
SQLite cheat sheet v5.1

To start the SQLite3 command line

Download the SQLite executable for your platform. Make sure your terminal/shell is in the directory
with that executable, then just run:

$ sqlite3 nameOfDBFile.sqlite

It will create this database file if it doesn’t exist.

or on Windows, double-click sqlite3.exe and then:

sqlite> .open nameOfDBFile.sqlite

SQLite settings
Show all settings:

sqlite> .show

Make tables look pretty (requires SQLite 3.33 or above):

sqlite> .mode table

Import/export

As SQL commands

Dump commands to reproduce an entire database:

sqlite> .output nameOfDumpFile.sql
sqlite> .dump
sqlite> .output

Read SQL commands from a file:

sqlite> .read nameOfFile.sql

As CSV data

Output query results in CSV format:

sqlite> .mode csv
sqlite> .output nameOfNewCsvFile.csv
sqlite> (whatever query you want to run)
sqlite> .output

Import data from CSV file

sqlite> .import nameOfFile.csv tableName

Meta browsing
List all tables:

https://www.sqlite.org/download.html


sqlite> .tables

Find tables whose name matches a string:

sqlite> .tables %stringToMatch%

Show the CREATE TABLE command for a table:

sqlite> .schema tableName

Data types
We’ll only use three data types in MySQL:

• integer (like int)
• real (like double)
• text (like String)

Creating tables

Basic

CREATE TABLE flavor (
name text primary key,
costpercarton real,
freezerId integer

);

Multiple and composite keys

If you have multiple keys, specify all but the primary as unique. If you have a key with more than one
attribute, specify it as a separate line with primary key (or unique) and the attribute list in bananas.

CREATE TABLE section (
crn text,
prefix text,
number integer,
secnum integer NOT NULL,
days text,
times text,
primary key (crn),
unique (prefix, number, secnum)

);

“NOT NULL” constraint

In the above example, NOT NULL means the database is instructed not to allow any row into the
section table if it’s missing a value for secnum.

Inserting data
INSERT INTO flavor (name, costpercarton, freezerId) VALUES



('Cherry',.35,19),
('Vanilla',.28,21),
('Dark Chocolate',.33,8);

You can omit the list of attributes if you are inserting all of them, in the order they were listed in the
CREATE TABLE statement. (You can’t omit NOT NULL values.)

Viewing the contents of a table
For now, all you need to know is:

SELECT * FROM tablename;

(Don’t forget to .mode table if you want it to look pretty.)

Foreign keys
To enable (for each connection):

sqlite> pragma foreign_keys = on;

Then, a FOREIGN KEY statement will be honored. Btw, in SQLite3 you can only FK to a “UNIQUE”
attribute set (or primary key):

sqlite> CREATE TABLE person (
name text UNIQUE,
favcolor text);

sqlite> CREATE TABLE item (
name text,
weight integer,
owner text,
FOREIGN KEY (owner) REFERENCES person(name)

);

Foreign key policy

You can also tell SQLite3 how you want it to handle attempted FK violations. Your choices here are
RESTRICT (to outright disallow them), SET NULL (to allow them, but set the referencing table’s values
to NULL in affected row(s)), or CASCADE (to propagate value changes to the referencing table). And you
can choose any of the three policies for the two separate types of violations: violations by attempted
update (e.g., change CPSC 350 to CPSC 351 in a Course table, screwing up CPSC 350 sections in
the Sections table) or attempted delete (e.g., delete CPSC 350 entirely from a Course table, similarly
screwing up CPSC 350 sections.) The syntax is simply:

sqlite> CREATE TABLE item (
name text,
weight integer,
owner text,
FOREIGN KEY (owner) REFERENCES person(name) ON UPDATE CASCADE ON DELETE SET NULL

);



The SQL SELECT statement

Overall architecture

SELECT stuff
FROM stuff
WHERE stuff
GROUP BY stuff
HAVING stuff
ORDER BY stuff
LIMIT stuff
OFFSET stuff;

Examples

Simple SELECT-FROM-WHEREs

select * from assemblyLine;
select * from assemblyLine where mixins='no';
select sum(capacity) from assemblyLine where mixins='yes';

select * from recipe;
select * from recipe where flavorName='vanilla' and cartonsOrdered > 150;
select name as popular from recipe where flavorName in

('vanilla','chocolate','cherry') and cartonsOrdered > 150;

Wildcard match with LIKE:

select * from recipe where name like '%fudge%';

Cartesian product joins (using WHERE clause)

select * from recipe, flavor;
select * from recipe, flavor where flavorName=flavor.name;
select cartonsOrdered from recipe, flavor where flavorName=flavor.name

and recipe.name='Chunky Monkey';

The join operator (using FROM clause)

select * from recipe join flavor on flavorName=flavor.name;
select cartonsOrdered from recipe join flavor on flavorName=flavor.name

where recipe.name='Chunky Monkey';

“Special” joins

Natural join

Match on columns in the two tables which have identical names, and omit the duplicate column in the
result:

select * from children natural join costumes;



Outer join

Ensure that every row of both the left and the right side of the JOIN is present in the result, with NULL
values necessary if a row has no match:

select * from recipe outer join ingredients on recipe.name =
ingredients.recipe_name;

Left/right join

Same as an outer join, except only include non-matching rows from the left (or right) table.

select * from recipe left join ingredients on recipe.name =
ingredients.recipe_name;

Grouping (using GROUP BY and HAVING clauses)

In the SELECT clause, include one attribute and one aggregate operator; in the GROUP BY clause, group
by the attribute.

select flavorName, count() from recipe group by flavorName;

The HAVING clause applies filters to the result after grouping has been performed. (The WHERE clause
applies before.)

select flavorName, sum(cartonsOrdered) as total from recipe
group by flavorName
having total > 10;

Sorting (using ORDER BY clause)

Specify a list of attributes, each optionally followed by DESC (for descending order), which will be used
to sort rows in the result. Attributes after the first one in the list are successive tie-breakers.

select flavorName, max(cartonsOrdered) as maxorder, count() from recipe
group by flavorName
having maxorder > 50
order by count() desc, maxorder desc;

Paging (using LIMIT and OFFSET clauses)

Ask for a certain number of result rows, starting from a certain position within the entire result set, so
that a large result set can be retrieved in piecemeal fashion.

select * from recipe limit 10;

select * from recipe limit 10 offset 30;

Updating and deleting
In addition to the INSERT statement mentioned above, two other ways to modify the database’s contents
are UPDATE and DELETE.



The UPDATE statement

This is pretty easy once you understand the SELECT statement, because one of the two big parts of an
UPDATE statement is precisely the WHERE clause from SELECT. This is how you tell SQLite exactly
which rows you do (and by implication, which rows you do not) want to change.

The first part has key/value-pair-type things, separated by commas, that specify what to put in the
fields. You can put literal values, or computed values based on some existing value in that field or
others. Example:

UPDATE girlScoutCookies set paid='yes' where ordernum='67811';
UPDATE girlScoutCookies set numThinMints += 2, numTagalongs += 1 where ordernum='67811';

The DELETE statement

This one is even easier, since the only thing of interest is the WHERE clause. For example:

DELETE FROM girlScoutCookies where numTrefoils >= 1;

Python connectivity
A connection is a pathway through you can talk to the database and issue commands. Many
simultaneous connections can be open at once, to/from different users and programs.

A cursor is a paging mechanism which lets you “cursor” (iterate) through the results in a result list.

Reading (SQL SELECT statement)

import sqlite3
conn = sqlite3.connect("nameOfDBFile.db")
results = conn.execute("SQL SELECT statement goes here").fetchall()

The above code loads the entire result table into memory, puts a list of tuples into the results variable.
Each tuple in the list is a row of the result, and each element of the tuple, from 0 to n-1, is a column
of that row. You can then pick apart the results at your leisure and do whatever you want with them.

Updating (SQL INSERT/UPDATE/DELETE statement)

In this case, you don’t even need to store a return value from .execute() since it’s a write operation,
not a read.

import sqlite3
conn = sqlite3.connect("nameOfDBFile.db")
conn.execute("SQL INSERT/UPATE/DELETE statement goes here")
conn.commit()

Without the .commit(), the changes made are only to the local connection’s view of the database, not
propagated to the database proper where they are visible to other connections. .commit() does that.

In multi-user/program environments, your .commit()s will sometimes fail and throw exceptions. You
can catch these in a try/except structure, and in the failure case, issue a .rollback() on the
connection to sort of go back in time and try again. (The point in time to which you’ll go back is the
line of code where you ran conn.execute("BEGIN TRANSACTION").)


	SQLite cheat sheet v5.1
	To start the SQLite3 command line

	SQLite settings
	Import/export
	As SQL commands
	As CSV data

	Meta browsing
	Data types
	Creating tables
	Basic
	Multiple and composite keys
	``NOT NULL'' constraint

	Inserting data
	Viewing the contents of a table
	Foreign keys
	Foreign key policy

	The SQL SELECT statement
	Overall architecture

	Examples
	Simple SELECT-FROM-WHEREs
	Cartesian product joins (using WHERE clause)
	The join operator (using FROM clause)
	``Special'' joins
	Natural join
	Outer join
	Left/right join

	Grouping (using GROUP BY and HAVING clauses)
	Sorting (using ORDER BY clause)
	Paging (using LIMIT and OFFSET clauses)

	Updating and deleting
	The UPDATE statement
	The DELETE statement

	Python connectivity
	Reading (SQL SELECT statement)
	Updating (SQL INSERT/UPDATE/DELETE statement)


