany({loc:"Chicago"})

For updates, the operators $set, $inc, $unset, $push, and $pull are useful.

db.stadiums.updateOne ({loc:"Chicago"}, {$set: {year:19083}})
db.stadiums.updateMany({loc:"Chicago"}, {$set: {year:1908}})
db.stadiums.updateMany({loc:"Chicago"}, {$inc: {year:1}})
db.stadiums.updateMany ({loc:"Chicago"}, {$unset: {year:""}})
db.stadiums.updateMany({loc:"Chicago"}, {$push: {sections:"305"}})
db.stadiums.updateMany ({loc:"Chicago"}, {$pull: {sections:"415"}})

You can set (or inc, or unset, or push, or pull) multiple fields at once by including additional key/value
pairs in the dictionary for the $set (or $inc, or $unset, etc.) key:

db.sw.updateOne ({name: 'Obi-wan'},
{$set: {'current residence':'Tatooine', 'on medicare':true},
$inc: {'age':1, 'credits':-400}1})
Python support
Big gotcha warning
Don’t forget that when you are accessing Mongo via Python, rather than the Mongo CLI, you must:

1. Put strings in quotes (like $set, or even height where “height” is the name of a field)
2. Use underscores instead of camelCase for things like insert_many () and count_documents ()

1Seems inconsistent to me that in these examples, things like '$race’, '$baseflavor', and "$cartonsordered" must
not only be in quotes, but also be preceded by a cash sign ($), even though they are obviously not Mongo operators like
$sum or $group. Oh well.)

3. Call .next () on single-item responses to actually get the document
4. Tterate through (with a for loop, say) multi-item responses

Connecting
Install pymongo package (with pip), then:

from pymongo import MongoClient, ASCENDING, DESCENDING
mongo_client = MongoClient("mongodb://localhost:27017")

db = mongo_client.db_name (or mongo_client['db_name'] if db_name is not a legal Python nan
collections = db.list_collection_names()

Example usage

db.collname.count_documents({...any query...})
result_set = db.collname.find({...any query...})

Note: the return value from .£find() is a cursor object. You can deal with it in any of the following
ways:

o If you only retrieved a single document, you can call .next() on the cursor object to get the
document itself.

e If you retrieved multiple documents, you can wrap the cursor in a 1ist() to fetch all the result
documents into a list.

e If you retrieved multiple documents, you can use the cursor as the argument of a for loop, like
S0:

for result in result_set:
...do something with result['field2'], result['field3'] etc...
Other stuff You can use skip/limit by passing those values to .find ():
result_set = db.collname.find({...any query...}, skip=7, limit=?)
You can sort by multiple fields with:
result_set = result_set.sort([("field1",ASCENDING), ("field2",DESCENDING)])

(You’ll need to import ASCENDING and/or DESCENDING from the pymongo package.)

	MongoDB Cheat Sheet v2.11
	Test
	Meta
	Importing data from a JSON file

	Common queries
	Query based on field value
	Retrieve only certain fields
	Retrieve only unique values
	Size of collection or query result
	Multiple conditions
	Queries in nested elements
	Regular expressions
	Limit and skip (like SQL’s LIMIT and OFFSET)
	Aggregate (like SQL’s “GROUP BY”)

	Inserting/updating/deleting documents
	Python support
	Big gotcha warning
	Connecting
	Example usage

