
The Crystal Ball Instruction Manual
Volume Two: Foundations for Data Science

version 1.3

Stephen Davies, Ph.D.
Computer Science Department
University of Mary Washington

1

Copyright © 2020 Stephen Davies.

University of Mary Washington
Department of Computer Science
James Farmer Hall B22
1301 College Avenue
Fredericksburg, VA 22401

Permission is granted to copy, distribute, transmit and adapt this
work under a Creative Commons Attribution-ShareAlike 4.0 Inter-
national License:

http://creativecommons.org/licenses/by-sa/4.0/

If you are interested in distributing a commercial version of this
work, please contact the author at stephen@umw.edu.

The LATEXsource for this book is available from: https://github.
com/rockladyeagles/crystal-ball-2.

Cover art copyright © 2020 Elizabeth M. Davies.

http://creativecommons.org/licenses/by-sa/4.0/
https://github.com/rockladyeagles/crystal-ball-2
https://github.com/rockladyeagles/crystal-ball-2

Contents

Contents i

1 Intermission and review 1

2 Navigating the Spyder’s web 3

3 EDA: review and extensions 7

4 KDEs and distributions 27

5 Random value generation 35

6 Synthetic data sets 43

7 JSON (1 of 2) 63

8 JSON (2 of 2) 77

9 LOWESS 89

10 Data fusion 97

11 Long, wide, and “tidy” data 109

12 Dates and times 117

13 Using logarithms 129

14 Accessing databases 139

i

ii CONTENTS

15 Screen scraping (1 of 2) 147

16 Screen scraping (2 of 2) 161

17 Probabilistic reasoning 173

18 Causality 185

19 Naïve Bayes (1 of 3) 199

20 Naïve Bayes (2 of 3) 205

21 Naïve Bayes (3 of 3) 215

22 APIs 223

23 kNN (1 of 2) 235

24 kNN (2 of 2) 245

25 Two key ML principles 255

26 Feature selection 265

27 Association Analysis 275

28 “Special” data types 283

Chapter 1

Intermission and review

Welcome to Volume Two of the Crystal Ball series: Foundations
for Data Science! I titled the first volume “Introduction to Data
Science” because it led you through a dip-your-toes-in-the-water
experience. You took a brief tour through the various elements in
this diverse field and got a feel for what it was all about.

Since you’re still reading, this means you’re still interested, and
ready to explore the next level. In Foundations, we’ll solidify your
growing knowledge so that you have a firm base on which to build
everything else. Future volumes in this series will cover applica-
tions, advanced techniques, and some special data types that re-
quire special treatment. But it all ultimately rests on the skill set
you’ll have built in Volumes One and Two of this series.

We’re going to dive right in. But first, let me make a list of some
of the things I’m counting on you being pretty solid on:

• Atomic and aggregate variables
– ints, floats, strings
– NumPy arrays, Pandas Serieses, DataFrames
– What all these look like in memory

• Scales of measure (especially categorical vs. numeric)
• Association vs. causality

– Causal diagrams
– Dependent and independent variables
– Observational studies vs. controlled experiments
– Confounding factors

1

2 CHAPTER 1. INTERMISSION AND REVIEW

• Statistical significance
• Exploratory Data Analysis

– Bar charts
– Histograms
– Contingency tables
– Scatterplots

– Boxplots
– Quantiles
– Outliers

• Python stuff
– Creating and performing calculations on atomic data
– Creating and accessing NumPy arrays
– for loops
– if statements (and if/elif/else)
– Functions and methods

∗ Calling a function/method vs. writing a function
∗ Passing arguments (both atomic and aggregate)
∗ Return values
∗ Function that modify in-place vs. returning a copy

– Pandas Series & DataFrames
∗ Reading from a .csv file
∗ The “index”
∗ .value_counts()
∗ .groupby()
∗ Using .iloc[] vs. .loc[] vs. []
∗ Single ints/labels vs. slices vs. lists
∗ Queries
∗ Recoding / transforming columns

• ML concepts
– Classification vs. regression
– Features and target attribute
– Training data, test data, and new data
– Random sampling
– The “prior” vs. “posterior”
– Evaluating a classifier

All these topics were covered in Crystal Ball Volume One. If any
of them are iffy, you might take an hour or two to flip back through
them and brush up!

Chapter 2

Navigating the Spyder’s
web

We’ll be using Spyder this semester: a Python-based data analy-
sis environment written especially for Data Science and scientific
programming.

It comes with the Anaconda distribution, as does pretty much ev-
erything else we’ll use this semester (scikit-learn, NumPy, SciPy,
Pandas, Matplotlib, etc.) Download it from here: https://www.
anaconda.com/download.

Note: make sure to get Python 3.something, not 2.something*!!
(They are not mutually compatible.) The number(s) after the dot
don’t matter so much. But before the dot must be a “3” .

And don’t worry: all the stuff you learned last semester using
Python Jupyter Notebooks still applies! The only difference is that
using an IDE (Integrated Development Environment) like Spyder is
not Web-based: it’s entirely offline, responsive, and more feature-
rich. Instead of a Notebook in a browser, you’ll be creating your
own Python source code files (each of which has a .py extension)
and executing them directly.

As with a Notebook, a Python source code file (.py) can have
English text as well as Python code. However, the English text must
be “commented” by prefixing each non-code line with a hashtag

3

https://www.anaconda.com/download
https://www.anaconda.com/download

4 CHAPTER 2. NAVIGATING THE SPYDER’S WEB

(“#”). This tells Spyder that the line in question is not intended to
be parsed and executed when the program is run.

2.1 The Spyder tutorial

First, download the latest version of Anaconda for your platform
from https://www.anaconda.com/download. This will take a while,
after which you should be able to start the Spyder IDE (details de-
pend on your operating system).

Spyder comes with a nice tutorial, so it would be duplicative for
me to reiterate those instructions here. As of this writing, you can
access it by choosing “Spyder Tutorial” from the “Help” menu once
you start Spyder. Make sure to click on each little green arrow to
expand it as you go. (Btw, I don’t recommend clicking on links
in this tutorial, since it brings you to the linked section but then
gives you no obvious way to get back where you were. Perhaps I’m
missing how.)

Go through the entire tutorial now. You can skip over the following
sections, however:

• “Strive for PEP 8 Compliance”
• “Automatic Symbolic Python”
• “Other observations”
• “Documentation string formatting”

We won’t be using any of those features in this course or this book.

There are a few concepts you’ll encounter in this tutorial which
were not covered in the previous book. They include:

• The concept of the “IPython console,” the pane in the lower-
right of the Spyder screen with which you can interact and see
output. This is somewhat different (but better) than the way
Jupyter Notebooks acts with its cells and printed-output-of-
each-cell. Get very comfortable with using the console.

• The concept of a “docstring,” which is text enclosed in triple-
double-quotes (""") immediately after a function definition,

https://www.anaconda.com/download

2.2. CONFIGURATION 5

and which then shows up in the console if you type help(
function_name). This is mildly useful.

• The concept of an interactive debugger, which can be a very
useful IDE feature.

2.2 Configuration

Finally, a couple of settings you should change before we crack our
knuckles. These are on the “Preferences” page, which you can get
to these via “Tools > Preferences” in Linux or Windows, or via
“Python/Spyder > Preferences” on MacOS:

1. Under “Editor,” find the “Source Code” tab, and make sure
that the “Indentation characters” is set to “4 spaces.”

2. Under “IPython console,” find the “Graphics” tab, and set the
“Graphics backend” to “Inline.” Make sure that after doing
this, you can type a graphics command like this into the con-
sole:

import pandas as pd
silly = pd.Series([4,9,8],index=['bill','kevin','jane'])
print(silly)
silly.plot(kind='bar')

and see the resulting plot on the “Plots” pane of the upper-
right window. (You may have to click on the word “Plots” to
show this.)

2.3 A note about folders/directories

One common gotcha I’ll mention that plagues many new Spyderers
has to do with where files are stored on your computer. You prob-
ably know that your computer stores its information in a cascading
hierarchy of files and folders (folders are also called directories).
A file is a single unit of information, which can be opened by an
application; it might contain text, a song, an image, or even video.

6 CHAPTER 2. NAVIGATING THE SPYDER’S WEB

A folder/directory, on the other hand, is a container of files (and
often, other directories).

Perhaps you’re the kind of person who likes to arrange their infor-
mation in a sensible way, using directories as an expressive orga-
nizational mechanism. Or perhaps you’re the kind who just plops
everything down wherever, knowing you can search for it later. Ei-
ther way, what’s important to know is that Python, when it tries to
read a file (say, with pd.read_csv()) is going to look in a certain
folder/directory in order to find it. If it doesn’t find it there, it
throws up its hands.

This is frustrating for students who download data (maybe a .csv
file) from a website, but don’t really understand where their browser
put this file on their hard drive. They then write a Python program
– undoubtedly saving that .py file to a different folder than the one
the .csv file is in – which attempts to open it and comes up empty.

The solution is actually really simple: store your data files in the
same folder as your Python files.

Right now, you should create a folder to hold all your code and data
for this course. Name it something sensible, and remember how to
navigate to it. Then:

U Whenever you create a new Python program, “Save as...” the
.py file into this folder.

U Whenever you download a data file, store it in this folder.1

Onward!

1If your browser automatically stores downloads in a “Downloads” folder of
some kind, either reconfigure your browser to prompt you for a location when
it downloads, or else manually copy the files that you download into your new
folder.

Chapter 3

EDA: review and
extensions

In this chapter, we’ll review the EDA (Exploratory Data Anal-
ysis) material you learned in Volume One, and also present a few
additional techniques.

Remember, when you’re first exploring some data, the first and
most basic questions to ask are:

1. Is the data univariate or bivariate (or multivariate)?1

2. Is it categorical or numerical?2

The answers to these questions determines what kind of statistic
is relevant, and what kind of plot is appropriate.

1“Univariate” data means that you’re looking at only one variable, even if
there are many observations of that variable. A bunch of people’s SAT scores
comprises a univariate data set, as does a bunch of political affiliations, salaries,
or declared majors. “Bivariate” data contains two pieces of information for each
observation: if I have data about both the SAT score and the college GPA for
each of a bunch of students, that’s a bivariate data set. Another example: a
data set with both the gender and the salary for each of a bunch of adults.

2Recall that a “categorical” variable is qualitative, typically chosen from
a set of possible values. Gender, political affiliation, and declared major are
all examples. “Numerical” variables are (duh) numbers: salary, GPA, SAT
score. Numerical variables can further be refined by their scale of measure
(ordinal, interval, ratio), although that often doesn’t affect the appropriate
type of exploratory statistics and plots too much.

7

8 CHAPTER 3. EDA: REVIEW AND EXTENSIONS

Example: let’s say we’re exploring a data set of great works of
literature:

books.iloc[0:5,:]

gender year lang words chaps
name
Jane Eyre F 1847 English 183858 38
Brothers Karamazov M 1879 Russian 364153 92
Anna Karenina M 1877 Russian 349736 219
The Inferno M 1320 Italian 45750 34
Huck Finn M 1884 English 109571 43

For each book, we have the gender of the author, the year and
language in which it was written, and the total number of words
and chapters it contains. Clearly gender and lang are categorical
variables, while year, words, and chaps are numeric.

3.1 Case 1 – univariate data: categorical

When looking at just one variable, which is categorical in nature,
the appropriate analysis is the one-dimensional contingency ta-
ble, which shows the counts of the various values. Let’s create a
contingency table for the book languages, using the .value_counts()
function from Pandas:

books['lang'].value_counts()

French 299
English 247
Spanish 217
Russian 150
Italian 92
Name: lang, dtype: int64

3.2. CASE 2 – UNIVARIATE DATA: NUMERIC 9

The most appropriate plot is a bar chart of these counts, which
you can create by simply tacking .plot(kind="bar") at the end:

books['lang'].value_counts().plot(kind="bar")

3.2 Case 2 – univariate data: numeric

When your single variable of interest is numeric, as is the words col-
umn, the appropriate statistics are mean, standard deviation,
and the various quantile statistics (minimum, .25 quantile, me-
dian, .75 quantile, and maximum):

books['words'].mean()
books['words'].std()
books['words'].quantile([0,.25,.5,.75,1])

436739.737
232384.719
0.00 5443.0
0.25 241492.0
0.50 462552.0
0.75 637765.0
1.00 805341.0

10 CHAPTER 3. EDA: REVIEW AND EXTENSIONS

Translation: on average, the books in our data set each have about
436,739 words, and if distributed normally (which we haven’t checked
yet) about 2

3rds of them are in the range 436,739 ± 232,384 (or
between 204355 and 669123 words). The shortest book has 5443
words, the longest a whopping 805,341, and half the books in the
data set have 462,552 or less. A quarter of the books have fewer
than 241,492 words, and three quarters have fewer than 637,765.

The best plot in this case is the histogram:

books['words'].plot(kind="hist",bins=30)

which shows the entire “lay of the land” of the distribution of values.
Remember to experiment with the number of bins, since you can
get very different pictures of how the data is distributed depending
on your bin size (more on that in Chapter 4).

3.3 Case 3 – bivariate data: cat–cat

If you want to explore the relationship between two different vari-
ables, both of which are categorical, you need a two-dimensional
contingency table. One way to get this is to use .value_counts()
again, this time in conjunction with .groupby():

3.3. CASE 3 – BIVARIATE DATA: CAT–CAT 11

books.groupby('gender')['lang'].value_counts()

gender lang
F French 79

English 52
Spanish 34
Italian 29
Russian 11

M French 209
English 196
Spanish 193
Russian 115
Italian 87

Name: lang, dtype: int64

which shows, for each gender, how many books in each lang are
in the data set. I personally think the pd.crosstab() function is
a bit easier on the eyes for this, though:

gender_lang = pd.crosstab(books['lang'], books['gender'])
print(gender_lang)

gender F M
lang
English 52 196
French 79 209
Italian 29 87
Russian 11 115
Spanish 34 193

Margins: raw counts

The pd.crosstab() function is also useful for computing margins,
or row/column aggregate information. The easy part is to include
“margins=True” as an argument to pd.crosstab(). The tricky
part is understanding the different ways of presenting the margins,
since they’re each subtly different and often confused. So heads up.

12 CHAPTER 3. EDA: REVIEW AND EXTENSIONS

Our first use of margins will be to simply compute raw counts:

gender_lang_m = pd.crosstab(books['lang'], books['gender'],
margins=True)

print(gender_lang_m)

gender F M All
lang
English 52 196 248
French 79 209 288
Italian 29 87 116
Russian 11 115 126
Spanish 34 193 227
All 205 800 1005

The word “margins” refers to the “All” row and the “All” column.
In this table, they contain the total counts for each row, and for
each column. Inspect the table and verify this is so: for each row
(say, English) the sum of the F entry (52) and M entry (196) is
equal to the total in the All entry (248). Similarly, the sum of the
entire first column (the F’s for all languages, which are 52, 79, 29,
11, and 34) is equal to the All element of that column (205). And
of course, the sum of the All rows – or All columns, same diff – is
the grand total of 1005.

Margins: overall percentages

Now suppose we divide every value of this table by the grand to-
tal. (We could literally divide by the number 1005, or divide by
gender_lang.loc['All']['All'], since that’s how to program-
matically obtain the value of the bottom-right-hand entry.) This
gives us overall proportions, and if we multiply by 100, overall
percentages:

print(gender_lang_m / gender_lang_m.loc['All']['All'] * 100)

3.3. CASE 3 – BIVARIATE DATA: CAT–CAT 13

gender F M All
lang
English 5.17 19.50 24.68
French 7.86 20.80 28.66
Italian 2.89 8.66 11.54
Russian 1.09 11.44 12.54
Spanish 3.38 19.20 22.59
All 20.40 79.60 100.00

Note carefully how to interpret this result: the sum total of all the
table’s entries (except for those in the All row/column) is equal
to 100%. This tells us that over 1

5th (20.8%) of all these books
were written in French by males, only about 1% of the books were
written in Russian by females, and so forth.

Margins: percentages by column

By contrast, sometimes it’s more helpful to have each column add
up to 100%, rather than the entire table adding up to 100%. You
can accomplish this like so:

print(gender_lang_m.div(gender_lang_m.loc['All'],axis=1) * 100)

gender F M All
lang
English 25.37 24.50 24.68
French 38.54 26.12 28.66
Italian 14.15 10.88 11.54
Russian 5.37 14.37 12.54
Spanish 16.59 24.12 22.59
All 100.00 100.00 100.00

(For now, the “.div()” call, and the “axis=1” thing, are best to
just follow verbatim rather than trying to understand what they
mean.)

Notice that every All entry at the bottom is now equal to 100. (The
All entries on the right side are not.) This view of things allows us

14 CHAPTER 3. EDA: REVIEW AND EXTENSIONS

to see the language data on a per-gender basis. For instance, over
38% of all the female authors wrote in French, whereas only 26%
of all the males were in French.

Margins: percentages by row

We can do the corresponding process on a by-row basis by changing
our syntax to this:

print(gender_lang_m.div(gender_lang_m['All'],axis=0) * 100)

gender F M All
lang
English 20.97 79.03 100.0
French 27.43 72.57 100.0
Italian 25.00 75.00 100.0
Russian 8.73 91.27 100.0
Spanish 14.98 85.02 100.0
All 20.40 79.60 100.0

Important: there are two changes here from the previous example,
only one of which jumps out at you. The obvious one is that we
have “axis=0” instead of “axis=1”. But the one that’s easy to
miss is that instead of “gender_lang.loc['All']” we now have
“gender_lang['All']” (with no “.loc”). If you forget this part,
you’ll get nonsense.

If you do it correctly, each row (not column) will now sum to 100%,
which gives us gender data on a per-language basis. For example,
we can see that 91.27% of the Russian books were written by men,
but only 75% of the Italian ones were.

Warning!

Now you can stare at these numbers to get a feel for the them,
and this is encouraged. Remember, though, the proper way to test
whether there’s a statistically significant relationship between

3.3. CASE 3 – BIVARIATE DATA: CAT–CAT 15

two categorical variables is to use a χ2 test. And that leads me to
mention a very common pitfall.

Recall that when you call scipy.stats.chi2_contingency(), you
pass it the contingency table. All well and good. But you must re-
member to pass it the original contingency table without margins!
Once you’ve started to compute and display margins, it’s all too
easy to forget that adding margins adds a row and a column to the
table (for the “All” information) and if you give chi2_contingency()
this extraneous data it messes up the whole χ2 computation.

This is why in all the examples above, I deliberately changed my
variable name for the “margined” table from gender_lang to
gender_lang_m (m stands for “margins.”) This is a nice visual
reminder that I don’t want to pass this table as an argument to
scipy.stats.chi2_contingency(): instead, I want to pass the
vanilla, margin-less table gender_lang. I suggest you do the same.

Plotting multiple categorical variables

Finally, what about plots for multiple categorical variables? One
choice that is (rarely) used for this is called a mosaic plot, but
they’re so difficult to interpret that I don’t really recommend them.
A more common choice is a heat map, which can be both beautiful
and effective.

This brings us to our next import statement, this time of the
Seaborn graphical visualization library:

import seaborn as sns

Seaborn is a terrific package that is widely used by Pythonistas in
the Data Science community. It provides great support for several
important kinds of plots that aren’t implemented (or are imple-
mented suckily) in base Python and the other libraries we’ve used.
One such plot is the heat map, which you can create simply by
passing the Seaborn function a contingency table:

16 CHAPTER 3. EDA: REVIEW AND EXTENSIONS

sns.heatmap(gender_lang)

(Notice I passed gender_lang, not gender_lang_m. We don’t want
to plot the margins as though they were entries!) The result is
shown in Figure 3.1 (p. 16). It’s disorienting at first, but the key
to grasping the message is to look at the color spectrum at the far
right of the diagram. Here we see a mapping of numbers to colors.
In this particular color scheme (there are many others to choose
from), a light tan color indicates a high value up near 200, whereas
a dark black color indicates a low color down below 40. In between,
the colors go through shades of purple and red and orange, each
indicating progressively higher values.3

Figure 3.1: A heatmap of two categorical variables.

With that firmly in mind, look now at the main part of the image.
You’ll see there are two “axes,” one for gender and one for lang,

3Btw, there are lots of other color schemes available; you can add a value for
the “cmap” argument to your heatmap() call giving the color scheme’s name. I
personally like the “seismic” one since it makes it extremely clear which colors
go with high vs. low values. You can get a list of the available ones by passing
cmap="list" as the second argument to heatmap().

3.4. CASE 4 – BIVARIATE DATA: CAT–NUM 17

just like in our gender_lang contingency table. And there are
ten rectangles, one for each combination of values of those two
categorical variables. In fact, you’ll see that this heat map is really
just a pictorial representation of this table:

print(gender_lang)

lang English French Italian Russian Spanish
gender
F 48 84 15 10 28
M 205 197 82 129 207

A heat map is like looking at a table “from above.” Looking down
on gender_lang, we see that the highest peaks are English and
Spanish males, with French males close behind. French writers
stand out among the females, who otherwise have lower quantities
across the board. If you glance back and forth between the table
and the heat map, you’ll see that the heat map has brighter/more-
light-tan rectangles in exactly the places where the table has a high
value, and darker rectangles for lower values. Sanity check that just
as the numbers 84 (French females) and 82 (Italian males) are
almost identical in magnitude, so the two corresponding rectangles
are almost exactly the same shade of purple.

3.4 Case 4 – bivariate data: cat–num

Suppose the two variables you’re interested in are one categorical
and one numerical. For instance, maybe you’re wondering whether
men or women have contributed more recent literary works, or
which languages tend to have longer books.

The right plot here is the box plot, since it allows you to easily
compare groups. For the language vs. length example:

books.boxplot(column='words', by='lang')

18 CHAPTER 3. EDA: REVIEW AND EXTENSIONS

Apparently Italian works are a bit shorter than the other lan-
guages (especially French), but it’s hard to tell whether there’s any
truly significant difference between the averages among the various
groups. Recall that one way to find this out is a t-test for the
difference of means, using scipy.stats.ttest_ind().

Here’s another way. You can use a notched boxplot:

books.boxplot(column='words', by='lang', notch=True)

As long as your group sizes are big enough, this visually indicates
whether or not there is a stat sig diff between groups, based on
whether the notched areas overlap. In the above case, the English
and French notches overlap, which means we can conclude nothing
reliable about English works being longer than French ones. How-
ever, the English and Italian notches do not overlap, which means
we should feel confident about declaring that on average, English
works are longer than Italian ones.

3.5. CASE 5 – BIVARIATE DATA: NUM–NUM 19

3.5 Case 5 – bivariate data: num–num

Finally, the case where our two variables of interest are both numer-
ical. The obvious plot type here is the scatter plot, which shows
one point for each observation, with its x and y position determined
by its values for each variable.

books.plot.scatter(x='year', y='words')

The result is Figure 3.2. Clearly a big takeaway is that literary
works have been getting steadily shorter over the years. You’ll
remember that the statistical reliability of this conclusion could be
confirmed (or denied) by taking a look at the Pearson’s correlation
coefficient.

Scatter plot matrices

So a single scatter plot is easy enough to generate. Sometimes,
though, you have a data set with many variables, and it’s nice to
get a bird’s-eye view of all the possible pairings. This is actually
easy to do, by generating something called a scatter plot matrix.

20 CHAPTER 3. EDA: REVIEW AND EXTENSIONS

Figure 3.2: A scatter plot of two numerical variables.

Scatter plot matrices look pretty “busy,” but that’s because there’s
a lot of information there, so let’s give them a go.

First, we’re going to make sure that only do the analysis on the
numeric columns. I’ll create a new variable called books_num (for
“books: numeric”) to hold just the numeric variables:

books_num = books[['year','words','chaps']]

(Mind the double boxies!)

And now, the scatter plot matrix:

pd.plotting.scatter_matrix(books_num, alpha=1)

Don’t worry about the alpha part for the moment. The result of
this command is in Figure 3.6 (end of the chapter, p. 26). As I said,

3.5. CASE 5 – BIVARIATE DATA: NUM–NUM 21

it’s busy: almost too much to look at. You’ll understand it when
we go through the components, though.

First, notice that the overall figure is a 3× 3 grid of smaller figures,
and remember that we passed scatter_matrix() a DataFrame with
three columns. Each little figure in this grid depicts two of the
DataFrame variables scatter-plotted against each other.

Take the left-middle grid square on the side for starters. This grid
square is labeled “words” on the left and “year” on the bottom. It
is therefore a scatter plot of words vs. year – exactly the same
plot as in Figure 3.2 (take a moment to visually compare these).
And the upper-middle grid square also involves the same two vari-
ables, although this time it’s year vs. words; it contains the same
information as the middle-left, but the axes are reversed.

If you look at the lower-left and upper-right corners of the grid,
you’ll see the result of a chaps vs. year (and year vs. chaps) scat-
ter plot. And the bottom-middle/right-middle squares plot words
vs. chaps. Every pairwise combination of variables is present here
(twice).

What about the upper-left to lower-right diagonal? These are
grid squares which should ostensibly have a scatter plot of “year
vs. year”, “words vs. words,” etc. Obviously that doesn’t make
sense – a scatter plot of a variable against itself would be useless
(think out why this is true). So Pandas does us a favor and at least
shows us something in these squares that’s useful. And the useful
thing it shows is our favorite plot for univariate numeric data: the
histogram. The upper-left corner is a histogram of the year vari-
able by its lonesome, the middle square is a histogram of words,
and the bottom-right is a histogram of chaps. This lets you see the
distribution of each of your variables in isolation, right alongside
their correlation with every other variable in the set. Neat.

Scatter plot matrices can be a powerful tool for EDA, so you can
quickly identify what variable pairings might be of interest (i.e.,
might have associations). They’re not usually used for a final pre-
sentation of analysis results, since they really contain too much
information to be effective for that.

22 CHAPTER 3. EDA: REVIEW AND EXTENSIONS

The trick to using a scatter plot matrix for EDA is to run your
eyeballs over the plots, looking for straight-ish lines (as opposed to
amorphous clouds). In the books case, all three of our variables
are pretty strongly correlated, but you can see from Figure 3.6 that
the words-year association is the most pronounced. The year and
chaps variables, although somewhat correlated with each other (you
can see a downward trend in the bottom-left grid square) are more
“noisy,” meaning that the link between them isn’t as precise and
predictive.

Transparency

The “alpha” parameter we skipped over earlier has to do with scat-
ter plots that have too many points to see clearly. You’ve probably
had experience with scatter plots that look like a big blue cloud:
there are so many points plotting next to and on top of each other
that you can get any sense of where they’re most concentrated. One
solution to this is to add the marker="." parameter to your call to
df.plot.scatter(): this tells Python to use a tiny dot instead of
a larger circle.

There are limitations to this, though, especially for a truly huge
number of points. A better solution is to use transparency, which
is what the alpha parameter – on a scale of 0.0 to 1.0 – controls.
When alpha is set all the way to 1.0, dots are plotted the way you
normally see them: all the way opaque. By reducing this number,
each dot gets plotted in a partially transparent way, so that only if
lots of dots are plotted in the same general area will they become
fully dark and visible.

3.6 Case 6 – multivariate data

All of the previous examples involved either one or two variables.
But what if you have more than that? How do you plot them?

It gets tricky when you try and make sense of too many differ-
ent entangled variables at once. However, it can be done, in most
circumstances, if you’re on your game in terms of interpretation.

3.6. CASE 6 – MULTIVARIATE DATA 23

Let’s talk about the three-variable case in particular. First off,
it helps a lot if at least one of the variables is categorical. If all
three are numeric, then you essentially need a three-dimensional
plot (such as a 3-d scatter plot, contour plot, or a wireframe plot)
which are difficult to interpret. (Humans just aren’t very good, it
turns out, at visualizing things in three dimensions. Most people,
however, are quite good at two dimensions.)

Grouped scatter plots

Suppose one of your variables is categorical and the other two nu-
meric. In this case, sometimes a good option is to use a grouped
scatter plot which depicts the categorical values via different styles
of point: different colors are the most common, but different shapes
can be used too.

The Seaborn library’s scatterplot() function lets us do this:

sns.scatterplot(data=books, x="year", y="words", hue="lang")

The data=books parameter tells scatterplot() which DataFrame
we want to use. The x and y parameters specify what we want
on the x and y axis of our plot, and hue="lang" bit tells Seaborn
which variable we want the color – or “hue” – to be based on.

The result is in Figure 3.3. From it, we can see that (in our fictitious
data set) although books seem to have been getting shorter over
time, this isn’t true of the Russian books, which are staying more
a constant size. This observation wasn’t really possible without
involving all three variables in the plot, which is why a grouped
scatter plot was valuable here.

Facets

More generally, a technique which is applicable to lots of different
kinds of plots involves adding facets. With facets, you can par-
tition a single plot into multiple plots, thereby effectively showing
multivariate data with more than two variables.

24 CHAPTER 3. EDA: REVIEW AND EXTENSIONS

Figure 3.3: A grouped scatter plot.

To illustrate facets, let’s do the same kind of thing we did with a
grouped scatter plot in Figure 3.3. First, we create a “facet” vari-
able by calling Seaborn’s FacetGrid(), passing it our DataFrame
and which variable we want it to use to split into subplots:

facet = sns.FacetGrid(books, col='lang')

The “col” stands for column, not because lang is a DataFrame
column (although it is), but because we want each subplot to be in
its own column.

3.6. CASE 6 – MULTIVARIATE DATA 25

We then follow this up with a call to the .map() method of this
facet:

facet.map(plt.scatter, 'year', 'words')

In plain language, this says “please map a scatter plot, of words
vs. year, to each subplot.” The result is as in Figure 3.4. Each
of the five languages appears on its own separate subplot, which
in each case is a plot of the words vs. the years for books in that
language.

Figure 3.4: A faceted scatter plot.

The reason the FacetGrid() function has the word “grid” in the
title is because you can go hog wild by specifying not only columns
for the subplots, but rows:

facet = sns.FacetGrid(books, row='gender', col='lang')
facet.map(plt.scatter, 'year', 'words')

The resulting Figure 3.5 has ten different subplots, one for each
combination of gender and lang. And all nicely labeled, too!

Notice that the Figure 3.5 infographic is analyzing four variables
all acting in concert: two that determine the subplot (gender and
lang) and two that are plotted against one another in each of the
subplots.

Facets can also be used with box plots, heat maps, histograms,
etc., depending on how many variables you have and how many of
them are categorical or numerical. In every case, one subplot is

26 CHAPTER 3. EDA: REVIEW AND EXTENSIONS

Figure 3.5: A faceted scatter plot with two faceted variables.

created for each subset of the data that has particular value(s) for
the faceted variable(s).

Figure 3.6: A scatter plot matrix of the books DataFrame (re-
stricted to only numeric variables).

Chapter 4

KDEs and distributions

4.1 Limitations of histograms

Histograms are a great tool for seeing the distribution of a numer-
ical, univariate sample. As we’ll see in this chapter, though, they
have some deficiencies. One problem is that a data set doesn’t
uniquely determine a histogram: instead, we must specify parame-
ters such as the bin size and the “alignment” of the bins (i.e., where
exactly the breaks occur), and the resulting display is colored (no
pun intended) by those choices.

Consider this simple data set1:

2.1, 2.3, 1.9, 1.8, 1.4, 2.6, 1.7, 2.2

Suppose we choose a bin width of 1. If we positioned the left edge
of each bin at 0, 1, 2, 3, ..., we would get the histogram on the left
side of Figure 4.1.

data = np.array([2.1, 2.3, 1.9, 1.8, 1.4, 2.6, 1.7, 2.2])
plt.hist(data, bins=[0,1,2,3,4])

1From Janert, P. K. (2010). Data Analysis with Open Source Tools: A
Hands-On Guide for Programmers and Data Scientists. O’Reilly Media.

27

28 CHAPTER 4. KDES AND DISTRIBUTIONS

Our interpretation would probably be: “looks like the values occur
pretty uniformly throughout the range 1-3.”

But if we shifted our bin alignment to be on the “halves” (0.5, 1.5,
2.5, ...), we get this histogram on the right side of Figure 4.1.

plt.hist(data, bins=[-.5,0.5,1.5,2.5,3.5,4.5])

Now we may be liable to think: “it looks like a steeply-peaked
distribution with most values right near the center value of 2.”

Yet the data is the same! :-O

Figure 4.1: Two histograms of the same data set!

Data vs. process

Now you might dismiss this idiosyncrasy as merely a one-off quirk
that only shows up when the data is carefully arranged so as to
trigger it. And there’s some truth to that. But the real problem
with histograms is bigger and more conceptual: it has to do with
what we’re really trying to visualize in the first place.

In Data Science, paradoxically, very often we don’t actually care
about the data so much as we care about the underlying process that
generated the data. This “data-generating process” (DGP) –
whether it’s a geographic fault, a mystery author, a sports team,
or an economy – leaves behind evidence of its behavior (seismic
tremors, sentences, sports statistics, income levels) which we duti-
fully collect and then analyze. The purpose is (almost) always to

4.1. LIMITATIONS OF HISTOGRAMS 29

draw inferences about how that DGP works, not to learn about the
individual bread crumbs themselves.

To our present point, when we look at a histogram of (say) GPAs
of a sample of UMW students, we’re not actually interested in
what those sampled GPAs precisely are, strange as that may sound.
We’re instead interested in what they tell us about UMW student
GPAs in general. We want to draw conclusions about the popula-
tion by looking at the sample.2

Let’s say we hung out at the fountain on campus walk, and asked
unsuspecting volunteers to let us measure how tall they were. The
histogram of the result might look like Figure 4.2.

Figure 4.2: A histogram of a sample of UMW student heights.

The histogram is using “1 inch” as a bin size. By inspecting it,
we can see that the shortest person in our sample was 62 inches
tall (or 5-foot-2), the tallest was 78 inches (6-foot-6), and the most
common height was 65 inches (5-foot-5), among other things.

But consider this. Our sample had five students who were 5-foot-
5, three who were 5-foot-7, but none who were 5-foot-6. This is
perfectly possible with samples, of course – you’re only getting a
random set of students, and there are bound to be little quirks like
this. But on what basis do we label it a “quirk?”

2If you haven’t encountered these words before, the “population” is the
entire set of relevant objects of study that are out there in the world, most
of which we’ll never get a direct measurement for because they’re just too
numerous. The “sample” is the small subset of the population that we did
get a measurement for. A classic example is political polling: we don’t really
care that much how the 2,000 people in our telephone poll are going to vote
for President; what we care about is how the country as a whole will vote for
President. So we assume that the sample is reflective of the population, and
reason accordingly using statistical tests as our guide.

30 CHAPTER 4. KDES AND DISTRIBUTIONS

If you’re like me, your inclination is to say, “yeah, okay, in this
particular sample we happened to be missing any 5-foot-6 people,
but it’s not like we’re going to draw any grand conclusions from that
fact. We’re not going to deduce that ‘UMW students are almost
never 5-foot-6 – they’re almost always either a tad shorter or a tad
taller than that.’ Such a conclusion would be ludicrous!”

I sympathize and agree. But really, we only know this because
we bring background knowledge to the problem. We’ve all seen
lots of people of various heights, and we know something about how
genetics and nutrition and other factors play into a person’s height,
and it just screams “wrong!” to think that there’s some magic
“missing height” out there, right in the middle of otherwise quite
common heights, that for some reason is virtually unattainable.

Think about it, though: if we were studying an unknown phe-
nomenon, about which we had no previous experience, it would be
pretty audacious for us to infer the existence of lots of “66’s” which
we never actually observed, simply on the grounds that there were
lots of 65’s and 67’s in our sample. My point is not to forsake your
background knowledge: quite the opposite, you should make good
use of it! My point is only to draw attention to the justification
we’re using to infer the existence of plenty of 66-inch-tall (5-foot-6)
people in the population, even though we never actually observed
any.

So my main point is this. Although we look at a histogram like this
one in order to see “the lay of the land” – to see which values of
the numeric variable are more frequent, and which are less frequent
– if we’re smart we can’t help but recognize two different aspects
to the figure. Some of the histogram’s features are generalizable,
and indicative of what the population probably looks like: we’d
(correctly) gather that many or most UMW students were between
60 and 80 inches tall, with the majority in the 65-ish to 75-ish
range. But some of its features we’d (correctly) characterize as
mere artifacts of this particular sample, like the weird fact that we
happen to have several 65-inchers and 67-inchers but no 66-inchers.

What we’d really like is a plot that obscures (or “smooths over”) the
second kind of thing, while still revealing the first kind of thing. In

4.2. KERNEL DENSITY ESTIMATES (KDES) 31

other words, we’d like a plot that shows us the features of the data
that are probably generalizable, while hiding the individual nooks
and crannies. Such a plot is coming right up in Section 4.2, below.

Just to finish venting, I’ll list yet another couple of problems with
histograms:

• They inherently lose information, since by definition data
points with specific, precise values are munged into “the near-
est bin.”

• They don’t handle outliers very well. A single outlier way
outside the normal range forces us to either (a) include a lot
of empty cells in the middle, or (b) choose an unreasonably
wide bin width that doesn’t work for the majority of points.

4.2 Kernel Density Estimates (KDEs)

One solution to these unfortunate histogram problems is a more ad-
vanced technique called a Kernel Density Estimate, or a KDE.

A “density” (or “probability density”) is defined as a single,
strongly-peaked function that has an area under its curve of ex-
actly 1. It indicates how likely certain values of a numeric variable
are to occur: values for which the density is high are more proba-
ble. Probability densities play a starring role in understanding the
tendencies of both real and randomly-generated data.

When we talk about a “kernel,” we just mean a density shape that
we’re going to make lots of copies of and add up together. Normally
(no pun intended!) we will use a Gaussian kernel, which means
“a bell curve a la the normal distribution”:

(In math and stats, “Gaussian” and “normal” are synonyms.)

32 CHAPTER 4. KDES AND DISTRIBUTIONS

One thing we have to decide on is the width of this kernel — which
in our case essentially means “the standard deviation of the normal
distribution we’re using.” This is kind of like having to choose
the bin width for histograms, but in practice the choice turns out
not to be as critical. The width we choose is called the kernel’s
bandwidth.

Okay, now visualize this. In order to form a KDE, we place a copy
of this kernel on the x-axis at each data point, and then add up
all the kernel contributions to make a smooth curve. This has the
effect of smoothing out all the jaggedy ups and downs of the actual
histogram. The goal is to reflect the “true, underlying” shape of the
data for the entire population.

There are several different ways to do this with Python packages.
The Seaborn library has a good “kdeplot()” function. Using plain
SciPy, we can call the gaussian_kde() function and pass it the
bandwidth as a second argument. This returns a function that can
be used to evaluate the KDE at any data point. (Read that sentence
again: a function that returns a function? It can be confusing.)
Then, we can plot it by creating a range of values to evaluate the
KDE at, and plotting those values against the KDE’s values.

It’s easier than it sounds when you run the actual code:

import scipy.stats
kde = scipy.stats.gaussian_kde(data,bw_method=.5)
x_vals = np.arange(0,10,.1)
plt.plot(x_vals,kde(x_vals))

The “data” argument to gaussian_kde() is the array you’re work-
ing with, and “bw_method” (a dumb name) gives the kernel’s band-
width. (x_vals is an array of the x coordinates you want to plot
the KDE for, and should cover the range.)

Now stare at the four plots in Figure 4.3. These are all KDEs
for the green Figure 4.2 histogram, but each one uses a different
bandwidth. Choosing a larger kernel bandwidth effectively smooths
out the KDE more, spreading the contribution of each point quite

4.2. KERNEL DENSITY ESTIMATES (KDES) 33

a bit farther from its original position. Choosing a narrower kernel
focuses each data point’s contribution more precisely at its actual
value, making the plot choppier.

Figure 4.3: Gaussian KDEs with bandwidths of 1, .5, .3, and
.1, respectively, for the data behind the green Figure 4.2 histogram
(repeated here).

In practice, it’s another parameter to play with. If the data fol-
lows a smooth distribution, you can use a wider bandwidth which
will “blur” each data point more and give a more intuitive view of
the general distribution characteristics. If the distribution is more
wiggly, though, you need a narrower bandwidth to see all the rele-
vant detail. Which of the Figure 4.3 bandwidths do you think best

34 CHAPTER 4. KDES AND DISTRIBUTIONS

captures the “true” distribution of the points in the histogram?

Like most things in Data Science (and in life), there’s no one true
hard-and-fast right answer. There is instead a range of points of
view, many of which may be illuminating.

Chapter 5

Random value generation

One very useful skill is the ability to quickly create synthetic (arti-
ficial; generated by your own code and random-number generators)
data sets that have certain properties. Sometimes we use such data
to sanity check the results of our code with “idealistic” (simplified
and known) inputs. Sometimes we use synthetic data as a baseline
with which to compare real-world data sets that we suspect have
similar characteristics. And sometimes we simply don’t have access
to relevant real-world data but we need inputs into some simulation
process.

This chapter and the next will teach you the essentials of this pro-
cess.

5.1 Setting the seed

Generating random numbers (and other random values) is an
activity we perform surprisingly often in Data Science. “Random
numbers,” as it turns out, aren’t truly random, because the pro-
gramming language uses a bizarre – but deterministic and repeat-
able – algorithm to come up with them. This is nice, because we
can guarantee that each time we run a program we’ll get the same
sequence of random numbers. We do this by setting the random
number generator’s seed to a particular value. It helps us in debug-
ging our code, because otherwise, a shifting sequence of numbers

35

36 CHAPTER 5. RANDOM VALUE GENERATION

would be a frustrating moving target.

NumPy provides a really nice library for all this, all of which is in
the namespace np.random. To set the random number generator’s
seed, all you do is call its seed() function and pass it your favorite
number:

np.random.seed(13)

(I chose 13 because that was my little league baseball jersey number
as a kid.) I recommend you put this line of code (with any positive
integer you like) near the top of any .py file in which you do random
value generation. If you want a different sequence of random values
later, you can either change the integer to something different, or
comment out the line altogether by prepending a “#” character.

5.2 Generating random numbers

To actually generate a random number value, you first have to fig-
ure out what distribution you want it to come from. Think of
a distribution as a KDE from last chapter: it’s a way of specify-
ing which values are more common and which are less. The two
standard distributions we’ll use most are:

• Normal/Gaussian. As mentioned on p. 31, a “normal” dis-
tribution is a standard bell curve with a central mean and a
standard deviation that determines how wide the curve is.
The Gaussian distribution with mean 65 and standard devia-
tion 4 (perhaps representing the speed of various cars on the
highway) is shown on the top half of Figure 5.1.

• Uniform. A uniform distribution specifies that every value
within a certain range (a min and a max) should be equally
likely. An example for a min of 0 and a max of 60 (perhaps
representing the minute past the hour that various babies in
a maternity ward were born) is shown on the bottom of the
same figure.

5.2. GENERATING RANDOM NUMBERS 37

Figure 5.1: A normal, and uniform, distributions, shown as KDE-
like curves.

If you’re interpreting Figure 5.1 correctly, you can see that if we
generate random numbers from the top distribution, the majority
will be between 60-ish and 70-ish miles per hour, with many near
65 mph and almost never anything lower than 50 or greater than
80. If we generate them from the bottom distribution, however,
the babies’ birth minutes will all be between 0 and 60 but with no
particular tendency towards any value in that range more than any
other.

Generating normal random numbers

Let’s see if that works. The three arguments to normal() are (1)
the mean of the distribution, (2) the standard deviation, and (3)
how many random numbers you actually want. We’ll just start with
one at a time:

np.random.seed(13)
print(np.random.normal(65,4,1))

[62.15043735]

38 CHAPTER 5. RANDOM VALUE GENERATION

print(np.random.normal(65,4,1))

[68.01506551]

print(np.random.normal(65,4,1))

[64.82198769]

print(np.random.normal(65,4,1))

[66.80724935]

True to form. We keep getting numbers quite close to 65 mph, with
a little bit of variation. Note that if we reset the seed to our original
value, our next call to normal() gives an identical result to the first
one, above:

np.random.seed(13)
print(np.random.normal(65,4,1))

[62.15043735]

And of course it’s easy to generate many speeds at a time (say,
eight):

print(np.random.normal(65,4,8))

[60.81849148 61.8440439 59.95357622 67.25138714 64.02669499
68.65496282 66.26940369 65.50921312]

5.2. GENERATING RANDOM NUMBERS 39

Notice that each time we call normal(), we get an array back (even
if it has only a single value).

By the way, we should sure expect that if we generate many random
speeds, and take their average, it should be pretty darn close to 65
mph:

print(np.random.normal(65,4,1000).mean())

65.01577962051226

Yep.

Generating uniform random numbers

Uniform random values can be generated the same way, but with
the uniform() function, which takes as its arguments (1) the min,
(2) the max, and (3) the number of desired values:

np.random.seed(13)
print(np.random.uniform(0,60,1))

[46.66214463]

This synthetic baby was born at 46.6 minutes past the hour. What
about the next one?

print(np.random.uniform(0,60,1))

[14.2524732]

And the next one?

40 CHAPTER 5. RANDOM VALUE GENERATION

print(np.random.uniform(0,60,1))

[49.45671196]

And the next eleven?

print(np.random.uniform(0,60,11))

[57.944951 58.356066 27.206954 36.542547 46.531591 38.496800
43.321093 2.102191 17.906968 3.510749 51.423656]

Of course, resetting the seed gives us our original sequence back:

print(np.random.uniform(0,60,5))

[46.66214463 14.2524732 49.45671196 57.94495188 58.35606683]

(Check those numbers with the previous ones to convince yourself.)

And finally, let’s sanity check the average:

print(np.random.uniform(0,60,1000).mean())

29.2049841447296

Yay. “On average,” our thousand synthetic babies are born at about
half past the hour, which is what we’d expect.

5.3. GENERATING CATEGORICAL RANDOM VALUES 41

5.3 Generating categorical random values

NumPy also provides a way to generate categorical values with cer-
tain frequencies, through its choice() function. You give it an
array of the possible values, and it chooses one:

np.random.seed(13)
np.random.choice(['Steelers','Patriots','Giants'])

'Giants'

np.random.choice(['Steelers','Patriots','Giants'])

'Steelers'

(As always, resetting the seed will restart the same sequence of
random team choices from the beginning.)

Other useful arguments to choice() include:

• size – the number of elements you want in the resulting array.
• replace – if False, the elements will be drawn from your list

without replacement (meaning once a value is chosen, it will
not be chosen again). This is often useful.

• p – a list of probabilities (in the range 0 to 1) specifying how
likely each element in the list is to be chosen. (Note these
must sum to 1; and NumPy, stupidly, will not normalize it
for you.)

To illustrate:

print(np.random.choice(['Steelers','Patriots','Giants'], size=14,
p=[.3,.6,.1]))

['Steelers' 'Patriots' 'Patriots' 'Patriots' 'Giants'
'Steelers' 'Steelers' 'Patriots' 'Patriots' 'Steelers'
'Patriots' 'Giants' 'Steelers' 'Patriots']

42 CHAPTER 5. RANDOM VALUE GENERATION

We asked for 14 random teams, and we told it to give us Steelers
30% of the time, Patriots 60%, and Giants only 10%. I think
you’ll agree that the resulting array was pretty faithful to that. (Of
course, you’ll get a different random array each time.)

Finally, let’s test a large random array and verify that the requested
percentages are approximately correct:

pd.Series(np.random.choice(['Steelers','Patriots','Giants'],
size=1000, p=[.3,.6,.1])).value_counts()

Patriots 584
Steelers 319
Giants 97
dtype: int64

Our friend the .value_counts() method confirms that it pretty
much checks out.

Chapter 6

Synthetic data sets

Last chapter we learned the basic skills for generating arrays of
random values – both numeric and categorical. Now let’s apply
these to creating synthetic data sets that contain more than one
variable.

We’ll concentrate here on the two-variable case, but the idea is
easily extended to three or more. The important new question,
now that we know how to generate single arrays in isolation, is:
to what degree do we want our pair of synthetic variables to be
correlated, and how do we make them so?

6.1 Two numeric variables

Let’s start with the case of two numeric variables. As you know
from Volume One, there can be an association, or not, between
them. The Pearson’s correlation coefficient measures this: if its p-
value is less than our α setting (typically .05), then we deem there
to be a meaningful association, and the r value tells us whether the
correlation is positive or negative.

Uncorrelated numeric variables

On one extreme, let’s say you wanted to create a data set with
two completely uncorrelated numeric variables – like the heights

43

44 CHAPTER 6. SYNTHETIC DATA SETS

(in inches) and the SAT scores of a group of college applicants.
Then you’d just generate two arrays, one at a time:

heights = np.random.normal(65, 8, 100)
sat_scores = np.random.normal(1000, 300, 100)

How did I choose those particular means and standard deviations?
I made them up. And I played with them until they looked reason-
able.

Scatter plotting these (see left side of Figure 6.1, p. 45), and running
a Pearson correlation, should reveal they are independent of each
other:

plt.scatter(heights, sat_scores)
plt.xlabel("height (in)")
plt.ylabel("SAT score")
print(scipy.stats.pearsonr(heights,sat_scores))

(-0.025053425275878834, 0.8045806864145338)

A p-value of .8046 says “nope, not significantly correlated.” And of
course there’s no reason why they should be: we just generated two
different random arrays, for different ranges.

Incidentally, you might be troubled by the fact that a few of our
SAT scores are outside the legal range:

print("min: {}, max: {}".format(sat_scores.min(),
sat_scores.max()))

min: 304.29, max: 1618.35

6.1. TWO NUMERIC VARIABLES 45

Real SAT scores are supposed to range between 400 and 1600, the
Internet tells me. We could fix this by using the NumPy .clip()
method, which imposes a high and low cutoff as its arguments:

sat_scores = sat_scores.clip(400,1600)
print("min: {}, max: {}".format(sat_scores.min(),

sat_scores.max()))

min: 400.0 max: 1600.0

The revised scatter plot is shown on the right side of Figure 6.1.

Figure 6.1: Uncorrelated numeric random variables. The right-
hand plot has SAT scores “clipped” to stay above 400 and below
1600.

Totally correlated numeric variables

On the other extreme, if two variables are completely correlated,
then one is simply a direct (linear) function of the other. That’s
easy to accomplish by creating only one randomly, and then using
it to compute the other:

weights_lbs = np.random.normal(150, 30, 100)
weights_kg = weights_lbs / 2.2

46 CHAPTER 6. SYNTHETIC DATA SETS

Clearly a person’s weight in pounds completely determines their
weight in kilograms: all you do is divide by a constant factor to
convert between units.

Figure 6.2: Two completely correlated numeric variables.

Scatter plotting these gives a perfectly straight line (see Figure 6.2),
and Pearson tells us they’re totally correlated (the p-value is rock
bottom 0.0, and r=1):

print(scipy.stats.pearsonr(weights_lbs,weight_kg))

(1.0, 0.0)

Somewhat correlated numeric variables

Now let’s take the most common and interesting case: a data set in
which our two numeric variables are partially, but not completely,
correlated. (By “partially correlated” I just mean that there is an
association between the variables, but it’s not a rigidly perfect one,
like the one between weight-in-pounds and weight-in-kg.)

What we’ll do is first generate one of the variables independently
and randomly, and then compute the second as a function of the first
with added noise. “Noise” is a strange (and somewhat misleading)
term that’s used in a variety of statistical situations. Here it means
“random other factors that influence a numeric variable’s value up
or down.”

6.1. TWO NUMERIC VARIABLES 47

As an example, let’s create a synthetic data set with two variables
about high school seniors: her SAT score, and her high school GPA.
A moment’s thought will tell you that this indeed falls under our
third, “somewhat correlated” case: students with better SAT scores
also on average tend to have higher GPAs, but this is an imperfect
relationships that doesn’t always hold completely.

Our strategy is as follows. First, randomly create an array of syn-
thetic SAT scores. Then, calculate each student’s GPA as a func-
tion of her SAT score, plus a random “nudge” either up or down to
account for other random factors.

For our noise factor (the “nudge”) we’ll take the most common ap-
proach: a normally-distributed random variable with a mean of
zero. This is called “white noise,” for various semi-interesting rea-
sons. We use a mean of 0 for this because on average, we don’t
want the random “nudges” to be biased in either the up direction
or the down direction. On average, we want the net nudge to be
zero.

Okay. Now see if you can understand the two lines of code we use
to implement this strategy:

sat_scores = np.random.normal(1000, 300, 100)
gpas = sat_scores * (2.5 / 1400) + np.random.normal(0, 1, 100)

The sat_scores line is the same one we had before. We’re then
modeling the high school GPA of a student as somewhat correlated
with his SAT score. The “ 2.5

1400 ” multiplier is an attempt to quan-
tify the relationship between the two variables, which of course are
measured on completely different scales. We’re guestimating that
a 1400 on the SAT would kinda sorta equate to about a 2.5 GPA.
Notice that the second component of gpas is a normally distributed
noise component with zero mean. (Why a standard deviation of 1?
Just a guess. We can tweak it later if we don’t like the results.)

Now this is a good first attempt. Notice two assumptions/limitations,
though:

48 CHAPTER 6. SYNTHETIC DATA SETS

1. We’re assuming that the relationship between the two vari-
ables is linear — namely, that “the first value times a con-
stant” is a good estimate for the second value. In reality, of
course, the relationship is often more complex: it might be
better modeled as the square of the first value, for instance,
or “e to the” first value, or the cube root of the first value,
etc.

2. We’re assuming that the “zero point” for the two variables
coincide: in other words, a zero for one value would on average
roughly correspond to a zero for the other. In the above
case, we’re assuming that a person who got a 0 on the SAT
would have, on average, a 0 GPA. If this isn’t appropriate, we
should add an intercept term (a constant) to our generative
formula. This takes our generated second variable and just
shifts it, wholesale, to a new region of the number range.

We’ll stick with the first assumption (linearity) for the moment, but
be more flexible about the second. If we include an intercept term,
our formula for generating the dependent variable boils down to:

dep_variable = m ⋅ indep_variable + b +
np.random.normal(0, σ, n)

which is the familiar equation for a line (y = mx + b) with a noise
term added in (with σ standard deviation). Now we have to esti-
mate decent values for m, b, and σ. How should we do this?

My preferred approach is to identify a “high-ish” value of the first
variable, and estimate a (roughly, on average) corresponding value
of the second variable. Then do the same for a “low-ish” value.
Then, plug those into the y =mx+b formula and solve for the slope
and intercept.

Example: let’s generate a synthetic data set of two variables: the
number of hours a person has practiced playing the Dance Dance
Revolution (DDR) videogame in their lifetime, and the score they
achieved in a DDR contest (on the song Kakumei). Clearly, there

6.1. TWO NUMERIC VARIABLES 49

should be some (positive) relationship between the two quantities:
when num_hrs is high, you’d expect score to also be high. If you’re
familiar with the game, though, you know that the zero points for
these variables do not coincide: even if you’ve never ever played at
all, you’ll still manage to stumble through the song, learn how to
play as you go, and get a positive score.

Based on my knowledge of the game (which I suck at, by the way),
I estimate:

• A decent player who has practiced for 100 hours might get a
score of around 60 million.

• A sucky-ish player who has practiced for only 10 hours might
get a score of around 30 million.

Running the algebra1, I get:

60 =m ⋅ 100 + b

30 =m ⋅ 10 + b

. . . insert algebra here . . .
m = .333, b = 26.667

Thus we get back-of-the-envelope estimates of m and b.

Now how to estimate σ, the standard deviation of the noise term?
Play with it. The larger it is, the more your second variable will
deviate from the perfectly straight line we would predict solely from

1Linear algebra fans can avoid doing all the mechanical steps by noting that
our two equations form the following matrix equation:

[
100 1
10 1

] ⋅ [
m
b
] = [

60
30
]

NumPy can solve this for m and b like so:

X = np.array([[100,1],[10,1]])
Y = np.array([60,30])
print(np.linalg.solve(X,Y))

[0.33333333 26.66666667]

But only if you’re feeling lazy.

50 CHAPTER 6. SYNTHETIC DATA SETS

the y =mx + b. Remember that with the normal distribution, two-
thirds of your data points will fall within one standard deviation
from the mean. I think two-thirds of my 100-hour practicers might
get between 50 and 70 million. So I’ll go with a σ of 10 and see
how that looks.

Finall, here’s the actual code to produce a synthetic data set of 200
dancers. First, generate the practice times themselves:

num_hrs = np.random.normal(50,20,200).clip(0,500)

Perhaps your average dancer practiced 50 hours for the competition,
with most of them within 20 hours of that, and no one who practiced
less than 0 hours (not even me), or greater than 500 hours.

Then, we generate these players’ scores:

score = num_hrs * .333 + 26.667 + np.random.normal(0,10,200)

I think it looks pretty decent (Figure 6.3).

Figure 6.3: A scatter plot of two synthetic, partially-but-not-
completely correlated numeric variables. In the left figure, the σ
for the noise was set to 10 million; in the right, to 3 million.

There’s also a multivariate_normal() function in the scipy.stats
package which can generate these kinds of correlated data sets more
powerfully.

6.2. TWO CATEGORICAL VARIABLES 51

6.2 Two categorical variables

As with numeric variables, of course, a pair of categorical variables
can be either uncorrelated, completely correlated, or “somewhat
correlated.” Let’s generate examples all three types.

Uncorrelated categorical variables

Let’s generate a data set with 2000 registered voters in Fredericks-
burg, 54% Democrats and 46% Republicans. We’ll also generate
their pick for the Superbowl: the Chiefs (58%) or the 49ers (42%).

Since we want these variables to be uncorrelated, we just generate
each one separately:

party = np.random.choice(['Democrat','Republican'], p=[.54,.46],
size=2000)

superbowl = np.random.choice(['Chiefs','49ers'], p=[.58,.42],
size=2000)

print(pd.crosstab(superbowl,party,margins=True))
print(scipy.stats.chi2_contingency(pd.crosstab(superbowl,party)))

Democrat Republican All
49ers 461 383 844
Chiefs 595 561 1156
All 1056 944 2000
(1.81827219952, 0.177519079284, 1, array([[445.632, 398.368],

[610.368, 545.632]]))

Don’t be fooled by the heat map on the left side of Figure 6.4 (p. 52).
It looks like the four categories have wildly different values, but
that’s because we didn’t set the heat map’s range explicitly, and so
the color bar is all pinched to the range 400 to 600. We can tell
Seaborn to use specific values by passing vmin and vmax arguments:

sns.heatmap(pd.crosstab(party, superbowl), vmin=0, vmax=2000)

52 CHAPTER 6. SYNTHETIC DATA SETS

Figure 6.4: Two heat maps for a synthetic set of uncorrelated
categorical variables. The left heat map looks like the four totals
are very different, but that’s because the scale was not explicitly set.
In the right map, we pegged the color scale to the range (0,2000).

Here, the range 0 to 2000 makes sense, because that’s as far as any
one of our compartments could possibly range. The result is the
right side of Figure 6.4.

As expected, a χ2 test’s p-value shows no significant correlation
(remember that the second entry is the p-value):

print(scipy.stats.chi2_contingency(party_sup))

(1.81827219952, 0.177519079284, 1, array([[445.632, 398.368],
[610.368, 545.632]]))

Completely correlated categorical variables

Now let’s add a “party_color” categorical variable that gives the
associated color of each voter’s political party (blue for Democrats
and red for Republicans). Note that this is perfectly correlated with
party, and to enforce this, we need a different approach.

NumPy’s where() function comes in handy here. It’s tricky but
powerful. np.where() takes three arguments – an array of booleans
(Trues and Falses), and two other arguments which are used as
substitutions. It produces an array that includes the second argu-
ment in every position where the first is true, and the third argu-
ment everywhere it’s false. In the current example, we’re saying

6.2. TWO CATEGORICAL VARIABLES 53

“for every place that the party array has a 'Democrat' value, put
'blue' in this new array you’re making for me, and put 'red'
everywhere else.”

The code looks like this:

party_color = np.where(party=='Democrat','blue','red')

As will be the case nearly every time we use where(), the first argu-
ment – the “array of booleans” – comes from a query. Remember
that when we say something like “party=='Democrat'”, we actu-
ally get back an array of Trues and Falses, one for each element
in party:

print(party)
print(party=='Democrat')

['Republican' 'Republican' 'Democrat' ... 'Democrat' 'Republican']
[False False True ... True False]

Our call to where() effectively said “wherever party=='Democrat',
gimme a True (and thus take the second argument’s value), oth-
erwise gimme a False (and thus take the third argument’s value).
If we look at the first few values of our new array, we see that it
worked:

print(party)
print(party_color)

['Republican' 'Republican' 'Democrat' ... 'Democrat' 'Republican']
['red' 'red' 'blue' ... 'blue' 'red']

Thus, we get perfect correlation between our two variables:

54 CHAPTER 6. SYNTHETIC DATA SETS

print(pd.crosstab(party, party_color))
print(scipy.stats.chi2_contingency(

pd.crosstab(party, party_color)))

blue red
Democrat 1056 0
Republican 0 944
(1995.989429141519, 0.0, 1, array([[557.568, 498.432],

[498.432, 445.568]]))

Figure 6.5: Two completely correlated categorical variables.

Somewhat correlated categorical variables

And now let’s create a “gun_owner” categorical variable which has
the value 'gun' or 'no gun' for each voter. According to data I
Googled, approximately 44% of our synthetic Republicans should
own guns, and about 20% of our Democrats should. For this, we
can go back to our friend np.where():

gun_owner = np.where(party=='Democrat',
np.random.choice(['gun','no gun'],p=[.2,.8],size=2000),
np.random.choice(['gun','no gun'],p=[.44,.56],size=2000))

This time, our second and third arguments to np.where() are them-
selves arrays. We’re saying, “in every position where party has a

6.3. INTERMISSION: STITCHING IT ALL TOGETHER 55

'Democrat', use the corresponding value from our random array
that has 20% guns. Otherwise, use the corresponding value from a
different random array that is 44% guns.”

Checking, we do get the desired correlation:

print(pd.crosstab(party, gun_owner, margins=True))
print(scipy.stats.chi2_contingency(

pd.crosstab(party, gun_owner)))

gun no gun
Democrat 208 848
Republican 394 550
(114.034337674, 1.28071376464e-26, 1, array([[317.856, 738.144],

[284.144, 659.856]]))

Figure 6.6: Two partially correlated categorical variables.

6.3 Intermission: stitching it all together

By the way, in all of the examples above, we simply generated two
separate NumPy arrays. Even though these arrays were implicitly
related to each other – they were the same length, and correspond-
ing elements referred to aspects of the same student/dancer/citizen/
whatever – they weren’t actually in a DataFrame together. How can
we make them so?

The syntax seems a little strange if you’ve never seen a Python
“dictionary” before, but this helpful little data structure will come

56 CHAPTER 6. SYNTHETIC DATA SETS

up a lot later (e.g., in Chapters 7-8.) You can think of a dictionary
as a stripped-down, less-feature-rich version of a Pandas Series.
In other words, it’s a repository of key-value pairs. To create one,
you use a pair of curly braces, inside of which you list the key-
value pairs, each pair separated by a comma, and the key and value
separated by a colon. An example would be:

teams = { 'Washington':'Mystics', 'Los Angeles':'Sparks',
'Seattle':'Storm' }

You can then treat it like a Series, using boxies ([]) to get/set
elements, although none of the advanced Pandas features won’t
work.

Anyway, the reason I mention this is that the easiest way to cre-
ate a DataFrame out of a bunch of NumPy arrays is to pass the
DataFrame() function a dictionary, where the keys are the column
names you want, and the values are the arrays.

citizens = pd.DataFrame({'party': party, 'color': party_color,
'prediction': superbowl, 'gun_owner': gun_owner})

print(citizens.iloc[0:8])

party color prediction gun_owner
0 Republican red 49ers gun
1 Republican red Chiefs no gun
2 Democrat blue Chiefs no gun
3 Democrat blue 49ers gun
4 Democrat blue 49ers no gun
5 Republican red Chiefs no gun
6 Democrat blue 49ers no gun
7 Democrat blue 49ers no gun

It’s a snap!

6.4. ONE CATEGORICAL & ONE NUMERIC VARIABLE 57

6.4 One categorical & one numeric variable

Okay, back to our synthetic data creation. Our third and final case
is a data set with one variable of each kind: numeric and categorical.
Let’s use professional athletes as our running example for this case.

Completely uncorrelated

Let’s create a synthetic data set with information about professional
athletes in three sports: baseball, football, and basketball. I’m
going to guess that players in each of these sports, on average,
train about the same number of hours per week. That would make
sport (categorical) completely uncorrelated with training_hours
(numeric). So, we just generate them independently. Let’s go with:

sport = np.random.choice(['baseball','football','basketball'],
p=[.35,.45,.2], size=1000)

training_hrs = np.random.normal(35,10,1000)
print(sport[0:6])
print(training_hrs[0:6])

['football' 'basketball' 'basketball' 'football' 'football' 'baseball']
[26.24722 57.79145 51.44831 26.75212 21.95934 41.5458 30.76964]

Looks to be in the ballpark of what we want (pun intended). Let’s
put this info in a DataFrame and then generate a box plot:

athletes = pd.DataFrame({'sport': sport,
'training_hrs': training_hrs})

athletes.boxplot("training_hrs", by="sport")

As expected. (Figure 6.7.)

58 CHAPTER 6. SYNTHETIC DATA SETS

Figure 6.7: Synthetic mixed variables: uncorrelated.

Completely correlated

It’s kind of hard to think of an example with two completely corre-
lated variables, one categorical and one numeric. This would mean
that the value of the categorical variable completely determines the
numeric value for that individual. So all baseball players must have
the exact same value, and the same for all football players, and
for all basketball players. What is like that? Just to have a com-
plete set of examples, how about we use “the year the sport was
invented.”

We’ll use good ol’ np.where() again, although there’s a bit of a
catch (pun intended) since we have three different values for sport
instead of just two. The key is to use nested function calls. Check
it out:

year_inv = np.where(athletes.sport == 'baseball', 1869,
np.where(athletes.sport == 'football', 1920, 1946))

6.4. ONE CATEGORICAL & ONE NUMERIC VARIABLE 59

If you follow the logic, it makes sense. This code says:

1. Make a new array, same size as athletes.sport.
2. For every place where athletes.sport has the value 'baseball',

use the value 1869.
3. For every place where it has some other value, use...

a) ...a new array, same size as athletes.sport.
b) For every place where athletes.sport has the value 'football',

use 1920.
c) For every place where it has some other value, use 1946.

Get it? It’s kind of like a sequence of nested if statements. Just
make sure all your bananas line up.

We’ll add this new column to our DataFrame, and take it for a spin:

athletes['year_inv'] = year_inv
athletes.boxplot("year_inv", by="sport", notch=True)

Figure 6.8: Synthetic mixed variables: completely correlated.

Figure 6.8 looks odd at first, but it’s correct: every single baseball
player plays a sport that was invented in exactly 1869, and so forth.
So of course each “box” is collapsed to just a single line.

60 CHAPTER 6. SYNTHETIC DATA SETS

Partially correlated

And finally, the case where the categorical variable partially, but not
completely, determines the value of the numeric variable. Salaries
for professionals in the three areas differ a great deal, even consid-
ering only male athletes: Major League Baseball players earn on
average $4.1 million annually, NBA players a whopping $7.7 mil-
lion, and NFL players, along with dealing with concussions, get a
lowly $2.7 million a year. Who knew?

This data isn’t truly normally distributed, you may realize, since
there are a few Tom Bradys and LeBron Jameses who are paid
astronomical amounts, skewing the average for everyone else. But
just to finish this long chapter, let’s assume normality, along with
some reasonable-sounding standard deviation, and be done with it:

salary = np.where(athletes.sport == 'baseball',
np.random.normal(4.1,1,1000),
np.where(athletes.sport == 'football',

np.random.normal(2.7,1,1000),
np.random.normal(7.7,2,1000)))

salary = salary.clip(.4,100000)

athletes['salary'] = salary
athletes.boxplot("salary", by="sport", notch=True)

It’s np.where() again. This time, we’re generating three complete
sets of 1000 synthetic salaries: one each to represent baseball, foot-
ball, and basketball players. But then our where() call says “if
the sport is 'baseball', take the value from the first one; if it’s
'football', take it from the second one; otherwise, take it from
the third one.

After creating this array, we clip it to make sure that no athlete is
making less than $400,000 per year (which Google tells me is legit).

The result is in Figure 6.9, which looks as we expected. Go team!

6.4. ONE CATEGORICAL & ONE NUMERIC VARIABLE 61

Figure 6.9: Synthetic mixed variables: partially correlated.

Chapter 7

JSON (1 of 2)

JSON (pronounced like the name “Jason”) is a simple, human-
readable text file format that is very commonly used for information
storage and interchange. (It stands for “JavaScript Object Nota-
tion,” but don’t be fooled: it doesn’t have much to do with the
JavaScript language except historically. Any language, including
Python, can read/write JSON data.)

In this chapter, we’ll learn about how to read and navigate through
JSON data. First, though, a word about a couple of Python essen-
tials I omitted from DATA 101 for brevity and simplicity.

7.1 Lists and dictionaries

Last semester, we spent a lot of time learning how to use NumPy
ndarrays and Pandas Serieses. These are the preferred imple-
mentations of arrays, and associative arrays, respectively, in the
Python Data Science ecosystem. As you know, a NumPy array
holds a numbered sequence of items (indexed starting from 0), and
a Series holds a set of key-value pairs.

For any serious data work, you want to use those tools, because
they are lightning-fast, super-efficient, feature-rich, and optimized
to the task.

As it turns out, plain-ol’ Python has stripped-down, feature-poor,

63

64 CHAPTER 7. JSON (1 OF 2)

but easy-to-type versions of these data structures as well, which are
baked in to JSON and also important to know about in their own
right. They’re called lists and dictionaries.

Lists

If, instead of writing this:

crew = np.array(["Ed","Kelly","Alara","Bortus","John",
"Claire"])

you simply wrote this:

crew = ["Ed","Kelly","Alara","Bortus","John","Claire"]

then you get a plain-ol list instead of a NumPy array. It isn’t
nearly as fast, nor can it store nearly as many items, and you can’t
do broadcasting operations and such with it, but it does the basic
job. For example:

print("Captain {} initiating roll call for {} officers:".format(
crew[0], len(crew)))

for member in crew[1:len(crew)]:
print("{} reporting for duty, sir!".format(member))

print(crew[0])

Captain Ed initiating roll call for 6 officers:
Kelly reporting for duty, sir!
Alara reporting for duty, sir!
Bortus reporting for duty, sir!
John reporting for duty, sir!
Claire reporting for duty, sir!

7.1. LISTS AND DICTIONARIES 65

Working with small lists of items is very, very similar to working
with NumPy arrays, so I’m sure you’ll pick this right up.

Incidentally, we’ve actually used lists several times already, without
knowing it. For instance, this very line of code:

good = np.array(["Janet","Chidi","Eleanor","Michael","Tahani"])

is actually first creating a list, and then passing that list as an
argument to np.array(). And this code:

alter_egos = pd.Series(['Hulk','Spidey','Iron Man','Thor'],
index=['Bruce','Peter','Tony','Thor'])

creates two separate lists, one for the data and one for the index,
and passes those to pd.Series() to build a Series out of them.
Lists are super-lightweight and super-common.

Dictionaries

As mentioned in section 6.3 (p. 55), dictionaries are like stripped-
down Pandas Serieses, in the same way that lists are like stripped-
down NumPy arrays. Dictionaries contain key-value pairs, accessed
in the same sort of way (with the boxie [] syntax). You create a
dictionary by using the syntax from p. 56:

alter_egos = { 'Bruce':'Batman', 'Dick':'Robin',
'Diana':'Wonder Woman', 'Clark':'Superman' }

Then, just like with Serieses, you can retrieve the value for a key,
change the value for a key, add a new key-value pair, and so forth:

66 CHAPTER 7. JSON (1 OF 2)

caped_crusaders = [alter_egos['Bruce'], alter_egos['Dick']]
alter_egos['Clark'] = 'Man of Steel'
alter_egos['Victor'] = 'Cyborg'

print("There are {} heroes, {} of whom are the caped crusaders.".
format(len(alter_egos), len(caped_crusaders)))

print("The dynamic duo is: {} and {}!".format(caped_crusaders[0],
caped_crusaders[1]))

for key, value in alter_egos.items():
print("Psssst, {} is really {}...".format(key,value))

There are now 5 heroes, 2 of which are the caped crusaders.
The dynamic duo is: Batman and Robin!
Psssst, Bruce is really Batman...
Psssst, Dick is really Robin...
Psssst, Diana is really Wonder Woman...
Psssst, Clark is really Man of Steel...
Psssst, Victor is really Cyborg...

Nesting...and nesting, and nesting...

All that was easy so far. The only thing left to tell you – and man,
it can pack a whammy when you first see it – is that both lists and
dictionaries can be nested indefinitely. This means that one of a
list’s elements might well be another list, or a dictionary. And the
value for one of a dictionary’s keys might well be a list, or another
dictionary.

Sometimes you have to stare hard at the printout of a nested struc-
ture to figure out how to unpack it. Here are some examples:

a = [7, 1, [9, 5], 6]

The a variable is a list (you can tell because it starts with a boxie)
and one of its elements happens to be another list (ditto). Stare
hard at that, and then stare hard at this output, and make sure
you see why it’s so:

7.1. LISTS AND DICTIONARIES 67

print("a[1] is {}".format(a[1]))
print("len(a) is {}".format(len(a)))
print("a[3] is {}".format(a[3]))
print("len(a[2]) is {}".format(len(a[2])))
print("a[2][1] is {}".format(a[2][1]))

a[1] is 1
len(a) is 4
a[3] is 6
len(a[2]) is 2
a[2][1] is 5

The first one was a warmup. But the second output may have
surprised you: aren’t there five numbers in that list, not four? The
answer is no, there are exactly four:

• Item #0 is the number 7.
• Item #1 is the number 1.
• Item #2 is a list, which has two elements: 9 and 5.
• Item #3 is the number 6.

Once you grasp that, you can probably understand the other out-
puts from that example as well. Of particular note is the last one:
a[2][1] means “get element #2 from a, and since it is itself a list,
get element #1 from that.” And since all lists are numbered starting
with 0, that’s effectively the second element of the third element of
a, which is the number 5.

Next one:

b = { "apple": 54, "banana": [14, 67], "cherry": { "bing":
[13, 17, 21], "rainier": { "sweet": "yes", "juicy":
"yes" } } }

The b variable is a dictionary (you can tell because it starts with a
curly) and it contains several key-value pairs. How many, you ask?

68 CHAPTER 7. JSON (1 OF 2)

print(len(b))

3

The three key-value pairs are:

• "apple", whose value is the number 54.
• "banana", whose value is a list, whose elements are 14 and

67.
• "cherry", whose value is another dictionary. That dictionary

has two key-value pairs:
– "bing", whose value is a list with 13, 17, and 21.
– "rainier", whose value is yet another dictionary, with

keys "sweet" and "juicy".

Now test yourself and make sure you can predict the right output
from these lines of code:

print("b['apple'] is {}".format(b['apple']))
print("b['banana'] is {}".format(b['banana']))
print("len(b['banana']) is {}".format(len(b['banana'])))
print("len(b['cherry']) is {}".format(len(b['cherry'])))
print("len(b['cherry']['bing']) is {}".format(

len(b['cherry']['bing'])))
print("b['cherry']['bing'][0]) is {}".format(

b['cherry']['bing'][0]))
print("b['cherry']['rainier']['sweet']) is {}".format(

b['cherry']['rainier']['sweet']))

b['apple'] is 54
b['banana'] is [14, 67]
len(b['banana']) is 2
len(b['cherry']) is 2
len(b['cherry']['bing']) is 3
b['cherry']['bing'][0]) is 13
b['cherry']['rainier']['sweet']) is yes

7.1. LISTS AND DICTIONARIES 69

Remember, len() plays several roles. When called on a list or array,
it gives the number of elements; on a dictionary or Series, the num-
ber of key-value pairs; on a string, the number of characters; and on
a DataFrame, the number of rows. That’s why len(b['banana'])
and len(b['cherry']) both return 2, even though they’re very
different types of things.

Note this general rule, too: every time the thing you have is a list,
you must follow it with an integer in boxies. Every time the thing
you have is a dictionary, you must follow it with a key (often a
string) in boxies. Always.

And now’s a good time to mention how to find out what type of
thing something is – the type() function:

print("b['apple'] is a {}".format(type(b['apple'])))
print("b['banana'] is a {}".format(type(b['banana'])))
print("b['cherry'] is a {}".format(type(b['cherry'])))
print("b['cherry']['rainier']['juicy'] is a {}".format(

type(b['cherry']['rainier']['juicy'])))

b['apple'] is a int
b['banana'] is a list
b['cherry'] is a dict
b['cherry']['rainier']['juicy'] is a str

This is super useful when plunging deep through nested data sets.

One last example:

c = [{ 'x': 5 }, [14, 'bob', [11, { 'duck': 'donuts',
'five': 'guys' }, [17, 6]]]]

Can you visually line up all those boxies? If so, then you can
probably get these answers correct:

70 CHAPTER 7. JSON (1 OF 2)

print("len(c) is {}".format(len(c)))
print("c[0]['x'] is {}".format(c[0]['x']))
print("c[1][1] is {}".format(c[1][1]))
print("c[1][2][1]['five'] is {}".format(

c[1][2][1]['five']))
print("c[1][2][2][1] is {}".format(c[1][2][2][1]))

len(c) is 2
c[0]['x'] is 5
c[1][1] is bob
c[1][2][1]['five'] is guys
c[1][2][2][1] is 6

7.2 JSON

Okay, now about JSON proper.

The really nice things about JSON are (1) it’s a simple format, and
relatively easy on the eyes (unlike binary formats, or XML), and (2)
it structures information in nested list-ish, dictionary-ish, string-ish
type elements that are exactly like what we covered in the previous
section. A JSON “document” is, in fact, essentially a Python list or
dictionary with embedded contents.

Here’s an example file in JSON format:

{"name": "Luke Skywalker", "rank": "Jedi", "lightsaber color":
"blue", "episodes": ["IV", "V", "VI", "VIII", "IX"], "relations":
{"Leia": "sister", "Han": "friend", "Artoo": "servant",
"Threepio": "servant", "Rey": "student"}}

Its structure is instantly apparent: a dictionary whose values are
strings, lists, and other dictionaries, as appropriate.

7.2. JSON 71

Probably the best thing about JSON is that once we read and parse
a JSON file or other information source, we have a bona fide Python
variable that we can treat in the ordinary way.

In Python, we have the json package, which you can import like
any other:

import json

There are four functions that matter:

• json.dump(someVariable, aFile) - Dump the Python variable
to a file in JSON text format.

• json.dumps(someVariable) - Dump the Python variable to a
string in JSON text format (and return it).

• json.load(aFile) - Build and return a Python variable from
the contents of the JSON text file.

• json.loads(someString) - Build and return a Python vari-
able from the JSON text string.

When I refer to “aFile” in the above list, I’m talking about a Python
file object, which pros normally obtain using the somewhat weird-
looking “with” syntax. It works like this:

with open('whatever.json','r') as f:
...do stuff with the file object f...

The name of the file we’re opening here is “whatever.json”, and
like all files, it must be in the same folder as our Python .py file in
order for Spyder to find it. The rest of that line is just a pattern
to memorize. Importantly, the line(s) immediately underneath the
“with” in which you use the file object “f” are indented, just like in
a for loop or if statement or function definition.

So, to load a file info.json into a Python variable called “my_stuff”,
we’d write this code:

72 CHAPTER 7. JSON (1 OF 2)

with open('info.json','r') as f:
my_stuff = json.load(f)

And we could parse and access our Luke Skywalker file just like
this:

with open('luke.json','r') as f:
luke = json.load(f)

print(luke['lightsaber color'])
blue

print(luke['episodes'][2])
VI

“Pretty printing”

One thing I think you’ll find useful is the ability to “pretty print”
a nested Python structure, like one you read from a JSON file.
Instead of a monolithic wall of text, like many .json files look out
of the box, a pretty printer attempts to format, indent, and put
linebreaks in, so that you can more readily perceive its structure
and figure out how to pick out the parts you want.

A good package for this is the pprint package. First, you have to
do the import:

from pprint import pprint

From then on, instead of print()ing a variable, you can pprint()
it. I think you’ll agree, the latter is easier to make sense of:

print(luke)

7.3. “HIERARCHICAL” VS. “FLAT” DATA 73

{"name": "Luke Skywalker", "rank": "Jedi", "lightsaber color":
"blue", "episodes": ["IV", "V", "VI", "VIII", "IX"], "relations":
{"Leia": "sister", "Han": "friend", "Artoo": "servant",
"Threepio": "servant", "Rey": "student"}}

pprint(luke)

{'episodes': ['IV', 'V', 'VI', 'VIII', 'IX'],
'lightsaber color': 'blue',
'name': 'Luke Skywalker',
'rank': 'Jedi',
'relations': {'Artoo': 'servant',

'Han': 'friend',
'Leia': 'sister',
'Rey': 'student',
'Threepio': 'student'}}

As a bonus, it even puts dictionary keys in alphabetical order, so
you can find them more easily.

7.3 “Hierarchical” vs. “flat” data

So you see that the JSON file format is essentially a textual repre-
sentation of an Python variable with arbitrarily nested inner struc-
ture. This variable can be a list or a dictionary, and have embedded
lists and dictionaries to any level of nesting. Here’s another exam-
ple:

[{"prefix": "DATA", "num": 219, "creds": 3, "instructor": "Davies",
"meetings": [{"time": {"day": "TR", "time": "12:30pm"}, "location":
{"bldg": "Farmer", "room": "B6"}}], "roster": [{"first": "Lady",
"last": "Gaga", "email": "lgaga@umw.edu"}, {"first": "The", "last":
"Rock", "email": "trock@umw.edu"}, ...

When you disentangle this, you’ll realize that what you have is:

A list, each element of which is:

74 CHAPTER 7. JSON (1 OF 2)

• a dictionary, with key/value pairs:
– prefix: a string
– num: an int
– creds: an int
– instructor: a string
– meetings: a list, each element of which is:

∗ a dictionary, with key/value pairs:
· time: a dictionary, with key/value pairs:

day: a string
time: a string

· location: a dictionary, with key/value pairs:
bldg: a string
room: a string

– roster: a list, each element of which is:
∗ a dictionary, with key/value pairs:

· first: a string
· last: a string
· email: a string

– ...and possibly other stuff...

7.3. “HIERARCHICAL” VS. “FLAT” DATA 75

This kind of structure is called hierarchical data. This is in con-
trast to so-called flat data, like a CSV:

Prefix,Num,Instructor,Creds,Bldg,Room,Day,Time
DATA,219,Davies,3,Farmer,B6,TR,12:30pm
ENGL,286,Rigsby,3,Combs,112,MWF,11am
CPSC,305,Finlayson,4,Farmer,B52,MWF,8am

It should be clear that hierarchical data is intrinsically more expres-
sive than flat data. Rather than each data record being a strict,
identical-length sequence of values, the whole nested structure com-
municates order and relationships between subcomponents, like an
outline.

It’s not even always possible, let alone straightforward, to convert
from a hierarchical format to a flat format. Consider the JSON file
on p. 73: it permits any number of meetings for a single course,
each of which has embedded structure. In this case, the structure
for each meeting is regular, since it’s apparently composed of a
fixed number of fields with unique names. (This won’t always be
the case, and if it’s not, we would lose information in collapsing it
to a flat format.) Even so, though, it’s not clear what to do with
the multiple meeting times/locations for a course. Do we make each
Bldg/Room/Day/Time group into its own set of headings in the flat
format? This brings with it its own problems, such as:

1. How do we associate each group of buildings/rooms/days/times
together, since they’re now all individual top-level fields? (Nam-
ing conventions seem like the only solution, and it’s awkward.)

2. How do we know the maximum number of such meetings, so
as to specify the width of the table?

3. What do we do for rows which don’t have the maximum num-
ber of meetings? Leave the others blank?

4. How do we perform standard queries like “find all courses that
have at least one meeting in Farmer?” (We have to split this
up into an awkward query that separately queries each of the
columns and unions the answer.)

76 CHAPTER 7. JSON (1 OF 2)

There are better ways to organize such data, such as the relational
model that has been ubiquitous in database schema design since
Ted Codd invented it in the 1960’s. It allows us to “normalize” such
data sets and represent them in multiple, interrelated tables. We’ll
take a look at this when we look at SQLite later in the course. Some
irregular structures defy even the relational model, however, which
is why some newer database paradigms (like NoSQL databases)
have been developed to get around its limitations.

One important fact to grasp, however, is that at the present state
of technology, almost all machine learning algorithms are based on
a flat data structure. There are some quite advanced, cutting-
edge exceptions to this, but really the field of mining hierarchical
(and other non-flat) data formats is still in its infancy. Lots of
opportunity to make a name for yourself here!

Chapter 8

JSON (2 of 2)

In this chapter we’ll cover some common techniques for dealing
with JSON data. Most often, what you end up doing is writing
Python code that combs systematically through the data, surgically
extracting the parts you need for analysis. These parts can then be
assembled in NumPy arrays, Pandas DataFrames, or whatever, and
probed as you’re accustomed to.

Let’s go back to the college courses example from p.73, pretty
printed here:

[{'creds':3,
'instructor':'Davies',
'meetings':[{'location':{'bldg':'Farmer', 'room':'B6'},

'time':{'day':'TR', 'time':'12:30pm'}}],
'num':219,
'prefix':'DATA',
'roster':[{'email':'lgaga@umw.edu', 'first':'Lady', 'last':'Gaga'},

{'email':'trock@umw.edu', 'first':'The', 'last':'Rock'},
...,
...]

},
...

]

77

78 CHAPTER 8. JSON (2 OF 2)

The first brute fact to grasp is that whatever its internal complex-
ities, this whole thing is a list of dictionaries. Not a list of lists, or
a dictionary of dictionaries, or a dictionary of lists, but: a list of
dictionaries. How do we know this? Because the first character is
a boxie (“[”) and the second one is a curly (“{”).

8.1 Printing a class roster

As a first example of working with this data set, let’s say we wanted
to simply print the full names of all the students in the 17th course
in this list. First, let’s load the .json file into Python:

import json

with open("courses.json") as f:
c = json.load(f)

Here we’ve called the outermost structure “c”, which stands for
“courses” but is shortened since we’ll type it a lot. (Remember that
c is a list – a very long and complicated list, but still a list.)

And then we do a deep think. Printing all the names clearly requires
a loop. But what exactly do we want to loop through? The answer,
after scrutinizing the above structure, is: we need to find the value
of the "roster" key of the 17th dictionary in the c list. That in
turn will be a list, and it will contain dictionaries, one for each
student. (Pause before continuing, look at the JSON contents from
p. 77, and see if you agree with every word of this paragraph.)

So, the loop we want is something like this:

for student in c[16]['roster']:
print("{} {} is in {} {}.".format(student['first'],

student['last'], c[16]['prefix'], c[16]['num']))

8.2. PRINTING ALL THE CLASS ROSTERS 79

Lady Gaga is in DATA 219.
The Rock is in DATA 219.
Obi-wan Kenobi is in DATA 219.
Amy Klobuchar is in DATA 219.
...

Success. (Don’t worry if you don’t get this loop right the first time;
it often takes some tweaking and refinement before it works.) Notice
how this code operates:

1. We dig fairly deep into c (which is a list), finding its 17th
element (at index 16 of course), which is a dictionary. Then
we get the value of that dictionary’s "roster" key. As you
can see above, that key’s value is a list.

2. Every time through the loop, the “student” variable is set
equal to the next element of this list. And that element, as
you can see above, is a dictionary. The dictionary has two
items of interest: "first" and "last". We then print the
values of these two keys, plus the course prefix and number.
(Note that the course prefix and number come directly from
the c[16] dictionary itself, whereas the first and last names
come from keys of the elements of the inner "roster" list that
we’re iterating through.)

8.2 Printing all the class rosters

That printed the roster for one class. What about printing the
roster for all the classes?

If you think about it, the structure is much the same – except that
instead of merely iterating through class #17’s list of dictionaries,
we want to do it for every class.

You’ll probably realize that this necessitates another loop. All the
stuff we did for class #17, we now want to do for all the classes, one
after another. So in essence, we wrap the previous code in a nested,
outer loop which will perform it once for each course. Check out
the following:

80 CHAPTER 8. JSON (2 OF 2)

for course in c:
roster = course['roster']
for student in roster:

print("{} {} is in {} {}.".format(student['first'],
student['last'], course['prefix'], course['num']))

Observe the nested structure (a for within a for), and the use of
a temporary helper variable ("roster") to make the code clearer.
Also notice how the print() statement includes information from
both the student and course variables, as appropriate.

This is just the right thing. However, when we run it, we get an
error after a while:

Lady Gaga is in DATA 219.
The Rock is in DATA 219.
Obi-wan Kenobi is in DATA 219.
...
Elizabeth Jennings is in PSCI 401.
Stan Beeman is in PSCI 401.
Phillip Jennings is in PSCI 401.
...
Tyrion Lannister is in ENGL 101.
Jon Snow is in ENGL 101.
Daenerys Targaryen is in ENGL 101.
...
Han Solo is in CHEM 211.
Poe Dameron is in CHEM 211.
--
KeyError Traceback (most recent call last)

77 for student in roster:
78 print("{} {} is in {} {}.".format(student['first'],

---> 79 student['last'], course['prefix'], course['num']))
80

KeyError: 'last'

Whoaaaa, what’s dat?

8.2. PRINTING ALL THE CLASS ROSTERS 81

Encountering erroneous/missing data

This kind of error will happen all the time when you’re working
with JSON. The first step is not to panic. The second step is to
calmly observe that apparently, everything was working fine up to a
point...and then it suddenly broke. The third step is to look at that
error message and see if you can make sense out of it. (Often, you
can.) And the fourth step is to introduce some tactical debugging
messages into your code, so that you can narrow down the source
of the error.

I assume you’ve done those first two steps. On to the third: the
error message. It says, quote:

KeyError: 'last'

and it evidently happened on line 79, which was in the middle of
the print() statement. Put 2 and 2 together and you’ll realize that
when we attempted to extract the value of the "last" key for one
of the dictionaries, it wasn’t there. That’s what “KeyError” turns
out to mean: you asked for a particular key but there wasn’t one
in the dictionary.

The fourth step is crucial. It marks the difference between fledgling,
flailing novices and cool, critical-thinking experts. We need to insert
(temporarily) one or more print() statements into our loop, so that
right before the program crashes, we get some crucial insight into
what was about to go wrong.

This takes some practice and some intuition, but in this case let
me simply observe what it makes sense to do. If we were about
to access a non-existent key from a dictionary, it might illuminate
things if we printed out the dictionary immediately before trying
that stunt. That way, we’ll see the state of affairs just before the
error.

Here’s the key line, inserted into the inner loop:

82 CHAPTER 8. JSON (2 OF 2)

for course in c:
roster = course['roster']
for student in roster:

print("The dict is: {}".format(student))
print("{} {} is in {} {}.".format(student['first'],

student['last'], course['prefix'], course['num']))

Now look at the revised output, below:

The dict is: {'email':'han.solo@corellia.gov', 'first':'Han',
'last':'Solo'}

Han Solo is in CHEM 211.
The dict is: {'email':'dameron@resistance.org', 'first':'Poe',

'last':'Dameron'}
Poe Dameron is in CHEM 211.
The dict is: {'email':'root@dagobah.net', 'first':'Yoda'}

KeyError Traceback (most recent call last)

78 print("The dict is: {}".format(student))
79 print("{} {} is in {} {}.".format(student['first'],

---> 80 student['last'], course['prefix'], course['num']))
81

KeyError: 'last'

Aha! Our problem is Yoda, a student in CHEM 211 who doesn’t
have a last name.

It takes practice and experience to get a feel for where to insert
meaningful debugging statements. The key question to ask is:
“what do I wish I had known right before the error occurred?” Add
lines of code to shed light on that question.

Dealing with erroneous/missing data

Once you’ve discovered the absence of something you were look-
ing for, you need to ask yourself what the implications are of it
being missing. Sometimes it’s a bona fide data error that means
you need to investigate the source of the information, discard some
data points, or something else. Other times (as in the Yoda case)

8.2. PRINTING ALL THE CLASS ROSTERS 83

it’s innocuous – not everyone has a last name, after all – but you
still have to deal with the problem somehow so your program can
continue.

In the case of a missing key which you can sensibly ignore, you can
code around it as follows:

for course in c:
roster = course['roster']
for student in roster:

if 'last' in student:
print("{} {} is in {} {}.".format(student['first'],

student['last'],course['prefix'],course['num']))
else:

print("{} is in {} {}.".format(student['first'],
course['prefix'],course['num']))

The important line is the fourth one: “if 'last' in student:”.
The “in” keyword checks to see whether a dictionary has a certain
key or not. In this case, if there is no "last" key, we want to
simply print the first name and go on, not crash. The output is
now satisfactory:

...
Han Solo is in CHEM 211.
Poe Dameron is in CHEM 211.
Yoda is in CHEM 211.
Emperor Palpatine is in CHEM 211.
Chewie is in CHEM 211.
Rey is in CHEM 211.
...

The appropriate way to deal with an error like this varies depending
on the situation. This is why you need to back away from the
keyboard, take a walk, and ask yourself, “what does it mean when
this value is absent or corrupt? Does that imply that I need to
throw out that data point? Or that something deep and sinister is
going on? Or is there a way to safely ignore it?”

84 CHAPTER 8. JSON (2 OF 2)

8.3 Analyzing class sizes

Let’s end this chapter with a real-life analysis example. At univer-
sities (including our own) administrators keep close tabs on class
sizes, for two reasons: classes that are too small are an inefficient
drain on teaching resources, and classes that are too large diminish
students’ learning outcomes.

Suppose we were in the Provost’s office, and had this JSON data set
at our disposal. How could we use it to answer the following ques-
tion: “how do class sizes compare among the various disciplines?”

You could answer this lickety-split if you only had a DataFrame
with prefix and size columns. You’d just create a box plot with
prefix as your categorical variable and size as your numeric one.
The question is how to get such a DataFrame from this complex,
hierarchical JSON data set?

It’s really the same kind of thing we did in the previous examples:
you create loops to sift through the data, extracting exactly what
you want. In this case, for each course in the list, we simply need
two things:

1. its prefix, and
2. the length of its roster list.

for course in c:
roster = course['roster']
for student in roster:

print("{} {} is in {} {}.".format(student['first'],
student['last'],course['prefix'],course['num']))

Now you’ll recall from back in section 6.3 (p. 55) that if you have
two NumPy arrays, you can stitch them together into a DataFrame
by using a dictionary that names each array as a column. So our
challenge boils down to the problem of creating two arrays: one
with the prefix of each class, and the other with the size of each
roster.

8.3. ANALYZING CLASS SIZES 85

In this case, we start out knowing exactly how many elements these
arrays will have; namely, however long our c list is. The best thing
to do is create two initially-empty arrays, and then fill them up
with values in the loop. Here we go:

prefixes = np.empty(len(c), dtype=object)
sizes = np.empty(len(c), dtype=int)

The NumPy empty() function says “make me an array of the right
type but with no particular initial values, because I’m going to
fill them up myself with what I want.” You may remember that
“dtype” stands for “data type,” and that “object” is the way we
say “strings, please.” (Props if you do.)

Then, we write a loop that iterates through all the courses, set-
ting each prefixes value to the "prefix" key of the corresponding
course, and each sizes value to its roster size. See if you can follow
this code which does that:

for x in np.arange(0,len(c)):
prefixes[x] = c[x]['prefix']
sizes[x] = len(c[x]['roster'])

Remember that “np.arange()” is a way of generating all the suc-
cessive from one extreme to another. In this case, we want x to go
from 0 (the first time through the loop) to len(c)-1 (the last time).
For each value of x (0, 1, 2, ..., 200) we extract the appropriate part
of the c structure and fill in our two arrays’ values.

Printing these verifies it worked:

print(prefixes)

86 CHAPTER 8. JSON (2 OF 2)

['DATA' 'CPSC' 'CPSC' 'SOCG' 'MATH' 'CPSC' 'PHYD' 'CLAS' 'SPAN' 'BIOL'
'PSCI' 'PHYD' 'PHYD' 'CPSC' 'BIOL' 'CPSC' 'ENGL' 'DATA' 'ENGL' 'CLAS'
'BIOL' 'CLAS' 'STAT' 'BIOL' 'PHYD' 'PHYD' 'STAT' 'MATH' 'SOCG' 'SPAN'
'CLAS' 'CPSC' 'PHYD' 'DATA' 'DATA' 'MATH' 'MATH' 'PHYD' 'MATH' 'STAT'
'MATH' 'BUAD' 'DATA' 'DATA' 'PSCI' 'BIOL' 'CPSC' 'DATA' 'MATH' 'PSCI'
'CLAS' 'BUAD' 'MATH' 'BIOL' 'SPAN' 'PHYD' 'DATA' 'PHYD' 'ENGL' 'STAT'
'MATH' 'ENGL' 'DATA' 'ENGL' 'STAT' 'PSCI' 'SPAN' 'BUAD' 'PHYD' 'PSCI'
'CPSC' 'CPSC' 'BUAD' 'SPAN' 'BIOL' 'SPAN' 'STAT' 'BIOL' 'BIOL' 'PHYD'
'PSCI' 'BUAD' 'BUAD' 'SPAN' 'BUAD' 'BUAD' 'BUAD' 'MATH' 'BUAD' 'PSCI'
'DATA' 'PHYD' 'PHYD' 'STAT' 'BUAD' 'PHYD' 'CPSC' 'MATH' 'DATA' 'PHYD'
'BUAD' 'STAT' 'SPAN' 'ENGL' 'CLAS' 'CLAS' 'SOCG' 'ENGL' 'MATH' 'SOCG'
'PSCI' 'MATH' 'SPAN' 'BUAD' 'BUAD' 'BUAD' 'SPAN' 'BIOL' 'DATA' 'CPSC'
'PSCI' 'CPSC' 'SOCG' 'BIOL' 'PSCI' 'STAT' 'PHYD' 'SOCG' 'SPAN' 'BUAD'
'PSCI' 'MATH' 'MATH' 'CLAS' 'STAT' 'MATH' 'SPAN' 'CPSC' 'SPAN' 'DATA'
'PSCI' 'SPAN' 'CLAS' 'PHYD' 'CPSC' 'CPSC' 'SOCG' 'PSCI' 'SPAN' 'PSCI'
'PSCI' 'CPSC' 'STAT' 'PHYD' 'BIOL' 'BIOL' 'STAT' 'CLAS' 'STAT' 'MATH'
'BUAD' 'PHYD' 'BUAD' 'BIOL' 'DATA' 'SPAN' 'CPSC' 'ENGL' 'CPSC' 'PHYD'
'BUAD' 'BUAD' 'ENGL' 'SOCG' 'PSCI' 'STAT' 'DATA' 'ENGL' 'CPSC' 'DATA'
'STAT' 'SPAN' 'SOCG']

print(sizes)

[35 29 28 14 25 30 20 7 15 21 22 25 14 18 28 22 28 23 22 23 10 25 24 10 13
19 18 16 23 22 15 26 8 30 22 29 21 22 12 25 22 12 26 12 25 19 26 12 21 26
12 18 7 18 23 20 22 16 21 25 16 21 18 20 20 19 29 24 25 24 17 16 22 23 19
28 22 15 22 17 17 21 21 19 17 25 15 24 16 25 21 16 24 19 15 15 28 19 23 20
12 29 19 30 17 15 23 24 15 18 9 19 12 21 13 15 15 12 20 15 15 22 17 16 23
27 21 22 25 20 24 22 20 15 24 15 23 17 22 12 25 8 13 15 17 30 18 25 18 24
17 18 26 27 16 13 16 22 19 18 29 14 18 21 21 24 6 13 15 17 13 23 21 24 29
26 23 28 15 4 20 15 25 15 14 17 28 22 30 19 13 22 18 21]

Now we just create our DataFrame:

course_info = pd.DataFrame({'prefix':prefixes, 'size':sizes})
print(course_info)

prefix size
0 DATA 35
1 CPSC 29
2 CPSC 28
3 SOCG 14
4 MATH 25
..

8.3. ANALYZING CLASS SIZES 87

and do our box plot:

course_info.boxplot("size", by="prefix")

Figure 8.1 gives the goods. Looks like our university’s Computer
Science (CPSC) and Data Science (DATA) classes have the highest
enrollment (no surprise), while Classics (CLAS) is lagging behind
the others.

Figure 8.1: A straightforward analysis, culled from JSON data.

By the way, in this case it was clear from the outset how many rows
would be in our DataFrame, because the c list had one element in
it for each class, and each class would obviously result in one prefix
and one size. Sometimes, you don’t know how many elements it
will have until you’re done sifting through the JSON. In that case,
you could use this pattern instead:

88 CHAPTER 8. JSON (2 OF 2)

prefixes = np.empty(0, dtype=object)
sizes = np.empty(0, dtype=int)

for course in c:
prefixes = np.append(prefixes, course['prefix'])
sizes = np.append(sizes, len(course['roster']))

You see how this works: instead of starting off with arrays of the
proper length, we start off with zero length, and simply append() a
value to each of them as we go. Warning, however: this approach is
way slower if the data size is large. Doing a bunch of appends forces
Python to create a whole new array each time through the loop,
copying the contents! It’s always faster to pre-allocate arrays of
the proper length – or perhaps, of a safe “large enough” length
which we can then truncate at the end with a slice – than to do
this repeated-appending approach.

Bottom line: once you get your data into a DataFrame, you can
bring all your powers to bear upon it. Getting it into one is largely
a matter of looping and selectively extracting.

Chapter 9

LOWESS

A common exploratory technique for bivariate, numerical data in-
volves finding a smooth curve to approximate a noisy data set. The
structure of the data – and whether there even is a relationship be-
tween the two variables at all – may be more easily visible from
such a curve than from a raw splattering of points.

9.1 Best-fit line: “parametric”

In your stats class, you probably learned how to compute the best-
fit line to a set of bivariate numerical data points, where “best fit”
was taken in a “least squares” sense (i.e., the line that minimizes
the sum of the squared deviations of the line from the actual data
points). It will not surprise you that it’s easy to do this in Python
as well, as shown in Figure 9.1 (p. 90).

NumPy’s “polyfit()” function stands for “polynomial fit.” You’ll
recall from high school algebra that a polynomial is a function that
involves only powers of your x variable: squares, cubes, and so
forth (no sines, cosines, logarithms, “e-to-the’s” or anything else).
Also permitted are a plain-old x term (since that’s x1, or “x to
the first power”) and a constant term (since that’s x0, or “x to the
zeroth power”). And any of these things can be multiplied by any
coefficient you like. So, one example polynomial would be:

89

90 CHAPTER 9. LOWESS

y = 4.3x3 − 29.4x2 + 6x − 13.8

The degree of a polynomial is the highest exponent it contains;
this example has degree 3.

Create x points and some crazy, noisy y function of them.
x = np.random.uniform(0,100,100)
x.sort()
y = 4*x - .2 * x**2 + np.random.normal(0,120,100)

Get the slope and intercept of the best-fit line.
m, b = np.polyfit(x, y, 1)

Heck, while we're at it let's find the best-fit quadratic too.
a1, a2, a3 = np.polyfit(x, y, 2)

Plot the points and the approximations.
plt.scatter(x,y)
plt.plot(x, m*x + b,color="green")
plt.plot(x, a1*x**2 + a2*x + a3,color="purple")

Figure 9.1: Finding and plotting the best-fit (least-squares) line.
(Note that we have to .sort() the x points since we draw line plots
based on them, and you get crazy zig-zags if you don’t sort your x
values first.)

Now the polyfit() function asks: which polynomial can I pick (of
a given degree) that will get the closest to the data points – i.e.,
minimize the squared distances between the polynomial’s value and
the points? It takes three arguments: an array of x values, an array
of y values, and the degree. It returns the coefficients for the best-fit
polynomial of that degree. So in the Figure 9.1 code, this line:

m, b = np.polyfit(x, y, 1)

9.2. LOWESS: “NON-PARAMETRIC” 91

says “please give me the coefficients of the best-fit 1-degree poly-
nomial to these x and y points.” Since a 1-degree polynomial is a
straight line, we got two coefficients back, which we named m and b,
as is traditionally done. Plotting the actual line was accomplished
with this code:

plt.plot(x, m*x + b,color="green")

which says “For each x value in the data set, plot x versus mx+ b.”
And that, of course, plots the line with slope m and y-intercept b.
Similar code plots the best-fit quadratic function (2-degree polyno-
mial), or any degree we like.

No matter what degree we use, these approximations are called
parametric models because they’re based on (global) parameters:
a slope and an intercept, say, or three coefficients in the case of the
quadratic. In each case, we assume the data fit an overall particular
“functional form” (like a line, or a quadratic) and say, “given that we
feel like these data are ‘really’ a line, what parameters that describe
a line would give us the best line?”

Figure 9.2 (p. 92) shows the best-fit line and best-fit quadratic
(function with an x2 term) for the points generated by the code in
Figure 9.1.

9.2 LOWESS: “non-parametric”

A more sophisticated technique for this task is called “LOWESS”
(sometimes “LOESS”1), which (sorta) stands for “Locally Weighted
Estimated Scatterplot Smoothing.” LOWESS tries to capture the
overall trend of a messy set of data – but what distinguishes it
from a best-fit line is that it operates locally rather than globally.
When you crunch the numbers to find the best-fit least-squares line
to a data set, you’re asking, “what values of slope and intercept

1Some authors make a very fine distinction between the LOESS and the
LOWESS techniques, which is too nitpicky to even get into here. We’ll treat
the two terms as synonymous.

92 CHAPTER 9. LOWESS

0 20 40 60 80 100

1500

1250

1000

750

500

250

0

250

Figure 9.2: The best-fit line, and best-fit quadratic, to the set of
points generated by the code in Figure 9.1.

for a single line across the entire data set will give me the lowest
overall deviation from the points?” (The same is true for a best-
fit quadratic, cubic, etc.) In other words, you’re attempting to
fit a single model over the entire range of data, and penalizing
inaccuracies equally everywhere.

By contrast, the LOWESS technique approximates the data locally.
This means that it weights the data points in such a way that
points close to the location of interest contribute more strongly
than do data points farther away. It does this by fitting a linear
(or polynomial) regression to each x point of interest, but using a
weighted contribution from only the nearby points.

Here’s how it works. We start with a bunch of (x, y) points, and
we want to compute a “locally smoothed” y for every one of the x’s.

First, we have a parameter α that specifies what fraction of the
data to take into account (at all) for each estimate. This can be
any value from 0 to 1. You might guess that the smaller it is, the
more wiggly it’ll allow our smoothed estimate to be, since we’ll be
considering only a small number of points. This is true, as we’ll
see.

9.2. LOWESS: “NON-PARAMETRIC” 93

Then, once we’ve fixed α, we’re going to find a bunch of best-fit,
least-squares lines, one at each x value. This is just like in regular
old linear regression. The catch is that instead of minimizing the
sum of squared differences, we’re going to minimize the weighted
sum. And we’ll place a greater weight on the errors for x points close
to the one we’re evaluating. This will have the effect of allowing
the curve to bend closely to our actual data points while ignoring
stuff that’s far away.

Written in equations, the ordinary best-fit line approach finds an
m and b that minimize the overall sum of squared deviations (or
“residual sum of squares”):

RSS = ∑
i

(yi − (mxi + b))
2

But with LOWESS, we calculate this separately for every x point,
and we weight this with a weight function w:

RSS(x) = ∑
i

w(x − xi) ⋅ (yi − (mxi + b))
2

Note how the weight function is given the distance between the x
value of interest and the locations of the actual data points. Since
we want to weight close-by points more heavily, the w should be
higher for values closer to zero.2

This is non-parametric because when we’re done, if somebody
asked, “hey, I like your LOWESS curve – what parameters did you
use for it?” the answer would be “uh...there really aren’t any pa-
rameters.” The curve is a messy combination of a bunch of different
shifting approximations that we calculated as we went through the

2 If you’re really on your game, you might observe that the weight function
is much like the kernel for KDEs: in fact, it really is basically a kernel. Thus we
can use a Gaussian for it, just like we did for KDEs, although it’s more common
with LOWESS to use the so-called “tri-cube” kernel: w(∆x) = (1 − ∣∆x∣3)3 for
∣x∣ < 1 (and 0 otherwise).

94 CHAPTER 9. LOWESS

whole data set. We didn’t choose parameters to plug into a partic-
ular model; in fact, we didn’t really have a model.

Like KDEs, this technique wasn’t computationally possible until the
age of computers. Hence it’s one of the newer kids on the block.
Here’s how to do it in Python with the statsmodel library:

from statsmodels.nonparametric.smoothers_lowess import lowess

l = lowess(y,x,frac=1/3)
plt.plot(l[:,0],l[:,1],color="red")

The “frac” parameter is our α. The resulting curve for two different
values of α is shown in Figure 9.3. Notice how α = 1

3 gives a much
smoother line than α = 1

10 , since it is using more points to do the
smoothing. In fact, the former is quite close to the best-fit quadratic
in this case. This is a manifestation of the classic “bias-variance
trade-off” we’ll look closely at in Chapter 24.

LOWESS might not appear to have much of an advantage over
just a plain old line. But Figure 9.4 (p. 96) shows a data set where
neither the line nor the quadratic are even in the ballpark, yet where
LOWESS does quite well. Intuitively, if the data aren’t ultimately
generated by something linear (or close to it), a linear model will
be hard-pressed to capture the curve.

In general, LOWESS is a better exploratory technique than best-fit
parametric curves are. This is true for a couple of reasons:

• When exploring a data set, you’re looking for patterns that
stick out, and you want to let the data speak for itself. You’re
not coming to the data with a pre-established model choice
and wanting to fit it. LOWESS lets you be model-agnostic
and yet see the forest instead of just trees.

• LOWESS (and non-parametric methods in general) are “ro-
bust,” meaning they aren’t as adversely affected by outliers.
Consider fitting a least-squares line to a set of data, and then
introducing a couple of outliers near one of the far ends. This

9.2. LOWESS: “NON-PARAMETRIC” 95

0 20 40 60 80 100
1750

1500

1250

1000

750

500

250

0

250
least-sq line
least-sq quadratic
LOESS =
LOESS =

Figure 9.3: Various attempts to plot the “true, underlying pattern”
of our noisy data set.

is going to force your global-error-minimizing best-fit line to
swing radically away from the bulk of the data (which it may
describe fairly adequately) in order to try and reach those
outliers. Clearly this isn’t a good fit for the data! LOWESS,
however, will only “reach” for those outliers in the x range
when it gets near those outliers.

By the way, although we fit a linear function to each local point,
we could fit a quadratic, cubic, or anything else. Here’s something
to think about: if we replaced the linear “mx+b” function with just
a constant “b”, then LOWESS becomes simply a weighted moving
average. Oooo, deep.

Finally, remember to play with the α parameter just as you played
with the kernel width and bin size in other exploratory techniques.
Remember: changing this will give you different views on the data,
and different views are good.

96 CHAPTER 9. LOWESS

0 20 40 60 80 100

1000

0

1000

2000

3000

4000
least-sq line
least-sq quadratic
LOESS =
LOESS =

Figure 9.4: A decidedly non-linear data set, for which LOWESS
(and particularly LOWESS with a low α) does quite well.

Chapter 10

Data fusion

In this chapter we’ll introduce the sexy-sounding technique of data
fusion. Data fusion means combining and integrating multiple data
sources into a single data set. This can give you richer, more useful
information than any of the individual data sets could on their own.

10.1 Merge operations

On the ground, data fusion usually necessitates merging multiple
tables together. As we’ve learned, the lingua franca of the data
science world is the rectangular table perfectly reflected by a CSV
file: it has (heterogeneous) rows, it has (homogeneous) columns,
and is otherwise flat. In Pandas we speak of this structure as a
DataFrame, of course.

More complicated data sets sometimes consist of multiple such ta-
bles. This is especially true if there are different aspects to the
data, each of which is deserving of its own table. The tables are
often implicitly related, as we’ll see, through some piece of common
information that links them together logically.

Moreover, there will be times in your career when you want to in-
tegrate multiple different data sets in some way, perhaps because
each gives you information on some related aspect of a common
phenomenon. Imagine if you found a data source giving vote totals
for various political candidates, and a different data source docu-

97

98 CHAPTER 10. DATA FUSION

menting the financial donations that their campaigns received. An
obvious question would be: “to what extent do a candidate’s con-
tributions relate to his/her vote count?” This kind of analysis is
only possible if the two data sets can be merged in a coherent way,
so that the vote totals for a candidate are properly associated with
the contributions to that same candidate’s campaign.

We’ll use the term merge (or join) to describe the operation of
connecting two tables/DataFrames into one, based on a common
linking piece of information. The term fusion is usually restricted
to the case described in the previous paragraph; namely, when the
two tables to be joined are from different data sets entirely.

10.2 Merging in Pandas

The basic idea is that in order to meaningfully merge two DataFrames,
one (or more) columns in the first table must be logically linked to
one (or more) columns in the second. “Logically linked” usually
means “having the same values in them.”

For example, consider Figure 10.1, which contains two DataFrames
from a data source like IMDB. There are clearly questions we’d
like to ask which involve both DataFrames together, rather than
each in isolation. For instance, “have actor salaries been going up
over time?” or “how often have various actors worked with specific
directors?”

Merging here is simple: we simply identify the common column
which unites rows from the two tables. Clearly, it’s the film title:
we know that Scarlett Johansson was directed by Joss Whedon
because a Johansson row in the roles table has the same film
name as a Whedon row in the movies table.

In database parlance, we call the title column of the movies table
its primary key (PK), and we call the film column of the roles
table a foreign key (FK). The primary key / foreign key relation-
ship is supposed to suggest that for every row in the roles table,
its film value will appear in one row of the movies table (namely,
in that row’s title column).

10.2. MERGING IN PANDAS 99

roles:
actor film salary (millions)
--
Downey Jr. The Avengers 50
Johansson The Avengers 20
DiCaprio Inception 59
Hanks Forrest Gump 70
Bullock Gravity 77
Downey Jr. Iron Man 3 51
Hanks Saving Private Ryan 40

. . .

movies:
title director year

Inception Nolan 2010
The Avengers Whedon 2012
Forrest Gump Zemeckis 1994
Gravity Cuaron 2013
Star Wars Lucas 1977

. . .

Figure 10.1: Two DataFrames from an IMDB-like source.

To “join” these two DataFrames all in one fell swoop, we execute a
command like this:

roles_movies = pd.merge(roles, movies, left_on="film",
right_on="title")

This produces a new DataFrame that contains (1) all the columns of
the two, and (2) a row for each pair of original rows that match on
their movie title. Notice we had to specify two arguments (besides
the table names) to pd.merge(): “left_on” (for the name of the
merging column in the first DataFrame) and “right_on” (for the
second). If these two columns had the same name, we could just
specify a single argument called “on” for the two.

100 CHAPTER 10. DATA FUSION

The roles_movies table will look like this:

roles_movies:
actor film salary title director year
--
Bullock Gravity 77 Gravity Cuaron 2013
DiCaprio Inception 59 Inception Nolan 2010
Johansson The Avengers 20 The Avengers Whedon 2012
Downey Jr. The Avengers 50 The Avengers Whedon 2012

. . .

(The sequence of the rows is not in general reliable, and you should
not depend on them being in the order you expect.) This DataFrame
can be used to answer either of the questions we posed above, and
others.

Note that our new table has some redundant information (the film
and title columns are identical) which you can remove using nor-
mal Pandas operations if you wish.

10.3 Odds and ends

1. Sometimes we want to merge on more than one column:

df = pd.merge(votes, contribs,
left_on=['first_name','last_name'],
right_on=['candidate_first','candidate_last'])

This gives us rows in the result only when the values in both
the first_name and last_name columns of votes match the
candidate_first and candidate_last columns of contribs.

2. If we’re lucky, the name(s) of the column(s) we want to merge
on are named exactly the same in both DataFrames. In this
case, we don’t have to specify on, left_on, or right_on: we
can just do the merge() with two arguments:

10.3. ODDS AND ENDS 101

merged_df = pd.merge(df1, df2)

This is called a “natural join,” and also has the benefit of
only including the joined column(s) once in the result, rather
than preserving duplicates.

3. The default merge operation we’ve been doing so far is some-
times called an “inner join”. This means that if there is no
corresponding match for a row in one of the DataFrames, there
will be no associated row in the result. This is normally what
we want. In the movies example, if we don’t have a row in
the movies table for a particular film, then we don’t know the
year for that film, and it’s (perhaps) pointless to include any
of the actors in that film in the resulting merged DataFrame.

Sometimes, we want to make sure that every row in the left
(or right, or both) DataFrame appears in the result at least
once, though, with corresponding null values if necessary. We
can do this by specifying 'left', 'right', or 'outer' as the
value of the 'how' argument to pd.merge():

df = pd.merge(votes, contribs, left_on=['first_name',
'last_name'], right_on=['candidate_first',
'candidate_last'], how='outer')

4. Sometimes merging two DataFrames will result in column
name collisions. Say that our roles table had also had
a year column indicating the birth year of the actor:

roles:
actor year film salary
--
Downey Jr. 1965 The Avengers 50
Johansson 1984 The Avengers 20
DiCaprio 1974 Inception 59
Hanks 1956 Forrest Gump 70
Bullock 1964 Gravity 77

. . .

102 CHAPTER 10. DATA FUSION

Then the resulting DataFrame would need to have two columns
named “year”, with different meanings. Pandas solves this by
renaming the conflicting columns with a “_x” or “_y” suffix,
corresponding to the left/right tables in the join:

roles_movies:
actor year_x film salary title director year_y
--
Bullock 1964 Gravity 77 Gravity Cuaron 2013
DiCaprio 1974 Inception 59 Inception Nolan 2010

(which you can rename via “roles_movies.columns” if you
want, of course.)

10.4 One-to-many vs. many-to-many
relationships

The above examples have featured “one-to-many” relationships
between the two tables. This means that one of the DataFrame’s
columns (the one with the primary key) has only one row for
each matching value: many actors star in one movie, for instance.
But sometimes we have a “many-to-many” relationship, in which
both DataFrames can have multiple rows with values that match
the other. Consider the Halloween costumes data set below, with
costumes and children tables:

print(children)

child age costume
0 Allison 12 Elsa
1 Kiara 8 Princess
2 Mason 12 Batman
3 Jenny 12 Wizard
4 Wendell 11 Student
5 Betty Lou 10 Princess
6 Hermione 11 Wizard
7 Faith 13 Wizard
8 Julie 11 Elsa

10.4. ONE-TO-MANY VS. MANY-TO-MANY 103

print(costumes)

accessory costume
0 crown Princess
1 wand Princess
2 dress Princess
3 helmet Darth Vader
4 boots Darth Vader
5 lightsaber Darth Vader
6 cape Darth Vader
7 cape Elsa
8 wand Elsa
9 lightsaber Rey
10 utility belt Batman
11 boots Batman
12 cape Batman
13 mask Batman
14 cape Anna
15 wig Anna
16 boots Anna
17 sack Ghost
18 pointy hat Wizard
19 wand Wizard

In order to represent all these children in their chosen costumes,
we need multiple matches from both DataFrames for each costume
value. This is because each Princess has more than one accessory,
and there are also multiple children who want to be princesses.
Therefore, we can potentially end up with a lot of rows in our
result.

children_costumes = pd.merge(children, costumes,
on="costume")

print(children_costumes)

104 CHAPTER 10. DATA FUSION

child age costume accessory
0 Allison 12 Elsa cape
1 Allison 12 Elsa wand
2 Julie 11 Elsa cape
3 Julie 11 Elsa wand
4 Kiara 8 Princess crown
5 Kiara 8 Princess wand
6 Kiara 8 Princess dress
7 Betty Lou 10 Princess crown
8 Betty Lou 10 Princess wand
9 Betty Lou 10 Princess dress
10 Mason 12 Batman utility belt
11 Mason 12 Batman boots
12 Mason 12 Batman cape
13 Mason 12 Batman mask
14 Jenny 12 Wizard pointy hat
15 Jenny 12 Wizard wand
16 Hermione 11 Wizard pointy hat
17 Hermione 11 Wizard wand
18 Faith 13 Wizard pointy hat
19 Faith 13 Wizard wand

Btw, notice that poor Wendell was left out of the merged DataFrame
entirely, since his costume did not have any accessories. We can
include him by doing a “left join” (or even a full “outer join”) like
this:

children_costumes = pd.merge(children, costumes, on="costume",
how="left"))

print(children_costumes)

This produces the output below. Wendell’s entry can now be found
on line 11. The “NaN” is the placeholder Pandas uses for rows that
didn’t match when doing a left/right/outer join.

10.4. ONE-TO-MANY VS. MANY-TO-MANY 105

child age costume accessory
0 Allison 12 Elsa cape
1 Allison 12 Elsa wand
2 Kiara 8 Princess crown
3 Kiara 8 Princess wand
4 Kiara 8 Princess dress
5 Mason 12 Batman utility belt
6 Mason 12 Batman boots
7 Mason 12 Batman cape
8 Mason 12 Batman mask
9 Jenny 12 Wizard pointy hat
10 Jenny 12 Wizard wand
11 Wendell 11 Student NaN
12 Betty Lou 10 Princess crown
13 Betty Lou 10 Princess wand
14 Betty Lou 10 Princess dress
15 Hermione 11 Wizard pointy hat
16 Hermione 11 Wizard wand
17 Faith 13 Wizard pointy hat
18 Faith 13 Wizard wand
19 Julie 11 Elsa cape
20 Julie 11 Elsa wand

We’re now in a position to perform our analyses. For instance, we
could assemble a grand shopping list:

print(children_costumes.accessory.value_counts())

wand 7
cape 3
pointy hat 3
crown 2
dress 2
mask 1
utility belt 1
boots 1
Name: accessory, dtype: int64

If the wand product turns out to have a safety hazard, we could
find all children younger than a certain age who were issued wands:

106 CHAPTER 10. DATA FUSION

print(children_costumes[(children_costumes.age < 10) &
(children_costumes.accessory=="wand")])

child age costume accessory
3 Kiara 8 Princess wand

Or, if we had another DataFrame with accessory prices:

print(accessories)

accessory cost
0 boots 14
1 cape 11
2 crown 12
3 dress 22
4 helmet 20
5 lightsaber 9
6 mask 10
7 pointy hat 12
8 sack 1
9 utility belt 9
10 wand 6
11 wig 12

we could merge this DataFrame with our previously merged one,
thereby producing a three-way merge:

full = pd.merge(children_costumes, accessories, on="accessory")
print(full)

child age costume accessory cost
0 Allison 12 Elsa cape 11
1 Mason 12 Batman cape 11
2 Julie 11 Elsa cape 11

. . .

10.5. “BY THE WAY...WHY?” 107

Now we could, say, compute the total cost of clothing these trick-
or-treaters:

print("These kids will cost a total of ${}.".format(
full.cost.sum()))

These kids will cost a total of $212.

Ouch. Consider these costs when contemplating family size.

10.5 “By the way...why?”

At this point you may be asking, “if we just have to merge the
DataFrames to do our analysis, why were they stored that way in
the first place? Why not just have everything in one big CSV file?”

The answer has to do with redundancy of information. Con-
sider the merged table on p. 100. It’s not the most compact way
of expressing the information, because certain pieces of data are
repeated unnecessarily.

For instance, The Avengers was released in 2012. Our data source
needs to record that. But in the merged table, this year would be
repeated for every actor/actress in the movie. The same is true for
the director of the film. By performing the merge, we have dupli-
cated lots of values. In database terms, the data set has become
unnormalized. This isn’t always a bad thing, and in terms of per-
forming standard ML (machine learning) algorithms, it’s necessary.
But you can see why we wouldn’t want the data permanently stored
that way. It consumes extra storage, plus it opens a Pandora’s Box
of possible contradictions: what if Downey Jr.’s Avengers row said
2012, while Johansson’s said 2014. Who would we believe?

Database normalization is a larger topic than we have time to fully
cover in this class, but the basics are very simple. Conceptually:
each piece of information should be stored in one and only one place.
Generally speaking, when that’s true, you have a normalized data
set, which is most appropriate for storage and for communication to

108 CHAPTER 10. DATA FUSION

other potential users. Analysts will proceed to unnormalize select
parts of it in order to perform certain analyses.

Chapter 11

Long, wide, and “tidy” data

11.1 Wide form data

Consider the following DataFrame (called “g”), which contains a
professor’s grade book for his students:

print(g)

name year Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8
0 Beyonce So 9.0 10.0 7.0 10.0 8.0 10.0 9.0 10.0
1 Jay-Z Jr 7.0 10.0 4.0 10.0 10.0 8.0 3.0 10.0
2 Bortis Sr 8.0 10.0 7.0 3.0 7.0 7.0 7.0 9.0
3 Han So NaN 1.0 NaN 10.0 7.0 8.0 7.0 2.0
4 Mal Jr 5.0 4.0 9.0 NaN 7.0 2.0 5.0 10.0
5 Inara Jr 3.0 3.0 4.0 10.0 6.0 4.0 7.0 5.0
6 Obi-wan So 5.0 10.0 9.0 4.0 1.0 4.0 NaN 2.0
7 Finn Jr 6.0 3.0 5.0 6.0 10.0 NaN NaN 3.0

It’s not hard to tell what’s going on: each student’s name and year
in school is recorded, as is their grade on the eight class quizzes.
Some students took zeroes on one of more quizzes (like Han did for
quizzes 1 and 3), and the quiz grades range from 0 to 10.

The structural style for this kind of DataFrame is called wide form.
Each piece of a student’s data is in its own column, making the
DataFrame quite “wide,” and comparatively not very long (tall).

109

110 CHAPTER 11. LONG, WIDE, AND “TIDY” DATA

Now there’s nothing wrong with wide form. All the data is there,
and it allows us to ask many questions easily, like:

U What was Inara’s score on Quiz #5? g[g.name=="Inara"].Q5
U The high score on Quiz #3? g.Q3.max()
U Mal’s average quiz score? g[g.name=="Mal"].mean(axis=1)

Other kinds of questions, though, defy easy answers, like these:

D What was the overall average score (for all quizzes)? (?)
D How did class performance compare between the first half of the

semester (quizzes 1-4) and the second half (quizzes 5-8)? (?)
D How did freshmen, sophomores, juniors, and seniors compare? (?)

The reason these questions are difficult are that we have quiz scores
spread across different columns. As long as we’re happy treating
them in groups like that, it’s easy, but as soon as we want to carve
up the quiz scores in some other way, it becomes hard.

11.2 Long form data

The solution is to convert the DataFrame to a structure which col-
lapses all the quiz data into a single column. For this, we use the
melt() function from the Pandas package:

gl = pd.melt(g, ["name","year"], var_name="quiz",
value_name="score")

Now this is kind of complicated so pay attention.

• The first argument is the name of the wide-form DataFrame
you want to “melt.”

• The second argument is a list of the columns that you want
to leave alone. In other words, a list of “off-limits” columns
that you want Pandas not to melt.

• The third argument, named var_name, is the name you want
for your new column whose values will be the old column
names. It can be hard to get your head around this one.
You have to imagine all the current column names that you’re

11.2. LONG FORM DATA 111

melting being put in a column, and ask yourself: “what is the
right name for that new column?” In this case, since we’re
melting Q1, Q2, etc., the right name for the column is some-
thing like “quiz,” since those are the quiz numbers.

• Finally, the fourth argument, named value_name, is the name
you want for your new column whose values will be the old
column’s values. You have to ask yourself: “what are those
’things’ that are currently values in the Q1, Q2, etc. columns?”
A reasonable answer would be “score,” since each one is a
quiz score.

We set the result of the melt() call to a variable called gl (where
“l” stands for “long.”) Here’s what it looks like:

print(gl)

name year quiz score
0 Beyonce So Q1 9.0
1 Jay-Z Jr Q1 7.0
2 Bortis Sr Q1 8.0
3 Han So Q1 NaN
4 Mal Jr Q1 5.0
5 Inara Jr Q1 3.0
6 Obi-wan So Q1 5.0
7 Finn Jr Q1 6.0
8 Beyonce So Q2 10.0
9 Jay-Z Jr Q2 10.0
10 Bortis Sr Q2 10.0
11 Han So Q2 1.0
12 Mal Jr Q2 4.0
13 Inara Jr Q2 3.0
14 Obi-wan So Q2 10.0
15 Finn Jr Q2 3.0
16 Beyonce So Q3 7.0

. . .
60 Mal Jr Q8 10.0
61 Inara Jr Q8 5.0
62 Obi-wan So Q8 2.0
63 Finn Jr Q8 3.0

112 CHAPTER 11. LONG, WIDE, AND “TIDY” DATA

This is called long form, for obvious reasons. We now have one
row for every single quiz score. It might seem wordy, and I’ll admit
it’s not as easy to locate and eyeball a single result. However, all
our “hard” questions from above can be easily answered:

U What was the overall average score (for all quizzes)?
gl.score.mean()

U How did class performance compare between the first half of the
semester (quizzes 1-4) and the second half (quizzes 5-8)?
gl[gl.quiz.isin(["Q1","Q2","Q3","Q4"])].mean()

U How did freshmen, sophomores, juniors, and seniors compare?
gl.groupby("year").score.mean()

Turning what were column headings into values gave us all the
flexibility we needed. We can still treat all the scores individually
by quiz if we want to, but we can also treat them as a whole, or
aggregate them in other ways (like by school year).

As an aside, one thing I’d probably do to this DataFrame is get rid
of the leading “Q” before each quiz value, and convert that column
to integers to boot:

gl.quiz = gl.quiz.str[1]
gl.quiz = gl.quiz.astype(int)
print(gl)

name year quiz score
0 Beyonce So 1 9.0
1 Jay-Z Jr 1 7.0
2 Bortis Sr 1 8.0
3 Han So 1 NaN
4 Mal Jr 1 5.0
5 Inara Jr 1 3.0
6 Obi-wan So 1 5.0
7 Finn Jr 1 6.0
8 Beyonce So 2 10.0
9 Jay-Z Jr 2 10.0
10 Bortis Sr 2 10.0
11 Han So 2 1.0
12 Mal Jr 2 4.0
13 Inara Jr 2 3.0
14 Obi-wan So 2 10.0
15 Finn Jr 2 3.0
16 Beyonce So 3 7.0
17 Jay-Z Jr 3 4.0
18 Bortis Sr 3 7.0

11.3. “TIDY” DATA 113

The “.str” suffix, you’ll recall, lets us perform standard string op-
erations (like len(), contains(), or indexing) on entire DataFrame
columns. Here, by saying “gl.quiz.str[1]”, we’re requesting only
the second character (character #1) of each string, which extracts
the “1” from “Q1” and so forth.

Treating quiz numbers like the integers they are is conceptually
correct, and also allows us to do things like query for things like
“quizzes after quiz #3” instead of having to list a bunch of categor-
ical values.

11.3 “Tidy” data

The term “tidy” to describe a data set has sprung into prominence
recently as a result of the excellent paper by Hadley Wickham (of
R fame) who neatly captured the perils of various data formatting
choices. Hadley first defined these terms:

• variable – a category of something, for which individual ob-
jects have a value. Examples: name, height, gender, center
field distance.

• value – an actual individual piece of data corresponding to
a variable for one object. Examples: Kylo Ren, 5’6", female,
390 feet.

• observation – a particular measurement that comprises all
the information necessary to interpret that measurement. Ex-
amples: Jeff’s weight was 165 lbs., Jenny’s golf score at Field
& Cross Links in the rain was 88. (In the first example, “all
the information necessary” includes “Jeff” and “165”; in the
second, it includes “Jenny”, “Field & Cross Links”, “rainy”,
and “88”.)

• observational unit – a collection of all the observations of
a particular type. (“Golf performances” would be an obser-
vational unit, separate from a “golfers” unit which contains
information about golfers themselves, not their particular per-
formances.)

114 CHAPTER 11. LONG, WIDE, AND “TIDY” DATA

Then, he outlined one simple rule. A data set is considered tidy if
and only if:

1. Each observational unit is in its own table.
2. In each table, each observation forms a row.
3. In each table, each column header is a variable, and the col-

umn contains values.

Point #1 is essentially the same as “normalized,” from section 10.5
(p.107). Points #2 and #3 are essentially “long form,” as described
in the previous section. Hence, I usually think of “tidy” as meaning
“normalized and long.”

Our gl grade book was long, but not tidy, because it had repeated
information in it: namely, every student’s year was repeated for
every one of their quiz scores. To normalize it, we’d want to divide
it into two tables; say, student_years and grades:

student_years = gl[['name','year']].drop_duplicates()
grades = gl.drop('year',axis=1)

The .drop_duplicates() method gets rid of identical rows, re-
taining only one. The .drop() method keeps all columns except
for one, which is convenient if you don’t want to type all the names
of the ones you want to keep. (“axis=1” means “I’m talking about
columns here, not rows.”)

Our two remaining (tidy!) DataFrames are now:

11.3. “TIDY” DATA 115

print(student_years) print(grades)

name year name quiz score
0 Beyonce So 0 Beyonce 1 9.0
1 Jay-Z Jr 1 Jay-Z 1 7.0
2 Bortis Sr 2 Bortis 1 8.0
3 Han So 3 Han 1 NaN
4 Mal Jr 4 Mal 1 5.0
5 Inara Jr 5 Inara 1 3.0
6 Obi-wan So 6 Obi-wan 1 5.0
7 Finn Jr 7 Finn 1 6.0

8 Beyonce 2 10.0
9 Jay-Z 2 10.0
10 Bortis 2 10.0
11 Han 2 1.0
12 Mal 2 4.0
13 Inara 2 3.0
14 Obi-wan 2 10.0
15 Finn 2 3.0
16 Beyonce 3 7.0
17 Jay-Z 3 4.0
18 Bortis 3 7.0

. . .

Every piece of information in one and only one place. Very tidy
indeed.

Messy data sets

Some data sets don’t make it easy on us. Check out this decid-
edly untidy one, which contains survey results about income and
religious affiliation:

religion <$10k $10-20k $20-30k $30-40k $40-50k $50-75k
0 Agnostic 27 34 60 81 76 137
1 Atheist 12 27 37 52 35 70
2 Buddhist 27 21 30 34 33 58
3 Catholic 418 617 732 670 638 1116
4 Other 15 14 15 11 10 35
...

116 CHAPTER 11. LONG, WIDE, AND “TIDY” DATA

As before, the problem here is that the column headings are actually
values, not variables. Think about it: “$10-20k” isn’t the name of
a variable which might have actual values, but the value (range)
itself of some variable.

Again the two questions: (1) What would the variable be for these
column values? Answer: Income. (2) What are the cells them-
selves representing? Answer: Frequency. (i.e., the number of people
polled in the survey who had that religion and that income level.)

Now we can tidy this with melt():

tdf = pd.melt(df, ['religion'], var_name='income',
value_name='frequency')

religion income frequency
0 Agnostic <$10k 27
1 Atheist <$10k 12
2 Buddhist <$10k 27
3 Catholic <$10k 418

...

By the way, the inverse operation of “melt” is often called “pivot”.
To reverse the above transformation in Pandas, you can use the
pivot() function:

df = pd.pivot(tdf, index='religion', columns='income',
values='frequency')

and get back your original wide form DataFrame.

Chapter 12

Dates and times

One of the most common categories of information you’ll ever deal
with are those dealing with various aspects of time. It turns out this
is considerably more complex than you might think at first. For one
thing, the English word “time” can mean several different things –
a point in time (12:05pm on Feb. 20, 2021), an abstract wall clock
time (12:05pm), a duration of time (1 hour and 15 minutes), and
possibly other things.

For another, the clock and calendar systems that humans have de-
vised are just plain weird. Why does the break between “am” and
“pm” occur between 11 and 12 (11am, 12pm, 1pm) instead of be-
tween 12 and 1 where any sane person would put it? Why do
some months have more days than others? Heck, they don’t even
follow the moon. And why do some years have more days than
others? And why doesn’t every month start over on a Monday?
And so forth. There are good answers to some of these questions,
and lousy answers to others, but they all make dealing with time a
major pain.

12.1 The datetime package

Python helps deal with the pain through the datetime package.
You have to import it, of course, which I usually do via:

117

118 CHAPTER 12. DATES AND TIMES

import datetime as dt

The package has these goodies:

• The timedelta type. Variables of this type represent dura-
tions in time. You can create them like this:

one_semester = dt.timedelta(weeks=15)
one_year = dt.timedelta(weeks=52)
this_class = dt.timedelta(hours=1, minutes=15)
finger_snap = dt.timedelta(seconds=.1)

You can also use days, milliseconds, and microseconds.
Anything else is ambiguous. (Ask yourself: why?)

Don’t think of the timedelta variable you create as being
intrinsically “in” any particular unit – just think of it as an
“amount of time,” which could then be expressed in any units.

timedeltas can be positive or negative, by the way, and you
can add or subtract them to/from each other to get other
timedeltas:

print(one_semester - this_class)
print(this_class + finger_snap)
print(one_semester - one_year)

104 days, 22:45:00
1:15:00.100000
-259 days, 0:00:00

After printing the number of whole days (if any), the rest of
the output gives time in hours:minutes:seconds:microseconds.
Note that the last of these three outputs is negative, since
one_semester is obviously shorter than one_year.

12.1. THE DATETIME PACKAGE 119

• The date type. Each date variable represents a date in an
idealized Gregorian calendar. You can create them via:

election_day = dt.date(year=2020, month=11, day=3)
primary_day = dt.date(year=2020, month=3, day=4)
here_we_are = dt.date.today()

If you subtract two dates, you get a timedelta. If you add a
date to a timedelta, you get another date.

print(type(election_day - primary_day))
print(election_day - primary_day)
print(type(primary_day + one_semester))
print(primary_day + one_semester)

datetime.timedelta
244 days, 0:00:00
datetime.date
2020-06-17

Note that if your timedelta has precision more granular than
days, it is lost in these operations:

if dt.date.today() == dt.date.today() + finger_snap:
print("It'll still be the same day a finger snap from now.")

if dt.date.today() == dt.date.today() + this_class:
print("It'll still be the same day one lecture from now.")

if dt.date.today() == dt.date.today() + one_semester:
print("It'll still be the same day one semester from now.")

It'll still be the same day a finger snap from now.
It'll still be the same day one lecture from now.

You can also compare dates with comparison operators like <
and >=:

if primary_day < election_day:
print("The primary occurs before the election, duh!")

else:
print("Wuuuut??")

120 CHAPTER 12. DATES AND TIMES

The primary occurs before the election, duh!

• The time type. A “time,” by itself, represents an abstract
wall clock time, independent of any particular day. It doesn’t
mean “5pm this afternoon” but rather “5pm’s in general.”

start_of_class = dt.time(hour=12, minute=35)
dinner_time = dt.time(hour=18, minute=0)

These can also be compared in expected ways, but not added
or subtracted (which actually wouldn’t make sense – why?)

• Finally, we have the datetime type, which as its name sug-
gests, combines features of both dates and times. In fact,
a datetime variable represents an absolute, specific point in
history. Creation options include:

this_exact_moment = dt.datetime.now()
terrorist_attack = dt.datetime(2001, 9, 11, 10, 33)
print("Right now it's: {}".format(this_exact_moment))
print("A horrible thing occurred at: {}".format(

terrorist_attack))

Right now it's: 2021-03-10 09:33:57.015432
A horrible thing occurred at: 2001-09-11 10:33:00

We can also use the datetime’s .combine() method to put a
date and a time together into a datetime:

todays_class = dt.datetime.combine(here_we_are,
start_of_class)

print("Today's lecture is at: {}".format(todays_class))

Today's lecture is at: 2021-03-03 12:35:00

12.2. PARSING AND FORMATTING 121

datetimes can be subtracted from each other, and timedeltas
can be added or subtracted to/from them to produce other
datetimes. They can also be compared. Finally, .time()
and .date() methods will produce the constituent parts as
time or date variables, accordingly.

12.2 Parsing and formatting

Now most of the time we won’t be creating datetime variables using
the techniques above. Instead, we’ll be parsing them from string
data.

There are a seemingly unlimited number of ways that dates and
times can be expressed in strings. Just consider a few possibilities:

• Feb. 29, 2021 4pm
• Feb 29, 2021 4:00pm
• Feb 29, 2021 4:00 P.M.
• 4/29/21 4:00 P.M.
• 4/29/21 16:00
• 02/29/21 16:00:00
• 29-Feb-2021 4:00pm
• 2021-Feb-29 16:00:00
• ...

and on it goes. It’s a testimony to the power of the human mind
that we can look at these and at a glance infer what date/time was
intended. Getting a computer to automatically do so is somewhat
of a challenge.

Pandas’ auto-parsing

The great news is that in many cases, Pandas can auto-parse com-
mon date formats and convert strings into the proper kinds of ob-
jects. There are two ways of doing this: as you’re loading a file with
read_csv(), and after the fact.

122 CHAPTER 12. DATES AND TIMES

Parsing dates with read_csv()

With read_csv(), you can pass an argument called parse_dates,
whose value should be a list of the columns you want it to auto-
parse. Suppose we had a CSV file that looked like this:

Donor,Date,Amt,Party
Barack X. Tyrell,Tue 09/05/17,$3370,I
Gandalf A. Trump,Tue 07/18/17,$70,R
Jay-Z G. Targaryen,18-Dec-2017,$170,D
Brad T. Bolton,Thu 01/26/17,$1840,R
Luke T. Obama,29-Sep-2017,$4230,D
Matt Y. Kenobi,Sun 12/25/16,$3695,I
Gandalf Z. Pitt,07-Jun-2017,$6375,I

. . .

This is a record of campaign contributions from various donors,
which includes the date of the donation as well as the amount. Both
columns are going to be problematic for us: the amount because
of the leading dollar sign, and the date because it’s in a god-awful
mixed format.

If we just read it normally, we’d get this:

contribs = pd.read_csv("contribs.csv")
print(contribs)

Donor Date Amt Party
0 Barack X. Tyrell Tue 09/05/17 $3370 I
1 Gandalf A. Trump Tue 07/18/17 $70 R
2 Jay-Z G. Targaryen 18-Dec-2017 $170 D
...
7181 Katy I. Tyrell Thu 11/02/17 $140 R
7182 Brad T. Baggins Fri 01/22/16 $1255 R
7183 Taylor E. Thrace Sun 02/26/17 $3235 D

This has all the information in it, but not in a format we can do
anything with. See, the dates and the amounts are just strings:

12.2. PARSING AND FORMATTING 123

print(contribs.Date)

0 Tue 09/05/17
1 Tue 07/18/17
2 18-Dec-2017
3 Thu 01/26/17
4 29-Sep-2017
Name: Date, dtype: object

print(contribs.Amt)

0 $3370
1 $70
2 $170
3 $1840
4 $4230
Name: Amt, dtype: object

(Recall that “object” – as we saw on p. 85 – is just a dumb way of
saying “string.” Both these columns, therefore, are strings.)

It might not be obvious to you what the problem is with that.
After all, isn’t str the correct type for text sequences like “Tue
07/18/17” and “$1840” and “18-Dec-2018”?

Sure it is, but realize that we can’t do anything interesting with
dates or amounts if they’re in that format. For example, we can’t
do any of the following:

D take the average or add up all the amounts (because they’re
not numbers!)

D sort the transactions chronologically (because you can’t sim-
ply alphabetize strings like “Tue 07/18/17” and get chrono-
logical order!)

D ask basic questions like “how did the average donation amount
change before and after the 2016 Presidential election?”

D ...

124 CHAPTER 12. DATES AND TIMES

The problem is that even though a human looks at a string like
“Mon 05/14/19” and instantly recognizes a date (and a string like
“$1800” and recognizes a numerical amount in dollars), we don’t
actually have dates or amounts to work with. We have sequences
of characters.

So we fix all this in an instant by simply passing a parse_dates
argument with the names of the column(s) we want it to parse:

contribs = pd.read_csv("contribs.csv", parse_dates=['Date'])

Now, our Date column looks like this:

print(contribs.Date)

0 2017-09-05
1 2017-07-18
2 2017-12-18
3 2017-01-26
4 2017-09-29
Name: Date, dtype: datetime64[ns]

which, as you can see by the dtype, is full of useful datetime vari-
ables instead of useless strings.

Now we can do stuff like sort by dates:

print(contribs.sort_values(['Date']))

Donor Date Amt Party
6698 Wash T. Thrace 2015-06-28 1365 I
2561 Frodo X. Tyrell 2015-06-28 3500 R
4149 Katy U. Skywalker 2015-06-28 1855 I
...
5651 Rey U. Aniston 2021-02-21 2915 D
2408 Tyrion M. Perry 2021-02-21 4755 I
6735 Taylor W. Tyrell 2021-02-21 2780 D

12.2. PARSING AND FORMATTING 125

or query by dates:

print(contribs[contribs.realdate < dt.date(year=2016,
month=11, day=8)])

Donor Date Amt Party
8 Wash Q. Thrace 2016-05-24 1475 D
9 Matt I. Skywalker 2016-09-12 7215 R
10 Matt K. Stark 2015-09-06 405 R
11 Tywin X. Pitt 2016-04-06 5530 R
12 Zoe T. Tyrell 2016-04-08 4610 D

. . .

or even do a date-based histogram:

contribs.Date.hist(bins=50)

Looks like donations spiked sharply immediately following the 2016
election, and stayed that way through the end of the data set.

Btw, if you’re wondering how to fix the Amt column, you can do so
with the same .str suffix we used on p. 113:

126 CHAPTER 12. DATES AND TIMES

contribs.Amt = contribs.Amt.str[1:].astype(int)

The “1:” in the boxies says “take characters 1 through the end of
each value”; since the first character (character #0) is the “$” sign,
this gets rid of it. We then convert the column type from string
to int, and we’re able to treat donation amounts as the numerical
quantities they actually are.

Converting strings to dates with to_datetime()

The above technique works if you’re reading dates directly from
a .csv file. But if you already have some data in memory that
consists of strings in date format, you need a different solution.

Pandas’ to_datetime() method is that solution. All you have to
do is pass it a Series (or NumPy array) with your strings, and it
returns the datetime equivalents:

revolutions_strings = pd.Series(["March 8, 1917", "4-July-1776",
"5/5/1789", "Jan. 5 2011"])

revolutions_actual_dates = pd.to_datetime(revolutions_strings)
print(revolutions_actual_dates)

0 1917-03-08
1 1776-07-04
2 1789-05-05
3 2011-01-05
dtype: datetime64[ns]

Parsing with .strptime()

Sometimes you’re not so lucky. Perhaps the string data you’re
blessed with has some ungodly format to it that can’t be automat-
ically recognized. In these cases, you have to do it manually.

12.2. PARSING AND FORMATTING 127

The date, time, and datetime types all have a (somewhat clunky)
method called “.strptime()” that you can call, passing (1) a string
representing a date, time, or datetime, and (2) a formatting string
telling the method how to interpret it. This is best seen through
an example:

s = "4/30/2021 12:35"
last_class = dt.datetime.strptime(s, "%m/%d/%Y %H:%M")
print(last_class)

2021-04-30 12:35:00

This example demonstrates a full “round-trip” operation: we started
with a string, parsed it into a datetime, and then printed it back
to the screen as a string. Note that the format of the printout
didn’t match the format of “my_string”; this is okay. What matters
internally to our program is that our date & time variables represent
the right things, not that they are printed in certain ways.

Now what are all those funky percent signs and junk in the sec-
ond argument to .strptime()? They all have a special meaning.
Figure 12.1 shows some common ones (others are in the docs).

You have to be really careful here and just go slow. Examine the
date and/or time input that you have in your data set, and work
out which bits of info, combined with which literal characters (like
“/” and “:” in the example above), appear in which order.

Formatting with .strftime()

Complementary to .strptime() is “.strftime()”. (Note that the
“p” stands for “parse,” while the “f” stands for “format.”) This is the
reverse operation: given a date, time, or datetime variable, spit it
out as a string of characters. This isn’t used nearly as often, but it
occasionally is, and it’s useful to know as a translation mechanism.

print(start_of_class.strftime("%A, %B the %dth at %I%p."))

128 CHAPTER 12. DATES AND TIMES

%a Weekday (abbreviated): Sun, Mon, etc.
%A Weekday (full): Sunday, Monday, etc.
%w Weekday (number): 0, 1, ..., 6
%d Day of month (number): 0, 1, ..., 31
%b Month (abbreviated): Jan, Feb, etc.
%B Month (full): January, February, etc.
%m Month (number): 01, 02, ..., 12
%y Two-digit year: 00, 01, ..., 99
%Y Four-digit year: ..., 1999, 2000, 2001, ...
%H Hour on 24-hour clock: 01, 02, ..., 23
%I Hour on 12-hour clock: 01, 02, ..., 12
%p AM/PM (only used in conjunction with %I)
%M Minute: 01, 02, ..., 59
%S Second: 01, 02, ..., 59

Figure 12.1: Common date/time indicators used by .strptime()
and .strftime().

Tuesday, February the 20th at 02PM.

One common error: note that you call .strptime() directly on the
type (date, time, or datetime), passing two arguments:

a_datetime = dt.datetime.strptime(my_birthday_string,
"%m/%d/%Y %H:%M")

but you call .strftime() on the variable in question (a specific
date, time, or datetime variable), passing one argument:

a_string = my_birthday_datetime.strftime("%m/%d/%Y %H:%M")

Chapter 13

Using logarithms

Recall that the logarithm is the inverse operation of exponentiation.
What is 103? 1,000. So what is the log of 1,000? 3. It’s really that
simple. Instead of asking, “what is ten to this particular power?”
I’m asking “what power would I raise 10 to in order to get this
particular number?”

(This is assuming we’re using “base-10 logarithms,” notated as log10.
You can use any other base as well: common choices are 2 (some-
times log2 is abbreviated “lg”), e (loge, the “natural” logarithm, is
usually abbreviated “ln”), and 10 (log10 is often just plain “log”.))

The role of the logarithm is to mercilessly crush numbers down to
size.

x logx

1 0
10 1
100 2

1,000 3
10,000 4
100,000 5

... ...

Enormous numbers – in the millions – get squished down to sin-
gle digits, and the squashing gets more dramatic as the size of the

129

130 CHAPTER 13. USING LOGARITHMS

number grows. Jumping from 1 to 10 (a difference of 9) netted us
one higher in terms of logarithm, but jumping from 10 all the way
to 100 (a difference of 90) also only got us one higher. It’s this
property that makes logarithms useful.

Another way to think of logarithms is “the logarithm of x is the
order of magnitude of x.”

One property of logarithms that is extremely important to know is
this:

log(xy) = log(x) + log(y)

Thus logarithms effectively turn multiplications into additions. One
practical implication of this truth is leveraged in natural language
processing systems: we often find ourselves multiplying minuscule
quantities (very close to zero). As we multiply these, we get closer
and closer to zero, and eventually Python doesn’t have enough pre-
cision to even represent a number that low. But by dealing with log-
arithms, we’re adding instead of multiplying and avoid that problem
completely.

A natural consequence of the above property is this one:

log(xa) = a log(x)

13.1 Logarithmic plots

A common plotting technique is to use not the raw values of the
independent variable on the x axis, but rather their logarithms. If
we do this, we have a semi-log plot. If we do this for both the x
and the y axis, we have a log-log plot.

Why would we do this? There are three reasons:

1. It reins in large variations in the data. If some of our
data points are orders of magnitude larger than others, the
detail of the smaller points gets completely swamped in try-
ing to plot the larger points. Plotting orders-of-magnitude

13.1. LOGARITHMIC PLOTS 131

instead of raw values solves this problem, though you have to
remember you did this when interpreting the plot!

Here’s a (fictitious) example of some American and British
celebrities, and their total Instagram “likes”:

plt.plot(uk, linestyle='None', color="red", marker=".",
label="UK")

plt.plot(us, linestyle='None', color="green", marker=".",
label="US")

plt.legend()
plt.show()

0 20 40 60 80 100

0

1

2

3

4

1e9
UK
US

Figure 13.1: A regular (non-logarithmic) plot of celebrity “likes.”

The scatterplot is shown in Figure 13.1. It has limited use,
because there are a few uber-celebrities (Justin Bieber, etc.)
who have far more “likes” than anyone else. Hence most people
are crushed against the bottom of the plot and we can’t (say)
compare the UK people with the US people easily.

132 CHAPTER 13. USING LOGARITHMS

We can dramatically improve the readability and analyze-
ability by plotting the y axis on a log scale. Just add this
line before plt.show():

plt.yscale('log')

and voila, Figure 13.2. It’s imperative that when you do this,
however, you remember that the y-axis no longer represents
number-of-likes, but log-number-of-likes.

0 20 40 60 80 100

104

105

106

107

108

109

UK
US

Figure 13.2: A logarithmic plot of the same data from Figure 13.1.

2. A semi-log plot shows relative (multiplicative) changes
instead of absolute (additive) changes. Consider Fig-
ure 13.3, whose (ordinary, not logarithmic) plot depicts a fic-
tional company’s stock price over time. Two significant events
occurred in this company’s history: one in April 2015 and the
other in March 2017. Both caused the stock’s value to jump.
Question: would you rather have bought stock immediately

13.1. LOGARITHMIC PLOTS 133

before event A and sold it immediately after, or done the same
before/after B?

2014-12
2015-03

2015-06
2015-09

2015-12
2016-03

2016-06
2016-09

2016-12
2017-03

2017-06
0

20

40

60

80

100

120

Event A

Event B

Stephen Enterprises -- stock value
STE

Figure 13.3: A regular (non-logarithmic) plot of a company’s stock
price.

From Figure 13.3, it may look like event B is the better bet:
after all, it looks like the jump was higher. But this is an
absolute distance: in other words, the total number of dollars
per share jumped higher for event B. But for something like
an investment, you actually don’t care about this absolute
number, but the relative number.

Look carefully at event A: before the jump, the stock was sell-
ing at about $5 per share, and afterwards, at about $15. This
means that if you timed this right, you tripled your money !
(Buy $1000 worth of stock in April 2015, and you sell it for
$3000 the following day.) Compared to event B, this is a way
better deal. Consider that at event B, the stock went from $90
to $110. Sure, $20 is more than $10 in absolute dollar terms,
but if you bought $1000 worth of stock in March 2017 and sold
it the following day, you’d have sold it for $1000× 110

90 =$1222.
Nice, but not nearly the windfall of event A.

For this reason, stocks and other investments are nearly al-
ways shown on a semi-log plot, like the one in Figure 13.4.

134 CHAPTER 13. USING LOGARITHMS

it has the advantage that same-size increases on the (log) y
axis correspond to identical relative (multiplicative) increases
of the stock. In other words, if the stock rises an inch some-
where on the plot, and it rises an inch somewhere else, these
represent equal gains for investors no matter how high the
stock value is in absolute terms. Such is the magic of logs.

In this example, you can easily see from the semi-log plot that
event A was a bigger windfall for investors than event B.

2014-12
2015-03

2015-06
2015-09

2015-12
2016-03

2016-06
2016-09

2016-12
2017-03

2017-06

101

102

Event A

Event B

Stephen Enterprises -- stock value
STE

Figure 13.4: A semi-logarithmic plot of a company’s stock price.

3. It reveals exponential and power-law relationships.
This requires a little math to understand. Suppose we have
two variables, x and y, and they are related according to
something like this:

y = p ⋅ eqx

where p and q are just numbers. For example,

y = 5.2 ⋅ e2.96x

Now if we plot x vs y on a standard plot, we get a curvy
exponential function that is very difficult for the human eye

13.1. LOGARITHMIC PLOTS 135

to distinguish from other curvy functions. But suppose we
plot not y, but the logarithm of y?

Let’s take the natural log (ln) of both sides of the equation.
Using our properties from above, we get:

ln y = ln(5.2 ⋅ e2.96x)

= ln(5.2) + ln(e2.96x)

= 1.649 + 2.96x

This is just a linear equation with a slope (m) of 2.96 and
a y-intercept (b) of 1.649. So plotting this relationship on a
semi-log plot will give us a straight line.

Why do we care? Because it turns out that exponential rela-
tionships like this come up a lot in the world. One ubiquitous
pattern is that of exponential growth or decay: any time that
the rate of increase of a quantity (like the number of new baby
rabbits added to a rabbit population) is proportional to the
quantity itself (the number of existing rabbits), we have ex-
ponential growth. And any time that the rate of decrease of a
quantity (like the number of mechanical parts that wear out)
is proportional to the quantity itself (the total number of me-
chanical parts owned by the company), we have exponential
decay.

Another important kind of relationship is often mistaken for
exponential growth, but is emphatically not. It’s called a
“power-law” relationship, and has caused much buzz in the
scientific community over the past decade or so. It occurs
when we have a simple polynomial relationship:

y = p ⋅ xq

where p and q are just numbers. For example,

y = 3.9 ⋅ x−2.45

136 CHAPTER 13. USING LOGARITHMS

Again, some math: if we take the logarithm of both sides, we
get:

ln y = ln(3.9 ⋅ x−2.45)

ln y = ln(3.9) + ln(x−2.45)

ln y = 1.361 − 2.45 ln(x)

If we plot not y vs x, but ln y vs lnx (in other words, a log-log
plot, we will get a straight line. (You can see this by mentally
substituting your letter of choice for lnx and another letter of
your choice for ln y. Now you have a plain old linear equation
with a slope of -2.45 and an intercept of 1.361.)

To see how the logarithmic plots reveal this, consider Fig-
ure 13.5, each of which is a plot of the same three synthetic
data sets. The blue points are linear in x, the red points
are exponential, and the green points are power-law (with an
exponent of 6).

In the linear plot, the blue points can be seen to be a straight
line. In the semi-log plot, the red points are. In the log-
log plot, the green points are. This is a powerful tool for
recognizing these important kinds of relationships at a glance.

13.1. LOGARITHMIC PLOTS 137

6 8 10 12 14 16 18

0

1000000

2000000

3000000

4000000

Linear plot

6 8 10 12 14 16 18

101

102

103

104

105

106

Semi-log plot

y = mx + b
y = ax6 + b
y = p eqx

1016 × 100 2 × 101
10 1

100

101

102

103

104

105

106

107
Log-log plot

y = mx + b
y = ax6 + b
y = p eqx

Figure 13.5: A linear, semi-log, and log-log plot of the same three
data sets: blue (linear), red (exponential), and green (power-law).

Chapter 14

Accessing databases

“Database” is a very loose term for “a repository of information
that can be readily accessed.” When we use that term in Data
Science, we mean a data source that is managed by a piece of soft-
ware called a DBMS, or database management system. (True,
plain-old lists, dictionaries, or Pandas DataFrames are also “repos-
itories of information that can be accessed,” but when we use the
term database we’re not talking about that.)

There are principally two reasons to learn how to access data from
databases:

• Sometimes, our data is simply available in that form only. We
may want to import it into Python/Pandas and deal with it
using the techniques from the first half of the semester, but
in order to get it in there, we need to (briefly) interface with
the database and issue the proper commands.

• Sometimes, our data is just flat big. There’s a limit to how
much data Spyder can store in memory and deal with on the
spot. Suppose you had to analyze all the eBay transactions
over the past two years? Or all the tweets made in the world
over the last month? That stuff can’t remotely fit in your sys-
tem’s memory. Hence, we have to access it through a database
which will manage the sheer size and scope for us, and work
with it a little at a time.

139

140 CHAPTER 14. ACCESSING DATABASES

14.1 Two kinds of databases

There are essentially two kinds of databases in the world: rela-
tional, and NoSQL.

Previously this semester, we’ve worked with data spread across mul-
tiple DataFrames that we need to join together in some way. This
structure is extremely common, so much so that most of tradi-
tional database schema theory is based directly on it. A relational
database is a repository of information in which the data is stored
in tables (a table is pretty much exactly a DataFrame in spirit),
and on which the language SQL1 can be used to query it and
manipulate it. A software system that enables a user to create and
work with relational databases is called an RDBMS, or relational
database management system.

There are many, many RDBMS’s out there: Oracle, Sybase, Mi-
crosoft SQL Server, MySQL, MariaDB, PostgreSQL, and literally
dozens of others. They all work in very much the same way: they
store data in tables, and they are manipulated via SQL. Ever since
Ted Codd invented the relational model in 1970, this organizational
paradigm has proven to be so powerful and computationally effi-
cient that it has dominated the database world. Only recently have
some alternate paradigms gained some traction (so-called “NoSQL”
databases), but even so, the majority of the world’s structured data
is all in relational databases of some sort.

Relational DBMS’s are much more similar to each other than NoSQL
systems are to each other. The wide variety of NoSQL DBMS’s
(Cassandra, MongoDB, Redis, Neo4j, etc.) means that learning
how to use one doesn’t give you much knowledge about how to use
one of the others. Some store key/value pairs; others store objects
and binary data; some store information as a graph (network). Part
of the great power of the relational model is that SQL has proven
to be a common, flexible, broadly-applicable query language that
many different vendors have adopted and which suits many data
needs.

1Some people pronounce the acronym SQL as the three letters “ess-queue-
ell,” and others as the word “sequel.” Either one is acceptable (I do the former).

14.2. SQLITE 141

14.2 SQLite

SQLite is a really slim, trim RDBMS that stores all of its data
in a single file. When you work with SQLite (or any RDBMS),
though, you don’t think in terms of files, but in terms of tables.
The fact that the tables are stored in file(s) in some strange format
is invisible to you as the user of the data, and this is in fact one of
the great powers of the relational model: separating the conceptual
data from the storage implementation.

Interfacing to SQLite

“Connecting” to a relational database basically means establishing
a communication path over which you can talk SQL. In Python, this
is pretty easy:

import sqlite3

conn = sqlite3.connect('my_local_file.db')

SQLite-compatible files typically have a .db extension (for “database”)
or a .sqlite extension.

The return value from connect() that we’re calling conn is “a con-
nection to the database.” We’ll use it every time we want to per-
form an SQL query. SQL is a new language, but it’s not nearly as
complex as something like Python because it’s not a programming
language, but a query language. You don’t write entire programs
in it; you merely specify queries in it. This means that the range of
things you can do in SQL is much more restricted, and hence the
language is easier to learn.

Browsing the tables

The first thing you’ll normally want to do is figure out which tables
exist in the database. You can run this command:

142 CHAPTER 14. ACCESSING DATABASES

print(pd.read_sql(
"SELECT name FROM sqlite_master WHERE type='table'", conn))

to find out. If this were the output:

name
0 songs
1 albums
2 artists
3 labels

that would tell us that the SQLite database has four tables in it,
named songs, albums, artists, and labels. Each one can be
queried using SQL statements, or simply imported wholesale into a
Pandas DataFrame (see below).

14.3 Querying the database

By far the most common thing you’ll do with a relational database
like SQLite is execute an SQL query, and get a DataFrame back:

df_name = pd.read_sql("YOUR SQL QUERY GOES HERE", conn)

The string inside the call to pd.read_sql() is called “an embedded
SQL statement.” This means we have code in one language (SQL)
“embedded” inside another (Python). Do not be alarmed at this.

The easy case: inhaling an entire table

Now if the data is small enough to load into memory, you don’t
need to know much SQL at all. You can simply use this one-liner:

df = pd.read_sql("SELECT * FROM table_name", conn)

14.3. QUERYING THE DATABASE 143

This reads one of the database’s tables (whose names you learned
from the command in Section 14.2) into a new, fully-fledged DataFrame,
with column names, a reasonable guess at their types, etc.

That’s literally all you need to know about working with a (small-
ish) SQLite database. Just to connect to it, get all the table names,
read each one into a DataFrame, and continue in Pandas Land, for-
getting all about SQLite. You can then leverage all the knowledge
you’ve learned up to this point. Bingo!

The harder case: more complex SQL

Sometimes, however, the data is too large to do this. So it’s worth
learning a little SQL so you can make the RDBMS do some of
the heavy lifting, and give you trimmed results for your Python
program to work with.

The workhorse is the SQL SELECT statement. Here are some com-
mon variants:

• To compute the number of rows, or individual values, without
returning the entire result, use COUNT(*), MAX(), MIN(), etc.:
SELECT COUNT(*) FROM table_name
SELECT MAX(col1) FROM table_name

• To get only the first few rows (similar to Pandas’ .head()
operation) tack on a “LIMIT” expression:

SELECT * FROM table_name LIMIT 10

• To get only certain columns, change the “*” to a comma-
separated list of column names:
SELECT col1 FROM table_name
SELECT col1,col2,col3 FROM table_name LIMIT 10

• To get only certain rows, add a “WHERE clause” after the table
name:
SELECT * FROM table_name WHERE col1==val1
SELECT col2 FROM table_name WHERE col1==val1 AND col2>val2
SELECT c1,c2 FROM t WHERE c1==val1 AND NOT c2>val2 LIMIT 10

144 CHAPTER 14. ACCESSING DATABASES

(The usual boolean operations work with keywords AND, OR,
and NOT, and parentheses for grouping.)

• The “IN” keyword can be useful in a WHERE clause for querying
membership in a set:

SELECT * FROM table_name WHERE col1 IN (val1,val2)
SELECT col1,col2 FROM table_name WHERE col1==val1 AND

NOT col2 IN (val1,val2,val3) LIMIT 10

• To get only unique rows (like Pandas’ .drop_duplicates()
gives) use the word DISTINCT before the column names:

SELECT DISTINCT * FROM table_name
SELECT col1,col2 FROM table_name WHERE NOT col1 IN

(val1,val2,val3) OR col2!=val4 LIMIT 5

The DISTINCT option is useful in conjunction with COUNT():

SELECT COUNT(DISTINCT col1) FROM table_name

• You can have SQLite do sorting with “ORDER BY”:

SELECT * FROM table_name ORDER BY col1
SELECT DISTINCT c1,c2 FROM table_name WHERE c1==val1

ORDER BY c2,c1 DESC LIMIT 5

As you can see, you can sort on multiple columns, and sort
in reverse order with the DESC keyword.

• SQL supports a “GROUP BY” operation very much like Pan-
das’ .groupby() method:

SELECT col1,count(*) FROM table_name GROUP BY col1
SELECT col1,max(col2) FROM table_name WHERE col3==val1

GROUP BY col2 ORDER BY col1 DESC LIMIT 5

• Finally, to do a merge/join operation, use the JOIN keyword:

SELECT * FROM table_1 join table_2 ON col1==col2
SELECT c1,c2 FROM t1 join t2 ON t1.x==t2.q

WHERE c2>val1 LIMIT 5

The JOIN keyword supports LEFT, RIGHT, and OUTER options.

14.3. QUERYING THE DATABASE 145

There are many, many other options as well. See the online doc-
umentation at https://www.sqlite.org/docs.html. Again, one
of the great things about SQL is that with the exception of the
initial commands to connect and to list all table names (p. 141), all
relational databases use essentially identical syntax. So if you ever
need to query an Oracle, Sybase, Informix, MySQL, PostgreSQL, or
SQL Server database, you’ll discover that everything in this section
applies nearly identically.

https://www.sqlite.org/docs.html

Chapter 15

Screen scraping (1 of 2)

Welcome to the worst of all possible worlds1: when the data you
want to analyze is on a human-readable but machine-unfriendly
website somewhere. It’s there, you can see it...but getting it from
a pretty web page into a Pandas DataFrame is a non-trivial propo-
sition.

Usually this situation occurs when the provider of the data, and
the designer of the website, didn’t envision anyone using the data
for any purpose other than viewing it through the website itself.
Sometimes there is another reason: that the organization wanted
to deliberately make this operation difficult so that you couldn’t
easily use it for other purposes. Either way, though, as long as the
data is accessible and visible through your browser, it is at least
theoretically extractable into the form we need to do our magic.

15.1 HTML

(Most) web pages look snazzy and colorful when you view them: the
word “code” doesn’t jump immediately to mind. When you load a
web page, though, what you’re actually getting from the server you
specify is a plain-text file written in a language called HTML,
or hypertext markup language. It consists of a combination

1Actually, the second-worst; the very worst is when the data you seek isn’t
even in electronic form at all.

147

148 CHAPTER 15. SCREEN SCRAPING (1 OF 2)

of content and formatting/structural commands (or “markup”) to
instruct the browser how to render the page. (“Rendering” a page
means “interpreting all that HTML formatting stuff and actually
presenting a pretty page formatted the way it specifies.)

The first thing to be aware of is that HTML is not a programming
language. (That is, you can’t write a program in it.) It’s strictly
a formatting syntax for specifying how text and graphical elements
should be laid out. If you ever ask someone whether they’ve done
computer programming, and they say, “yeah, I’ve done program-
ming in HTML,” you know they’re lying.

The second thing to know is that it is hierarchical, not flat. This
makes it more like JSON than CSV. Even though every HTML file
is a single sequence of characters, it encodes a tree-like structure
in which elements can exist inside other elements, which can exist
inside other elements, etc., with no limit to the amount of nesting.

The basic building block of HTML is the element, which is de-
limited by starting and ending tags. Tags are key words, most of
which indicate something structural or stylistic, enclosed in wakkas
(“< ... >”). The ending tag has a slash (“/”) immediately before
the keyword, showing that it matches the corresponding opening
tag. So one pair of starting and ending tags might be “<title>”
and “</title>”.

Note that the entire contents of the element is (1) the starting tag,
(2) the ending tag, and (3) everything in between, which could be
text in addition to other elements.

An example HTML file

Figure 15.1 shows a very simple, but complete, example. Lots going
on there. The first way to get your bearings is to start visually lining
up starting tags with their corresponding ending tags and perceive
the structure. Notice that this entire page begins with “<html>”
and ends with “</html>”. This is in essence the “root node” of the
page’s entire hierarchical tree2 It has two immediate “children”: a

2I’m using the term tree here in much the same way as the decision trees
from volume I of this series. Remember that they start at the top with a root,

15.1. HTML 149

head element, and a body element. Each of those have starting and
ending tags as well. Inside the head element is a title element,
etc.

As you can guess, each of these tags is interpreted by the browser to
mean a particular kind of structure/formatting. “h1” means “top-
level heading” which in practicality means “render it in a large font,
with some extra space around it.” The “b” element means to put
something in boldface. The “table” element means to construct a
table-like structure, with rows (“tr”) and cells within rows (“td”).
Etc. HTML is in general a big mess of things that are supposed
to indicate structure (like table and h2) and things that specify
specific formatting (like i and u). All of this is eminently look-up-
able online.

Some starting tags (not ending) contain additional information called
attributes. You can see this with the a and img tags from the ex-
ample:

Farmer Hall

The a tag stands for “anchor” and is the most common way of
embedding a hyperlink (which you can click on to go to another
page) in a document. Note that the words that will appear in the
page are the contents of the element, not part of the tag itself.
The tag, in addition to the required “a” has a key/value pair where
the key is the string href and the value is the URL the user will be
directed to if they click on the link. This key/value pair is called
an attribute.

In the img example, we have two attributes: one for the filename of
the image, and the other for some specific formatting suggestions
(in this case, a width of 200 pixels). An element can have many
different attributes, in any order.

(By the way, the sharp-eyed reader may have noticed something
else odd about the img example, above: an extra slash before the

and branch out wider and wider as they are drawn down the page.

150 CHAPTER 15. SCREEN SCRAPING (1 OF 2)

<html>
<head>

<title>All About Stephen</title>
<style>

img { width:150px; }
td { border-width:1px; }

</style>
</head>
<body>
<h1>Stephen Davies, Esquire</h1>

<p>Deep in the bowels of
James Farmer
Hall resides a carbon-based life form known to outsiders only as
Stephen. This mysterious being fulfills several roles <u>not</u>
widely known to humankind.</p>

<p><i>Some</i> of these functions are delineated below. Please memorize
them and then immediately destroy this page upon reading it.</p>

<h2>Areas of operation</h2>

<table border=2 cellpadding=15>
<tr><td class="pic">

</td>
<td class="role">College professor</td>
<td class="description">Stephen teaches computer science and data

science to willing undergraduates, shaping them into the heroes of
tomorrow.</td>

<td>Super rewarding
Exciting
Ever-changing
Fun</td>

<td>50% of total time</td>
</tr>
<tr><td class="pic">

</td>
<td class="role">Dad</td>
<td class="description"> With a wife, three teenagers, and two cats
(one of whom throws up a lot), Stephen's home life is a constant
source of love, anxiety, and Hallmark moments.</td>
<td>Amazing

Loving
Complicated
Surprising</td>

<td>30% of total time</td>
</tr>
...

</table>
</body>
</html>

Figure 15.1: A sample HTML page.

15.1. HTML 151

ending “>”. This is an HTML shorthand for “starting and ending
the element all within a single tag, since it has no content any-
way.” Whenever you have something of the form “<x></x>” you
can replace it with the equivalent “<x/>” to save typing and file
size.)

Lastly, I’ll point out that near the top of this example, there’s a
bunch of stuff which looks a bit visually jarring; it doesn’t look like
HTML. And it’s not. I’m referring to this:

<style>
img { width:150px; }
td { border-width:1px; }

</style>

This code is called CSS (or Cascading Style Sheets) which is
sort of a companion technology to HTML to give additional format-
ting control. (Originally, HTML was supposed to strictly delineate
document structure, and CSS could then be used to specify the for-
matting of that structure. This strict separation of concerns, which
was a good idea, has gotten very muddy in the intervening years,
however.)

The whole thing, once rendered, looks something like this:

152 CHAPTER 15. SCREEN SCRAPING (1 OF 2)

15.2 The easy case: reading from <table>s

From the point of view of Data Science, we don’t care very much
about all this formatting stuff. To us, it’s clutter. On the page is
some important data we’d like to analyze, and the goal is to sift
through all this HTML and CSS crapola looking for it and extract-
ing it. This is called by the evocative term “screen scraping.”

Now just like with relational databases (recall p. 142), there’s both
an easy scenario and more challenging ones. The more challenging
ones we’ll postpone until the next chapter. The easy one is when
the data you want to scrape is all inside HTML tables.

An HTML table is the contents between an opening <table> tag
and its corresponding </table> tag. Look carefully again at Fig-
ure 15.1 on p. 150. If the information we care about scraping is all
inside the “areas of operation” table (which begins about half-way
down the page; squint until you see the word table), then we’re
in the easy case, thank heavens. We can use Pandas’ read_html()
function as follows:

the_tables = pd.read_html("http://theURLtoTheWebpage.html")

This function takes just one argument: the URL of the page we
want to scrape. (A URL – which stands for Uniform Resource Lo-
cator – is another word for a web page’s address, or “link.”) Some-
times you’ll find it more convenient to first download the page to
your local computer, so that you’re not dependent on a network
connection (and latency) while you’re working on scraping it. This
will normally put a .html (or .htm) file on your computer, which
you can store in the same directory/folder as your .py file, just as
you do with .csv or .db files. You’ll then pass the simple filename
(like “allAboutStephen.htm”) as the argument to read_html().

The return value of this function is a list of DataFrames, one for
each <table> on the page. Read that sentence once again slowly.
In particular, note that the return value is not a DataFrame, which
many students seem to expect. This is of course because the web

15.2. THE EASY CASE: READING FROM <TABLE>S 153

page may well contain multiple <table>s, and therefore read_html()
would need to return multiple DataFrames.

Let’s try this approach with allAboutStephen.html:

the_tables = pd.read_html(
"http://stephendavies.org/allAboutStephen.html")

print(len(the_tables))

1

There is apparently only one <table> on the page. Let’s put it in
its own variable (“areas” for “Areas of operation”) and take a look
at it:

areas = the_tables[0]
print(areas)

0 ... 4
0 NaN ... 50% of total time
1 NaN ... 30% of total time
2 NaN ... 10% of total time
3 NaN ... 5% of total time
4 NaN ... 5% of total time

[5 rows x 5 columns]

This is a bit confusing at first, for several reasons. One is that
the columns don’t have names, as we’re used to – just numbers.
Another is that most of the information is omitted from the display
(with just “...” placeholders). Another is that the first column is
entirely NaN values3.

3The value NaN, you’ll recall, stands for “not a number.” But that phrase
is misleading here. Of course the value is not a number : why would we expect
text on a web page to necessarily be a number? Really it means “not a value
Python could do anything with.”

154 CHAPTER 15. SCREEN SCRAPING (1 OF 2)

The root causes of these conundrums are as follows:

1. The DataFrame columns don’t have names because HTML
<table>s often don’t have header cells (delimited with <th>
cells in the first <tr> row), and so read_html() has no idea
what to name the columns.

2. Most columns are omitted from the print() output because
they’re just too long to fit. (Look at p. 151: that third column
has paragraphs in it.)

3. The first column has NaNs because the first column of the
<table> has images in it, not text (again see p. 151).

We can give the DataFrame meaningful column names with:

areas.columns = ['pic','role','description','adjectives',
'allocation']

and we can get rid of the columns we don’t care about (the image,
and perhaps the descriptions) with a Pandas operation:

areas = areas[['role','adjectives','allocation']]

Now we can see better what’s going on:

print(areas)

role adjectives allocation
College professor Empowering Important Fun ... 50% of total time
Dad Amazing Fun Impor... 30% of total time
Kids Club Leader Cute Exhausting Character-... 10% of total time
Secret Agent Thrilling High-impact Dang... 5% of total time
Jedi Master Important Thrilling Challe... 5% of total time

15.2. THE EASY CASE: READING FROM <TABLE>S 155

Some text cleaning stuff

At this point, we’re out of screen-scraping-land and into ordinary-
Python land. What we do next depends on what we want to ana-
lyze. One interesting question I could imagine asking is: “how much
of Stephen’s total time does he spend doing ‘fun’ things? ‘impor-
tant’ things? ‘exhausting’ things?

To do this, we’ll have to deal with that messy adjectives column.
I say it’s “messy” because all Pandas knew to do was take each
bulleted list – comprised of a element (“unordered list”) and
nested elements (“list elements”) – and concatenate all the
contents into a single string.

My strategy to dealing with it is to split these up, putting each
role’s adjective in its own row of a new table that looks like this:

role adjective
College professor Empowering
College professor Important

Dad Amazing
Kids Club Leader Important

. . . etc . . .

We can do this with a loop. Since we don’t know at the beginning
how many rows this table will have, we’ll use a slightly different
technique than we did on p. 85. We’ll just create two zero-length
NumPy arrays, and repeatedly append() to them for each new
adjective we encounter:

roles = np.array([], dtype=object)
adjs = np.array([], dtype=object)

for row in areas.itertuples():
for adjective in row.adjectives.split():

roles = np.append(roles, row.role)
adjs = np.append(adjs, adjective)

156 CHAPTER 15. SCREEN SCRAPING (1 OF 2)

Two other notable things about this code:

• It’s a nested for loop. This is because (1) we have to go
through all the rows of our areas DataFrame, and (2) for
each of those rows, there will be multiple adjectives.

• We use the very handy .split() method here. When you call
.split() on a string, you get back all its individual words in
a list. You can also pass an argument to .split() giving
the string delimiter that you want it to divide the string on.
So calling "needles/yarn/scissors".split("/") would re-
turn the list ["needles", "yarn", "scissors"], and calling
"Stephen".split("e") would return the list ["St", "ph",
"n"].

Now all we have to do is stitch together our arrays into a DataFrame,
just like we did on p. 55:

adjectives_df = pd.DataFrame({'role':roles, 'adjective':adjs})

and voilà! The resulting adjectives_df is in Figure 15.2.

And now that we’ve done that, we can get rid of the old, awkward,
separated-by-spaces column:

areas = areas[['role','allocation']]

Okay. The other thing we need to do is change those ridiculous
human-readable strings like “30% of total time” to integers like
30. We’ll use the .split() method again, this time passing a
delimiter:

percentages = np.array([], dtype=int)

for row in areas.itertuples():
percentages = np.append(percentages,

int(row.allocation.split("%")[0]))

areas.allocation = percentages

15.2. THE EASY CASE: READING FROM <TABLE>S 157

role adjective
0 College professor Empowering
1 College professor Important
2 College professor Fun
3 College professor Cool
4 College professor All-encompassing
5 College professor Ever-changing
6 Dad Amazing
7 Dad Fun
8 Dad Important
9 Dad Challenging
10 Kids Club Leader Cute
11 Kids Club Leader Exhausting
12 Kids Club Leader Character-building
13 Kids Club Leader Important
14 Secret Agent Thrilling
15 Secret Agent High-impact
16 Secret Agent Dangerous
17 Secret Agent Cool
18 Secret Agent Daring
19 Jedi Master Important
20 Jedi Master Thrilling
21 Jedi Master Challenging
22 Jedi Master Daring
23 Jedi Master Cool
24 Jedi Master Lit

Figure 15.2: The adjectives_df DataFrame we constructed with
our nested for loop.

What does “int(row.allocation.split("%")[0])” mean? Let’s
break it down. For each row, we first get the allocation column’s
value (which is a string), then split it on the “%” sign. This will give
us a list of two values in each case, the first of which has digits like
“30” and the second of which has the rest of the text (“of total
time”). Putting [0] after it gets the first element of this list. Then,
by wrapping the result in “int(...)”, we convert it from a string
of digits to an actual number, which we can do something with.

The last step in that code was to reassign the DataFrame’s allocation
column to be our new percentages. The result is now:

158 CHAPTER 15. SCREEN SCRAPING (1 OF 2)

print(areas)

role allocation
0 College professor 50
1 Dad 30
2 Kids Club Leader 10
3 Secret Agent 5
4 Jedi Master 5

. . .

where the right-most column actually has numbers.

The analysis

Finally (whew!) we’re in a position to perform our analysis of
Stephen’s time. We have two DataFrames – areas and adjectives_df
– both of which are needed to answer our key question. So it makes
sense to merge them. It now sucks to have the role be the index of
the areas DataFrame, so let’s make it a regular column again and
then do the merge:

df = pd.merge(areas, adjectives_df)
print(df)

role allocation adjective
0 College professor 50 Empowering
1 College professor 50 Important
2 College professor 50 Fun
3 College professor 50 Cool
4 College professor 50 All-encompassing
5 College professor 50 Ever-changing
6 Dad 30 Amazing
7 Dad 30 Fun

. . .

And at last, after all this data cleaning, we can get the goods. The
number of different roles Stephen plays that have various adjectives
is as follows:

15.2. THE EASY CASE: READING FROM <TABLE>S 159

print(df.adjective.value_counts())

Important 4
Cool 3
Fun 2
Thrilling 2
Challenging 2
Daring 2
High-impact 1
Amazing 1
Ever-changing 1
Cute 1
Lit 1
Exhausting 1
Empowering 1
All-encompassing 1
Character-building 1
Dangerous 1

And the percentage of time he spends with these adjectives is:

perc_of_time = df.groupby('adjective').allocation.sum()
print(perc_of_time.sort_values(ascending=False))
perc_of_time.plot(kind='bar')

Important 95
Fun 80
Cool 60
Ever-changing 50
Empowering 50
All-encompassing 50
Challenging 35
Amazing 30
Thrilling 10
Exhausting 10
Daring 10
Cute 10
Character-building 10
Lit 5
High-impact 5
Dangerous 5

which is represented in Figure 15.3.

160 CHAPTER 15. SCREEN SCRAPING (1 OF 2)

Figure 15.3: Good news: Stephen spends a lot of time doing im-
portant stuff!

I know that might seem like a lot of work for “the easy case.” But
the wild wild world has lots of messiness, and if you want the data
shown on a web page you have to put in some elbow grease to bend
it to your will. The good news is that as far as scraping the actual
page, all we needed was one command: pd.read_html(). If the
data you want from a page isn’t in <table>s, though, you’re in for
the tougher case in Chapter 16. Stay tuned!

Chapter 16

Screen scraping (2 of 2)

16.1 The harder case: picking through the
HTML tree

Chapter 15 was the “easy” screen scraping case: if the data on the
web page that you want to import is in <table> rows, you can
(relatively) simply use Pandas’ read_html() function to suck it in
to Python.

For anything else, you’ll have to comb through the HTML struc-
ture, figuring out how to surgically extract what you seek. It’s a
major pain, but there is a Python library by the outrageous name
“BeautifulSoup” which makes it just a little bit less painful. This
chapter contains an overview of how to work with it.

16.2 Web Developer Tools

First, let me say that Firefox, Chrome, and several other browsers
come equipped with very sophisticated “web developer tools” that
let you browse the HTML, CSS, and rendered page, and figure
out what elements got rendered via which portions of the screen.
They’re very handy, and when screen scraping you should get into
the habit of using them. In Firefox, they’re available via the “Tools
| Web Developer | Toggle tools...” menu option. In Chrome, you go
to the little three vertical dots, then choose “More Tools | Developer

161

162 CHAPTER 16. SCREEN SCRAPING (2 OF 2)

Tools.”

16.3 Parsing with BeautifulSoup

As I mentioned on p. 152, it’s generally recommended to download
the web page you want to parse rather than having Python read
it for you over the network. This eliminates one more possible
source of error. (Exception: if you need a Python program to act
as a web crawler and read pages on demand as it discovers their
URLs. More on that later.) Note that you can still open the page
in your browser even after downloading it: just go to “File | Open
File...” or the equivalent operation in your browser.

Once you’ve done this, and now have your HTML in a file called
(say) “myfile.htm”, you can then parse it with BeautifulSoup using:

from bs4 import BeautifulSoup
soup = BeautifulSoup(open("myfile.htm"), "html.parser")

By convention, the variable for this parsed structure is called “soup”.
The second argument to the BeautifulSoup function tells it which
parser we want to use to analyze the code; there are other choices
here, but stick with "html.parser" for now.

One possibly useful command (though limited if your web page is
large) is:

print(soup.prettify())

This “pretty prints” out the entire contents of the page, but in a
way that is properly indented according to the HTML’s structure,
rather than how it was indented in the raw page. You may have
noticed that the HTML file may or may not be physically indented
and spaced in a way reflective of the structure. The BeautifulSoup
parser is smart enough to discern the implied structure from the

16.3. PARSING WITH BEAUTIFULSOUP 163

tag sequence, and thus prints it how it will “really” be seen by a
browser.

At this point, I generally take one of two approaches: either I navi-
gate the structure top-down looking for where the data I’m inter-
ested in is situated, or I find the data by searching through the file,
and use a bottom-up approach to get it from there. You typically
have to combine the two approaches to get your screen-scraping
dirty work done.

The top-down approach

By using “soup.contents”, you get the immediate descendants of
the root node of the HTML hierarchy. Each of these could be
examined for its type, like this:

for child in soup.contents:
print(type(child))

bs4.element.Tag
bs4.element.NavigableString

So our entire document is composed of an element (misleadingly
named “Tag” here, but w/e) and a “NavigableString” which es-
sentially just means “string of literal text”. For elements, it’s useful
to print out their “.name”. For strings, it’s useful to print them out
verbatim. Here, we see:

print(soup.contents[0].name)
print(soup.contents[1])

'html'
'\n'

164 CHAPTER 16. SCREEN SCRAPING (2 OF 2)

So the first child is the entire html element in all its embedded glory,
and this is followed by a single, pesky newline. Now you know.

Drilling down another level, we see:

html_children = soup.contents[0]
for child in html_children:

print(type(child))

bs4.element.NavigableString
bs4.element.Tag
bs4.element.NavigableString
bs4.element.Tag
bs4.element.NavigableString

Two tags, with three strings interleaved. Let’s examine them:

print(html_children.contents[0])
print(html_children.contents[1].name)
print(html_children.contents[2])
print(html_children.contents[3].name)
print(html_children.contents[4])

'\n'
'head'
'\n'
'body'
'\n'

You’re starting to see a pattern: a lot of the strings are just new-
line characters that split up the HTML text file and make it more
readable. What we really care about is the content under the tags.
Let’s dig one deeper:

16.3. PARSING WITH BEAUTIFULSOUP 165

head_children = html_children.contents[1].contents
print(head_children[0])
print(head_children[1].name)
print(head_children[2])
print(head_children[3].name)
print(head_children[4])

'\n'
'title'
'\n'
'style'
'\n'

Okay, you get the idea. We can drill down to whatever level we
want just by following the appropriate children. To get the title of
the page, we could do:

print(head_children[1].contents[0])

'All About Stephen'

(This is because the second element (element #1) of the <head>
element is the <title> element, and its only child is the string
'All About Stephen'.)

Sometimes a quicker method to find your way through the forest is
to use this syntax1 at the interactive console:

print([x.name for x in body_children])

[None, 'h1', None, 'p', None, 'p', None, 'h2', None, 'table', None]

1That thing in the boxies – “[x.name for x in body_children]” – is
called a “list comprehension,” by the way, and is an advanced Python tech-
nique that is sometimes very useful.

166 CHAPTER 16. SCREEN SCRAPING (2 OF 2)

You can better see at a glance what’s what. Now that we know the
first “p” (paragraph) is element #3 of the body, we could find that
hyperlink via:

print([x.name for x in list(body_children)[3]])

[None, 'a', None, 'b', None, 'u', None]

and grab it via:

dat_hyperlink = list(list(body_children)[3])[1]

BeautifulSoup lets you access the attributes of an HTML element
by treating the element as a dictionary. Pretty cool. We can snag
the actual link, then, with:

print(dat_hyperlink['href'])

'http://buildings.umwblogs.org/james-farmer-hall/'

The bottom-up approach

Sometimes, when you try to dive from the top of the document
all the way to what you want, you can find yourself in a tangled
mess. In these cases it’s easier to search for the data you want using
BeautifulSoup’s search facilities.

Let’s illustrate this by creating a simple DataFrame that contains
each role and its percentage allocation of Stephen’s time. We want
df to look something like this:

role perc
0 College professor 50.0
1 Dad 30.0

. . .

16.3. PARSING WITH BEAUTIFULSOUP 167

To find our way through the forest, we search through the HTML
with developer tools, locating one of the pieces of data we know is
there – for instance, the number 50, which we can see on the page
is one of the percentages. When we click on this (or just search
for it in a text file), we find ourselves in the middle of the HTML
content in Figure 16.1.

...
<table border=2 cellpadding=15>
<tr><td class="pic"></td>

<td class="role">College professor</td>
<td class="description">Stephen teaches computer science and data
science to willing undergraduates, shaping them into the heroes of
tomorrow.</td>
</td>
<td>

Super rewarding
Exciting
Ever-changing
Fun

</td>
<td>
50% of total time
</td>

</tr>
...

Figure 16.1: Using a bottom-up approach – locating the text “50”
in the HTML file (stare towards the bottom of that HTML text)
and getting one’s bearings regarding where it is in relation to other
elements.

Looks like the role name we want is the text under a td element
whose class2 is “role”. And it looks like the percentage we want is
(*groan*) in a boldface (b) tag, underneath the last td tag of the
row, which has no class.

2In HTML, a “class” is an attribute used to classify certain elements to
be picked up by CSS formatting instructions. If this were a Web development
textbook, it would talk about when and how to use “class”. But for our
purposes, it’s just one of many handy things we might hook on to in order to
find our data in the morass.

168 CHAPTER 16. SCREEN SCRAPING (2 OF 2)

BeautifulSoup’s .find_all() method makes this slightly less of a
headache. To quickly grab all the tr elements in the document, we
can do this:

trs = list(soup.find_all("tr"))

The variable trs is now a list of elements (BeautifulSoup “Tag”
objects) each of which we can examine for (say) td children with a
role class attribute. And you can call .find_all() on any tag
(to search from that point in the hierarchy down), not just on the
top-level soup element. So:

roles = np.array([], dtype=object)
trs = soup.find_all("tr")
for tr in trs:

tds = tr.find_all("td")
for td in tds:

if "class" in td.attrs and "role" in td["class"]:
...

The “.attrs” syntax gives us a dictionary of key-value pairs which
represent the attributes of an element. So by saying “"class" in
td.attrs” we’re first checking whether there is a class attribute
in the current td element at all before then attempting to get its
value using the dictionary syntax mentioned on p. 166.

Btw, one slight surprise in the above if statement might be that
we’re checking whether "role" is in td["class"] instead of simply
being == to td["class"]. That’s because in HTML, the class
attribute of an tag can have multiple (space-separated) values, not
just one, and so td["class"] is actually a list, not a single string.

Okay, now when we reach the body of that if statement, we have
successfully found one of the desired td attributes. How do we then
get the text under it? Just call .get_text() on it, and then append
it to the list. This creates our desired list of roles that we can stick
in our DataFrame.

16.3. PARSING WITH BEAUTIFULSOUP 169

...
roles.append(td.get_text())

To get the percentages, we just need a slightly different approach:
first, we’re going to assume the percentage is in the last td tag, and
second, we need to go inside that to retrieve the percentage from
the embedded boldface tag. Adding this to our for loop almost
gets us there:

percs = []
...

the_bold = tds[-1].find("b")
percs.append(the_bold.get_text())

although we’d like to also strip that percentage sign off and convert
it to an actual numeric value, so we’ll do this instead:

percs = []
...

the_bold = tds[-1].find("b")
percs.append(float(the_bold.get_text()[:-1]))

and now we can create our DataFrame with both columns. (Note
that “.find()” does the same thing as “.find_all()” except that
it only grabs the first matching element rather than all of them.)
The complete code is shown in Figure 16.2.

Other BeautifulSoup features

The BeautifulSoup library has a myriad of alternatives for navigat-
ing and searching the tree. Here are a few.

170 CHAPTER 16. SCREEN SCRAPING (2 OF 2)

roles = []
percs = []

trs = soup.find_all("tr")
for tr in trs:

tds = tr.find_all("td")
for td in tds:

if 'class' in td.attrs and 'role' in td['class']:
roles.append(td.get_text())

the_bold = tds[-1].find("b")
percs.append(float(the_bold.get_text()[:-1]))

df = pd.DataFrame({'role':roles, 'perc':percs})[['role','perc']]

Figure 16.2: The complete code example to screen scrape the roles
and percentages from the web page in Figure 15.1 (p. 150).

Searching by id or class

.find() and .find_all() each have optional id and class_ (note
the trailing underscore!) parameters that can be used to restrict a
search to only elements with matching attributes.

soup.find_all("td", class_="pic")

Using the Python “dot” syntax

If we know the names of the tags, we can navigate a structure by
using a Pandas-like “dot” syntax. Check it out:

print(soup.head.title)
print(soup.head.name)
print(soup.head.title.string)
print(soup.body.table.td.img['src'])

16.3. PARSING WITH BEAUTIFULSOUP 171

<title>All About Stephen</title>
title
'All About Stephen'
'a.jpg'

Accessing all attributes

As we’ve seen, in addition to treating an element (“Tag”) as a dic-
tionary to retrieve its element values, you can also use the “.attrs”
syntax to get the dictionary directly:

print(soup.body.find("a").attrs)
print(soup.body.find("td").attrs)

{'href': 'http://buildings.umwblogs.org/james-farmer-hall/'}
{'class': ['pic']}

(As noted on p. 168, see how the value of the “class” attribute is
a list here.)

Getting just text with .get_text()

The aforementioned .get_text() method is actually a bit more
powerful than just extracting the contents of a single plain text
element underneath an element. It can also be used to get all the
text from that point down in the hierarchy, ignoring all tags. Check
it out:

soup.body.find("p").get_text()

'Deep in the bowels of Farmer Hall resides a\ncarbon-based life form
known to outsiders only as Stephen. This\nmysterious being fulfills
several roles not widely known to\nhumankind.'

172 CHAPTER 16. SCREEN SCRAPING (2 OF 2)

Finding more than one tag name at once

You can pass a list to .find_all() to match more than one type
of tag in a search:

soup.find_all(["td", "th", "p"])

And if you know how to use regular expressions (outside the
scope of this class) you can use them as arguments to .find_all()
and friends:

import re
soup.find_all(re.compile("^q"))
soup.find_all(re.compile("r"))
soup.find_all(re.compile("s$"))

(finds all tags whose name begin with q, contain r, or end with s,
respectively.)

CSS selectors

Finally, if you’re familiar with CSS selector syntax, you can do all
that jazz by calling the .select() method:

soup.select("div#master, tr td.data")

Chapter 17

Probabilistic reasoning

Probability theory is an area of mathematics that deals with
quantifying uncertainty. We may not be sure that something is
going to happen, but we want to be precise about how sure we are,
given everything else we may know.

It turns out that probability theory is a crucial concept in Data
Science. We’ve already used some of it in Chapters 5 and 6 when
we generated random values from distributions. In this chapter,
we’ll zoom out from programming language details and consider
how to reason about the probabilities of various values occurring
and the relationships between random variables.

17.1 Terms

Some terms: an outcome is something that may (or may not)
happen. This varies widely depending on the domain: a child that’s
born may or may not be male; an airline passenger may or may not
have red hair; a customer may or may not buy a particular product.
“Male,” “red,” and “The Girl on the Train, hardback edition” are all
outcomes in these examples.

An event, by contrast, is a set (group) of outcomes that we’re
interested in. Often we don’t care so much whether or not the cus-
tomer specifically bought “The Girl on the Train, hardback edition”
as whether they bought any book by Paula Hawkins, or maybe any

173

174 CHAPTER 17. PROBABILISTIC REASONING

hardback book, or maybe any book at all (as opposed to a DVD).

Sometimes we’ll use the symbol Ω (“omega”) to refer to the sample
space, which is simply the set of all possible outcomes. This will
vary depending on what’s under consideration; it might be { male,
female } in one case and { red, blond, brunette, bald, other } in
another case.

We’ll also use the notation (overbar) to mean “any outcome
except something.” For instance, red means “the airline passenger
had a hair color other than red.”

17.2 Probability measures

A probability measure is a function that tells us intuitively how
likely an outcome is to occur. We’ll use the simple notation “P(⋅)”
for this1, read as “the probability of (something).” The probability
of any outcome is always a number between 0 and 1. 0 means it can
never possibly occur, 1 means it will definitely occur, and there’s a
continuum in between. In our first example, we might say P(male)
= .5, P(red) = .1, and P(The Girl on the Train, hardback edition)
= .0001.

You can talk about the probability of an event too, of course, and
it’s simply the sum of the outcome probabilities. P(male-or-female)
= 1, P(red or blonde or bald) = .6, P(any hardcover book) = .08.
We’ll say that P(Ω) will be 1: after all, something has to happen,
even if it’s “the customer didn’t buy anything,” an outcome to which
we’ll assign a probability.

17.3 “Joint” probability

Very commonly, we’ll be considering the likelihood that two differ-
ent events both occur. For instance, perhaps we’re interested in the
probability that an airline passenger is a red-headed female. We’ll
write this as P(red, female).2 The comma signals joint probabil-

1Some authors use “Pr()” instead of “P()” for this. Same diff.
2You may also run across the notation “P(redˆfemale),” which means the

same thing.

17.4. “MARGINAL” PROBABILITY 175

ity, which simply means that both of these outcomes/events must
occur in order for the combined event to be considered to have oc-
curred. If we wrote P(red, female), it would mean ‘the probability
that the passenger is a red-headed non-female.”

If you think about it, you’ll realize that the joint probability cannot
be greater than either of the two individual probabilities. Adding
another condition (not female) to the first (red-headed) can’t possi-
bly increase the chance of it happening. Other than that, we don’t
know how to compute the joint probability from the individual ones,
though (yet).

Finally, note that P(A,B) is the same thing as P(B,A), guaranteed.
Switching the order of terms in a joint probability doesn’t change
the answer. (This will not be true in the next section, so watch
out!)

Sometimes we’ll talk about “the full joint distribution” of a set of
discrete random variables. This can be visualized as a normalized
contingency table with the probability for all the combinations. The
joint distro of our airline passenger variables might look like this:

bald blonde brunette red
female 0.000 0.154 0.192 0.064
male 0.141 0.128 0.256 0.026
other 0.013 0.000 0.026 0.000

This means that, for instance, 14.1% of our passengers are bald
males, 6.4% of our passengers are red-headed females, there were
no blonde “others,” etc. Obviously, the sum of all the cells in this
table will equal exactly 1, since they are both mutually exclusive
and collectively exhaustive.

17.4 “Marginal” probability

As we’ve seen, when we have two different variables (like hair color
and gender) we can talk about the probability of various combi-
nations of these, like P(blonde, male) and P(brunette, male). But
sometimes we also need to talk just one of those variables at a time,

176 CHAPTER 17. PROBABILISTIC REASONING

like P(female): “what’s the probability that an airline passenger is
female, and I don’t care what her hair color is?”

This is sometimes called the marginal probability. It gets its
name because its answer is really in the margins of the correspond-
ing contingency table. If we add margins to the above table, we
get:

bald blonde brunette red All
female 0.000 0.154 0.192 0.064 0.410
male 0.141 0.128 0.256 0.026 0.551
other 0.013 0.000 0.026 0.000 0.038
All 0.154 0.282 0.474 0.090 1.000

We can now look at the right margin and discover that the marginal
probability P(male) is .551, and we can look at the bottom margin
and see at a glance that P(blonde) is .282. This sort of analysis
illustrates that, for example:

P(female) = P(bald,female) + P(blonde,female) + P(brunette,female) +
P(red,female)

and

P(brunette) = P(brunette,female) + P(brunette,male) +
P(brunette,other)

To compute a marginal from the joint, we’re really just adding up all
the different cases. There are three different ways to be a brunette:
you can be a female brunette, a male brunette, or some other kind
of brunette. That’s all a marginal probability really is.

17.5 “Conditional” probability

Another notion we’ll use a great deal is conditional probabil-
ity, written with a “pipe” (vertical bar) like P(unemployed ∣ college
degree). The pipe is normally pronounced “given.” So this expres-
sion is read “the probability that someone is unemployed given that

17.5. “CONDITIONAL” PROBABILITY 177

they have a college degree.” We call this “conditioning on” college
degree.

Or to return to our previous example, consider P(red ∣ female).
This quantity is the answer to the question: “if I know for a fact
that the passenger is not female, what’s the probability that they’re
red-headed?”

Notice this is very different than the joint probability. With condi-
tional probability, we’re assuming that the second event does occur,
and then asking how that revises our original prediction. Unlike
with joint probability, adding a vertical bar can make the answer
increase.

Consider this example: what’s the probability that a random U.S.
citizen has a Pinterest account? Let’s estimate that as P(pinterest)
= .15. But what if we learned that the chosen person was female?
What is P(pinterest ∣ female)? Just to shamelessly stereotype, I’m
going to go out on a limb and say it’s higher; perhaps .26. On
the other hand, what if we learned the person was male? What is
P(pinterest ∣ male)? I’ll say it’s more like .04. In both cases, we ad-
justed our estimated probability in light of additional information:
up in one case, and down in the other.

This adjusting-our-estimates stuff is at the heart of what’s called
“Bayesian reasoning” (you’ll see why in section 17.8, below).

Two other terms that come up frequently are “prior probability”
and “posterior probability”. The “prior” is the probability of
an event without applying conditioning. In the previous example
.15 was the “prior probability” that the person was a pinterest user.
When we learned our subject was female, we revised that to the
“posterior” of .26.

Finally, note that P(A∣B) is not the same thing as P(B∣A). I gave
you a heads-up about this above. In general, P(A∣B) and P(B∣A)
are very different numbers. Ask yourself this: if you chose a random
American, and they turned out to be pretty tall (say, taller than
average), what’s the probability that they’re also an NBA player? I
think you’ll agree that the number here would be very small indeed:
perhaps P(NBA ∣ tall) would be .00001. There just aren’t that many

178 CHAPTER 17. PROBABILISTIC REASONING

NBA players out there, so the chances of you randomly choosing
one – tall or not – is miniscule. But consider the reverse question:
if your random choice just happened to be an NBA player, what’s
the probability that they’d also be tall? This, by contrast, would
be far greater: I’ll bet P(tall ∣ NBA) is close to .95, since nearly all
professional basketball players are pretty tall.

Or continue the pinterest example. P(pinterest ∣ female) might
be .26 (i.e., 26% of all females are pinterest users), but P(female
∣ pinterest) might be .87 (87% of all pinterest users are females).
These are easy to confuse but critical to distinguish. We’ll quantify
all this in the next section.

17.6 The relationship between joint and
conditional

Mathematically, here’s how these two concepts (joint probability
and conditional probability) are related. If A and B are two events,
then:

P (A∣B) =
P (A,B)

P (B)

In words: the conditional is the joint divided by the marginal of
the thing being conditioned on.

Let’s quantify this with our pinterest example. Here’s the four
values in our joint distribution:

pinterest pinterest
male .02 .48
female .13 .37

We can compute the four marginals by summing rows / columns:

17.6. THE RELATIONSHIP BETWEEN JOINT AND
CONDITIONAL 179

P (male) = .5
P (female) = .5

P (pinterest) = .15

P (pinterest) = .85

And then, using our definition above, we can calculate all the con-
ditionals:

P (male ∣ pinterest) =
.02

.15
= .003

P (male ∣ pinterest) =
.48

.85
= .565

P (female ∣ pinterest) =
.13

.15
= .867

P (female ∣ pinterest) =
.37

.85
= .435

P (pinterest ∣ male) =
.02

.5
= .04

P (pinterest ∣ female) =
.13

.5
= .26

P (pinterest ∣ male) =
.48

.5
= .96

P (pinterest ∣ female) =
.37

.5
= .74

It would be worth your while to double-check all the above calcula-
tions to reinforce your understanding of how joint, conditional, and
marginal probabilities all work together.

By the way, it’s frequently much easier to estimate the conditional
probabilities than it is to estimate joint probabilities. So we often
run the equation at the start of this section “backwards” and get
joints from conditionals. Either way, it works, though.

180 CHAPTER 17. PROBABILISTIC REASONING

17.7 The Law of “Total Probability”

Now if there are only two sexes of newborn babies possible, then it
should be pretty obvious that:

P (male) + P (female) = 1

And if there are only three possible ice cream flavors to order at
Carl’s, then the probabilities for each customer’s order must add
up to 1 as well:

P (vanilla) + P (chocolate) + P (strawberry) = 1

We don’t even need to know how likely vanilla is to know that the
sum of the three must equal 1. This is the simplest application of
the Law of Total Probability.

Now the following is also obvious if you think it through, but maybe
not so obvious at first glance. Suppose that each Carl’s customer
orders a small, medium, or large ice cream cone, in one of the three
flavors. The nine possibilities for a customer’s order are thus:

A small vanilla cone
A medium vanilla cone

A large vanilla cone

A small chocolate cone
A medium chocolate cone

A large chocolate cone

A small strawberry cone
A med strawberry cone
A large strawberry cone

Let’s say we knew all nine probabilities (which must add up to 1, of
course). Now, how could we figure out the probability of a chocolate
cone order, regardless of size? The answer is: you sum up all the
mutually exclusive and collectively exhaustive cases which include
chocolate as the flavor. In symbols:

P (chocolate) = P (chocolate, small) + P (chocolate, medium) +
P (chocolate, large)

In plain English: the probability of the next customer ordering a
chocolate cone is the probability they’ll order a small chocolate cone
plus the probability they’ll order a medium chocolate cone plus the
probability they’ll order a large chocolate cone.

17.7. THE LAW OF “TOTAL PROBABILITY” 181

And what’s the probability that the customer will order a medium
cone, regardless of flavor? Clearly, it’s:

P (medium) = P (vanilla, medium) + P (chocolate, medium) +
P (strawberry, medium)

It’s not rocket science – you just have to think about all the dif-
ferent cases. But it is pretty useful, since oftentimes we have joint
probabilities and need the marginal. And if you think about it,
in the one-variable case the Law of Total Probability really just is
computing the marginal.

Sometimes we have more than one variable we’re interested in com-
puting the probability of. Let’s say that Carl’s has an additional
option: sprinkles on top. So now, there are these eighteen possible
orders:

A plain small vanilla cone
A plain medium vanilla cone

A plain large vanilla cone
A plain small chocolate cone

A plain medium chocolate cone
A plain large chocolate cone

A plain small strawberry cone
A plain medium strawberry cone

A plain large strawberry cone

A small vanilla cone with sprinkles
A medium vanilla cone with sprinkles

A large vanilla cone with sprinkles
A small chocolate cone with sprinkles

A medium chocolate cone with sprinkles
A large chocolate cone with sprinkles

A small strawberry cone with sprinkles
A med strawberry cone with sprinkles
A large strawberry cone with sprinkles

If we wanted to know (say) the probability of a small strawberry
cone, we’d calculate:

P (strawberry, small) = P (strawberry, small, plain) +
P (strawberry, small, sprinkles)

And if we wanted to know the probability of the next customer
wanting a large cone with sprinkles, we’d compute:

P (large, sprinkles) = P (vanilla, large, sprinkles) +
P (chocolate, large, sprinkles) +
P (strawberry, large, sprinkles)

You get the idea.

182 CHAPTER 17. PROBABILISTIC REASONING

17.8 Bayes’ Rule

Knowing how joint and conditional probabilities are related, and
knowing that P(A,B) = P(B,A), it’s easy to derive the following
law:

P (A∣B) =
P (B∣A) ⋅ P (A)

P (B)

This is called Bayes’ Rule (sometimes Bayes’ Law or Bayes’
Theorem) after the 18th-century Presbyterian minister Thomas
Bayes. It is one of the most influential (and controversial, actually)
statements in statistics and even all of mathematics. It will come
up prominently in Chapters 19 through 21.

17.9 Independence

We need one more background concept before we’re ready to apply
some of this stuff, and that is the independence of events. There
are two flavors of independence: absolute, and conditional.

Absolute independence

Simply put, two events are absolutely independent if the value
of one has no bearing either way on the value of the other. It does
not mean the events are mutually exclusive. It means that the
probability of each one of them occurring has nothing to do with
the other.

It’s best seen through an example. Suppose I chose a random U.S.
citizen, and I observe two things: whether or not they’re white,
and whether or not they’re female. If I asked you for your estimate
of the “prior” for the race question, you’d probably come up with
something like P(white) = .6. Now I ask you: suppose, before
observing their race, you learned your subject was female. Does
this cause you to update your “prior” estimate to a more accurate
“posterior”?

17.9. INDEPENDENCE 183

The answer is no. Whether or not someone is white is independent
of whether they’re female. If you thought the probability of this
random person being white was .6 before, then you still think it’s
.6 after learning she’s female. In symbols, you thought P(white)
was .6, and you think P(white ∣ female) is also .6. The opposite
was true in the pinterest example: your estimate of their pinterest
status did change when you learned about their gender. Therefore,
those two events are not independent.

I’m sure you realize that “independent” is pretty much the same
concept as “not associated.” The way to test a data set for two of
its variables being independent is essentially to run the appropriate
test (χ2, t-test, or Pearson’s) and see whether there’s a significant
association or not. If there’s not, then we have no compelling evi-
dence that they’re not independent, so we cautiously conclude they
are.

Both of the following mathematical identities are true only if the
events A and B are independent:

If A and B are independent, then:

P (A∣B) = P (A)

P (A,B) = P (A) ⋅ P (B)

The first of these is basically the definition of independence: if
P(white ∣ female) = P(white), we say they’re independent. (And
conversely, if P(male ∣ pinterest) ≠ P(male), we say they’re associ-
ated and therefore not independent.)

The second one is a useful multiplicative shortcut, again only valid
if the variables in question are independent. It’s okay to compute
P(white,female) as P(white) ⋅ P(female) = .6 ⋅ .5 = .3 – yielding
a 30% chance of randomly choosing a white female – because we
know that race and gender are independent. (Conversely, it’s not
okay to compute P(pinterest,male) as P(pinterest) ⋅ P(male) = .15
⋅ .5 = .075, because these two variables are not independent; as we
saw on p.178, the true answer for P(pinterest,male) is only .02.)

184 CHAPTER 17. PROBABILISTIC REASONING

Conditional independence

And lastly, two variables can be conditionally independent given
a third variable in addition to (or instead of) being absolutely in-
dependent.

What does this mean? Perhaps the best way to think of it is those
confounding factors we learned about in the first volume of this
text. You may remember that I had a different pinterest exam-
ple in that one (Section 10.4.1) which featured three variables: a
person’s hair length, their pinterest activity, and their gender.
After noticing that hair was associated with pinterest, and jok-
ingly speculating as to whether long-hair caused pinterest-ness or
vice versa, we hypothesized that perhaps gender was a confound-
ing variable that was actually influencing them both. This theory
would explain why long hair and pinterest usage tended to go to-
gether, without either of them being the cause of the other.

In this case, we would say that although hair and pinterest were
not absolutely independent, they nevertheless were conditionally in-
dependent given gender. In symbols:

P (long hair ∣ pinterest) ≠ P (long hair)
(no absolute independence)

P (long hair ∣ pinterest,female) = P (long hair ∣ female)
(yes, conditional independence)

In other words, once we know the subject is female, whether she’s on
pinterest tells us nothing further about whether or not she will have
long hair. The information in the pinterest variable that signals
“strong possibility of long hair!” is completely subsumed in the
gender variable, and once that’s controlled for, the pinterest and
hair variables are again independent.

Chapter 18

Causality

I must now ask you to reach in your memory banks alllll the way
back to Chapter 10 of the previous volume of this book series.
That chapter, entitled “Interpreting Data,” dealt with association
vs. causality, confounding factors, controlled experiments vs. obser-
vational studies, and related topics. The key question we addressed
was how to interpret a statistical association between variables. If
two variables are correlated, then they’re correlated...but how con-
fident can we be that there’s a causal relationship between them –
which is what we usually care about?

Figure 18.1: Causal diagrams, each expressing a hypotheses about
the causality among variables.

The tool we used for this analysis was the causal diagram, ex-
amples of which appear in Figure 18.1. Each bubble represents one
variable. Arrows pointing from one bubble to another asserts a
causal relationship between the two: that the value of one is not
merely associated with, but is partially responsible for, the value of
the one pointed at.

185

186 CHAPTER 18. CAUSALITY

If you remember that particular example, there was an observa-
tional study suggesting that eating barbecue can increase one’s risk
of various types cancer. Assuming that an association between the
two variables was in fact discovered, the two sides of Figure 18.1
represent competing theories as to the reasons for that association.

The question we’ll ask in this chapter is as follows: given a data
set, is there any way to actually tell which of several competing
causal theories is true? In other words, if we have more than one
hypothesis giving alternate explanations for how the patterns in the
data set arrived, can the data itself be used to judge between them?

And the answer is: sometimes. Let’s learn when it can and can’t.

18.1 The bad case: identical “skeletons”

Before I get you too excited, let me say right at the outset that there
are times when the data fails us in our quest to nail this down. This
happens when the skeletons of the two causal models are identical.

The skeleton of a causal diagram is simply the diagram you get
if you remove the arrowheads. Consider the two competing mod-
els in Figure 18.2. An observational study some years ago found
an association between smoking cigarettes and experiencing clini-
cal depression, and made the claim that therefore one of the many
detriments to smoking (besides heart disease, lung cancer, and other
things) was an emotional one. That represents the causal model on
the left side of the diagram. But some objected and said, “wait a
minute...couldn’t it instead be the case that people who are going
through depression are seeking ways to cope with it, and that sub-
stances like nicotine could be one of those ways?” This depression-
causes-smoking hypothesis is on the right side.

Figure 18.2: Does smoking cause depression...or does depression
lead to smoking?

18.2. THE GOOD CASE: DIFFERENT “SKELETONS” 187

Unfortunately there is no way to resolve this by looking at the data
alone. This is because if you remove the (one) arrowhead, you get
the same skeleton (Figure 18.3). Note that “the same skeleton”
means merely the same bubbles are connected to the same bubbles.
It does not have anything to do with where those bubbles are po-
sitioned on the page.

Figure 18.3: The bad case: both causal diagrams have the same
skeleton.

In this case, the only way to resolve which of the causal models is
the true one is to investigate the phenomenon on the ground. We
have to study the mechanisms – physical and societal – by means
of which each of them might plausibly cause the other. Medical re-
searchers could explore the effects of nicotine on the human brain,
and determine whether there is a mechanism by which serotonin
is reduced. Social psychologists could conduct surveys and focus
groups and learn how often cigarettes are sought by victims of de-
pression and why. But the data itself will not give a verdict.

18.2 The good case: different “skeletons”

Often, though, the situation isn’t that dire. Consider the contro-
versy raised in one of my recent freshman seminars. The class was
discussing the invention of chopsticks, and the impact that may
have had on eastern culture as well as culinary techniques. One
student made a different kind of claim. He said, “this is why so
many of the great video game players in the world are from Asian
countries! When kids from those regions grow up using chopsticks,
it demands more attention to fine motor skills than using a fork
would. And when they develop this terrific finger-eye coordination
at a young age, it leads to greater expertise with a controller or

188 CHAPTER 18. CAUSALITY

keyboard. Thus they are better equipped to compete in high-level
gaming.”

Perhaps. But as I listened to this student, I couldn’t help remem-
bering what my own boys told me: that many of the Asian coun-
tries place a higher cultural value on video games than we do in
the western world. Apparently, high-achieving video game players
are afforded the same fame and fortune in South Korea or Japan
that our NFL and NBA players are in the U.S. They are awarded
lucrative contracts, perform paid testimonial advertising, give au-
tographs to cheering throngs, and so forth. It stands to reason,
then, that a culture which rewards excellent video game play would
produce excellent video gamers regardless of whether those players
used forks or chopsticks.

Figure 18.4: Two competing causal models about why many great
video game players are from Asian countries.

These two competing hypotheses are illustrated in Figure 18.4. On
the left is my student’s model: the region of the world you’re in
(Asian or non-Asian) influences whether or not you primarily use
chopsticks at your meals. With this much, I agree. But he then
further claims that the use of chopsticks causally influences how
good a video game player you are.

The right side of the diagram shows my own mental model: the re-
gion of the world you’re in causally influences both chopstick usage
and video game prowess. In my model, chopsticks and VG skill are
associated, but not causally associated.

Now before we go on, consider the following exercise. Without
even knowing the technical detail that comes next, can you figure
out how to confirm or refute my student’s (left-hand) causal model?
What could you do with the data?

18.2. THE GOOD CASE: DIFFERENT “SKELETONS” 189

The solution is intuitive to many, but not to all. Simply put, you
condition on the region of the world variable. This means you
split the data into two groups: those from Asian countries and
those from non-Asians countries. Think about it: if you considered
only Asians, and discovered that chopstick-using Asians are better
video gamers than non-chopstick-using Asians, then that would lend
credence to the hypothesis that one causes the other. (And the
same goes for considering only non-Asians.) But if you looked only
at Asians (or only at non-Asians) and found that chopsticks and
video game skill are uncorrelated, then that pretty much refutes
the hypothesis. Everything in the coming sections is an elaboration
of that principle.

Comparing the skeletons

The reason this example turns out to be one of the “good news“ cases
is that the skeletons of the causal diagrams are different. Check out
Figure 18.5. At first glance, you might assume that they are the
same, just as in the smoking/depression example. After all, they’re
both chains-of-three nodes. But they’re not the same. In one,
chopsticks is the bubble with connections to the other two, and in
the other it’s region of the world. Just because they’re the same
shape doesn’t mean they’re the same skeleton: the same bubbles
have to be connected to the same bubbles.

Figure 18.5: The good case: the causal diagrams have different
skeletons.

And since the skeletons are different, the data can distinguish be-
tween the two, and tell us which causal model (or neither) is likely
to be correct.

190 CHAPTER 18. CAUSALITY

Reasoning about independence

The reason we can use the data to render a verdict on our com-
peting causal diagrams is that they embody different independence
assumptions.

Look carefully at the left side of Figure 18.4 on p. 188. If that
causal model were true, then chopsticks and VG skill would not be
absolutely independent. Nor would region of the world and VG skill:
after all, if you’re from an Asian country, you’re more likely to use
chopsticks, and if you use chopsticks, you’re more likely to be good
at video games, so of course the region of the world and VG skill
variables are correlated.

However, in that left-hand diagram, region of the world and VG skill
will be conditionally independent given chopsticks. In symbols:

P (VG ∣ region) ≠ P (VG)

but

P (VG ∣ region, chopsticks) = P (VG ∣ chopsticks)

Why is this? Because in the left-hand diagram, the only reason
that knowing a person’s region was of any use to predicting their
VG skill was because it influenced how likely it was that they used
chopsticks. If you actually have the information about chopsticks
directly, well then you can toss region out the window. It’s irrelevant
at that point.

The right-hand side of Figure 18.4 is much different. Its indepen-
dence assumptions are that VG skill and chopsticks are conditionally
independent given region. Namely:

P (VG ∣ region) ≠ P (VG) (again)

but

P (VG ∣ chopsticks, region) = P (VG ∣ region)

18.3. CONFIRMING OR DENYING CAUSAL HYPOTHESES191

This is the flip side of the former case: now, although chopsticks
can tell you something useful about VG skill in a pinch, the primary
influencer of gaming skill is not chopsticks, but region. Once you tell
me what region of the world somebody is from, I have much bet-
ter information about their possible video game use, and knowing
whether they use chopsticks is no longer of interest to me.

To sum up: both models agree that

P (VG ∣ region) ≠ P (VG).

But the left one (my student’s hypothesis) asserts:

P (VG ∣ region, chopsticks) = P (VG ∣ chopsticks)
P (VG ∣ chopsticks, region) ≠ P (VG ∣ region),

while the right one (my own hypothesis) asserts:

P (VG ∣ region, chopsticks) ≠ P (VG ∣ chopsticks)
P (VG ∣ chopsticks, region) = P (VG ∣ region).

(Note carefully the “=” vs. “≠” signs in those equations, because
they’re the only difference!)

Armed with this insight, we realize that judging between our alter-
nate causal models boils down to analyzing the data to see which
conditional independence assumptions actually hold. Let’s see how
to do that.

18.3 Confirming or denying causal
hypotheses

Testing the data for absolute independence

We already know how to test for absolute independence: just see
whether an association exists between the two variables. For two

192 CHAPTER 18. CAUSALITY

categorical variables, it’s χ2; for two numeric variables, it’s a Pear-
son’s correlation; and for one of each, it’s a t-test (or, if you have
more than two values for the categorical variable, an F -test.

Let’s synthesize some data. For this example, we’ll make it easy and
say that our three variables of interest – region, chopsticks, and VG –
are all categorical, and furthermore are all “binary” (only two values
each). Suppose for a moment that both of the above hypotheses
were wrong, and actually there was no association between any of
the variables. To make a data set reflecting this (certainly wrong)
reality, we could write code like this:

region = np.random.choice(['Asian','non-Asian'],
p=[.4,.6],size=10000)

chopsticks = np.random.choice(['yes','no'],
p=[.3,.7],size=10000)

VG = np.random.choice(['good','bad'],p=[.2,.8],size=10000)

data = pd.DataFrame({'region':region,
'chopsticks':chopsticks,'VG':VG})

region chopsticks VG
0 Asian no bad
1 non-Asian yes good
2 non-Asian yes bad
3 Asian no good
4 non-Asian yes bad

. . .

If this were the case, we’d run our χ2 test and get our expected
negative result:

scipy.stats.chi2_contingency(
pd.crosstab(data.chopsticks, data.VG))[1]

0.5055960853810801

18.3. CONFIRMING OR DENYING CAUSAL HYPOTHESES193

Here, the right thing to do is throw out both my student’s hypoth-
esis and my own. Both of them predict that chopsticks and VG
would be associated, and since they’re not, both causal models are
probably bogus.

Testing the data for conditional independence

Okay. That’s old stuff. Now let’s talk about testing for conditional
independence. This involves three variables: the two you’re check-
ing for independence, and the one you’re conditioning on.

Now it turns out this is a hard problem when the variable you’re
conditioning on is numeric, but not so hard when it’s categorical.
In our case, of course, it’s categorical, since that’s the only kind of
data we have.

“chopsticks cause videogame prowess?”

Suppose for the moment that my student was correct. How could
we generate a synthetic data set reflecting his view of the world?
How about:

region = np.random.choice(['Asian','non-Asian'],p=[.4,.6],
size=10000)

chopsticks = np.where(region=='Asian',
np.random.choice(['yes','no'],p=[.8,.2],size=10000),
np.random.choice(['yes','no'],p=[.1,.9],size=10000))

VG = np.where(chopsticks=='yes',
np.random.choice(['good','bad'],p=[.5,.5],size=10000),
np.random.choice(['good','bad'],p=[.1,.9],size=10000))

I’m guessing at the numbers, of course. But compare this code with
the left-side causal model in Figure 18.4 (p. 188) and see if you agree
that they coincide. First, we generate region independently. Then,
we give Asians a much higher likelihood of being chopstick users
(80% as opposed to a mere 10% of non-Asians). Then, we make
many more of the chopstick users good video game players (50% of
them) than we do non-chopstick users (only 10%).

194 CHAPTER 18. CAUSALITY

Testing for conditional independence is just a matter of condition-
ing; i.e. treating the two conditioned groups separately.

My student predicted these two things, remember:

P (VG ∣ region, chopsticks) = P (VG ∣ chopsticks) prediction #1
P (VG ∣ chopsticks, region) ≠ P (VG ∣ region) prediction #2

Let’s see if they’re true (with the synthetic data set that we know
should have made them true). The first one claims that VG and re-
gion are conditionally independent given chopsticks. If this is true,
then χ2 tests on VG and region – if taken among only the chop-
stick users, or among only the non-chopstick users – should give us
negative results. Do they?

choppers = data[data.chopsticks == "yes"]
nonChoppers = data[data.chopsticks != "yes"]

scipy.stats.chi2_contingency(pd.crosstab(choppers.region,
choppers.VG))[1]

scipy.stats.chi2_contingency(pd.crosstab(nonChoppers.region,
nonChoppers.VG))[1]

0.41149872565464615
0.3220502005397185

As expected, yes. The p-values are well above .05, which tells us
that region and VG are not correlated – at least when we only look
at chopstick users, and when we only look at non-chopstick users.

Look at that code carefully. We first made two different data frames
– choppers and nonChoppers – by taking a subset of the original
data frame. Then, we subjected each one to a χ2 test of the relevant
variables. Both p-values came back greater than α, confirming that
these conditional independencies exist.

To test prediction #2, we split into groups a different way: Asians
and non-Asians. Then, we check whether chopsticks and VG are
independent. To wit:

18.3. CONFIRMING OR DENYING CAUSAL HYPOTHESES195

asians = data[data.region == "Asian"]
nonAsians = data[data.region != "Asian"]

scipy.stats.chi2_contingency(pd.crosstab(asians.chopsticks,
asians.VG))[1]

scipy.stats.chi2_contingency(pd.crosstab(nonAsians.chopsticks,
nonAsians.VG))[1]

1.4977381776979758e-33
3.1074726542441227e-71

As expected, they are correlated, and therefore not independent.
There is clearly an association between chopstick usage and video
game skill, even when controlling for region of the world.

“culture causes videogame prowess?”

Okay, now let’s suppose the I was correct in saying that chopstick
usage itself has negligible impact on video game skill: the real effect
is that certain parts of the world have cultures conducive to video
games. To generate a synthetic data set reflecting this view of the
world, we’d do something like this:

region = np.random.choice(['Asian','non-Asian'],p=[.4,.6],
size=10000)

chopsticks = np.where(region=='Asian',
np.random.choice(['yes','no'],p=[.8,.2],size=10000),
np.random.choice(['yes','no'],p=[.1,.9],size=10000))

VG = np.where(region=='Asian',
np.random.choice(['good','bad'],p=[.4,.6],size=10000),
np.random.choice(['good','bad'],p=[.15,.85],size=10000))

It looks similar at a glance to what we had before, but notice care-
fully that both chopsticks and VG are now being influenced by
region. Good video game players will still be more likely to use
chopsticks, but not because they use chopsticks. Instead, it’s be-
cause they’re often from Asian countries. Compare this code with

196 CHAPTER 18. CAUSALITY

the right-side causal model in Figure 18.4 (p. 188) and see if you
agree.

What did my causal model predict? These two things:

P (VG ∣ region, chopsticks) ≠ P (VG ∣ chopsticks) prediction #1
P (VG ∣ chopsticks, region) = P (VG ∣ region) prediction #2

We test these just as before, though looking for the opposite results.
If we condition on chopsticks, we should see that region and VG are
still correlated :

choppers = data[data.chopsticks == "yes"]
nonChoppers = data[data.chopsticks != "yes"]

scipy.stats.chi2_contingency(pd.crosstab(choppers.region,
choppers.VG))[1]

scipy.stats.chi2_contingency(pd.crosstab(nonChoppers.region,
nonChoppers.VG))[1]

2.888410498627128e-34
9.646356783989529e-68

These low p-values confirm just what we thought: using chopsticks
has nothing to do with it, man: even factoring that out, video game
skill still goes with region of the world.

And for prediction #2:

asians = data[data.region == "Asian"]
nonAsians = data[data.region != "Asian"]

scipy.stats.chi2_contingency(pd.crosstab(asians.chopsticks,
asians.VG))[1]

scipy.stats.chi2_contingency(pd.crosstab(nonAsians.chopsticks,
nonAsians.VG))[1]

18.4. TAKING A BREATH 197

0.9962429463855988
0.4256313356217548

we find that as expected, once you control for country, chopstick
usage and video game skill have nothing much to do with each
other.

18.4 Taking a breath

Whew. That was a lot of number crunching, and subtle reasoning.
It’s easy to get lost in the numbers and say, “wait...did I just confirm
that? Or deny it? Which hypothesis was I testing? Was my p-value
too low? too high? Aggh!”

When you step back and take a breath, you’ll see the pattern. In
both of these cases, we stacked the deck, of course. We deliberately
generated an artificial data set to confirm the student’s hypothe-
sis, and then generated one to confirm mine. Who knows what
the real answer is? I don’t actually have any data on video game
competitions nor chopstick usage.

The important thing to see is that if the skeletons of two different
causal theories are different, then you don’t have to throw up your
hands and say “correlation doesn’t equal causation! So I guess I
know nothing!” The data often has a lot to say, and even in obser-
vational studies, a careful analysis can reveal deep truths.

Chapter 19

ML classifiers: Naïve Bayes (1 of 3)

For some folks, the coolest and most exciting parts of Data Science
are the machine learning (ML) algorithms. These are the under-
the-hood techniques for doing prediction and analytics. We’ll look
at a few of them briefly in this class, and you’ll delve into them
more fully in later courses.

Recall that a classifier is an algorithm/program to predict which
of several labels (or classes) to assign to a data point. Perhaps
we’re trying to predict what political party someone is affiliated
with, and our labels are “Democrat,” “Republican,” and “Green.”
Perhaps we’re trying to predict whether someone will default on a
loan, and the labels are “safe” and “high-risk.”

There are many different algorithms for classification, but they all
use a set of labeled examples as “training data.” The idea is
that by scrutinizing a bunch of examples for which we know the
label, we can intelligently figure out what label to assign to new,
unlabeled examples.

The attributes of our training data (and new data) that we’ll use for
prediction are sometimes called features. If our training data is in
a DataFrame, the features are essentially all the relevant columns
except for one, which is the target. Our goal, given a new data
point that has values for all the features, is to label its target with
the label it’s most likely to have, assuming the training data are
representative examples.

199

200 CHAPTER 19. NAÏVE BAYES (1 OF 3)

A classifier’s performance can be measured in several ways, but
the most straightforward is to score how many unlabeled examples
it gives the correct label to. This of course begs the question: if
the example is unlabeled, how can we know whether or not the
classifier’s label was correct? What we have to do in practice is set
aside some of our (precious) labeled data as a set of test data.
We sort of pretend we don’t know the answers for the test data,
feed them to the algorithm which has been trained on the training
points, and then score how well it did.

One of the simplest (and quickest) classifiers around is called the
Naïve Bayes classifier, for reasons which will become apparent.
In some ways, it’s the rock-bottom, no-frills default algorithm for
classification. One reason it’s important is that it’s simple and ac-
tually works surprisingly (even embarrassingly) well in many cases.
Another reason is that even when it doesn’t turn out to have the
best performance, it’s still a baseline which other algorithms’ per-
formance can be compared to. A researcher might report: “our
whiz-bang algorithm X got 89.4% of examples correct on this test
set, compared with 83.7% for straightforward Naïve Bayes.”

19.1 The Naïve Bayes algorithm

Suppose we’re designing a security system for a Galactic Cruiser.
One thing we need to do is identify possible evildoers on our security
cameras. Given what we can observe about them, can we tell good
guys from bad guys?

face height demeanor lightsaber type
clean short menacing green Sith
beard medium calm green Jedi
clean tall menacing red Sith
beard medium calm blue Jedi
beard medium calm blue Jedi
clean medium calm blue Sith
clean tall menacing red Jedi
clean medium menacing red Sith
clean short calm blue Jedi

. . .

19.2. USING BAYES’ RULE 201

The training data above, in a DataFrame called “t” (for “training”),
has four features: whether the face of the person in question has a
beard or is clean-shaven, what their height is (clustered in three
broad ranges), whether their demeanor is menacing or calm, and
what color lightsaber they wield. The final column is our label:
this person is known to be a Jedi (good guy) or a Sith (bad guy).

A test point that we might want to evaluate looks like this:

face height demeanor lightsaber type
beard short menacing red ??

In other words, a short, menacing, bearded person with a red
lightsaber has just showed up on security camera #305. Should
we sound the alarm? That, of course, depends upon their (as yet
unknown) type. We want to predict this based on our past exam-
ples.

The Naïve Bayes classification algorithm applies conditional prob-
ability to this question. Really, what we’re asking is: “which of the
following two quantities is greater:

1. P(Jedi ∣ beard,short,menacing,red), or
2. P(Sith ∣ beard,short,menacing,red)?”

Note that we’re combining joint and conditional probabilities here.
Given that we have the joint event “bearded, short, menacing, and
red,” what’s the conditional probability of them being a Jedi (or
Sith)? If we estimate the first as .8 and the second as .2, for instance,
we won’t sound the alarm.

19.2 Using Bayes’ rule

With Bayes’ rule, we can rewrite these as:

(1) Estimated Jedi probability:

P(Jedi | beard,sh,menace,red) =
P(beard,sh,menace,red | Jedi) ⋅P(Jedi)

P(beard,sh,menace,red)

202 CHAPTER 19. NAÏVE BAYES (1 OF 3)

and

(2) Estimated Sith probability:

P(Sith | beard,short,menace,red) =
P(beard,short,menace,red | Sith) ⋅P(Sith)

P(beard,short,menace,red)

Note that the two equations are identical except for the words “Jedi”
and “Sith,” which are interchanged. Let’s focus on equation (1) first.

Bayes’ Rule has allowed us to turn things on their head. In essence,
instead of asking “if they have these physical features, would they
likely be a Jedi?” we’re asking “if they’re a Jedi, would they be
likely to have these physical features?”

The right-hand side of equation (1) has three parts: two in the
numerator, and one in the denominator. Ignore the denominator
for a moment. The second part of the numerator, P(Jedi), is our
prior probability. That’s easy to estimate from the training data:
we just count up what percentage of our samples are Jedi overall.

The first half of the numerator needs more work. It reads:

P (beard, short,menacing, red ∣ Jedi)

Now if it just so happened that those four features were indepen-
dent of one another, this would actually be super easy to compute.
We could just do this:

P (beard ∣ Jedi) ⋅ P (short ∣ Jedi) ⋅ P (menacing ∣ Jedi) ⋅ P (red ∣ Jedi)

Under this outrageous assumption, we’ve split the expression into
each feature individually. This is called the Naïve Bayes as-
sumption. Of course it’s probably not true that beardedness,
height, demeanor, and lightsaber color are all independent of each
other; for one thing, if some or all of these features are indicative of
Jedi-ness (which we hope), then they certainly will vary together!
But the Naïve Bayes classifier says “aw heck, let’s just throw caution
to the wind and see how things work out.”

19.3. A NUMERICAL EXAMPLE 203

All these components are now trivially obtainable from the training
data. For example, what’s a good estimate of P(beard ∣ Jedi)?
Simple: look at only the Jedi in the training data, and count up
how many “beards” and “cleans” there are. The fraction that are
beards is our estimate of P(beard ∣ Jedi).1

To make it concrete, in our training data on p. 200, there are a total
of six Jedi (count them!), of whom four have beards (count them!).
Therefore, our estimate for P(beard ∣ Jedi) is 4

6 =
2
3 . In other words,

based on this training data, we guesstimate that if you’re a Jedi,
it’s about 67% likely that you’re bearded.

19.3 A numerical example

Let’s work out the numerical answer (numerator only) for the train-
ing data listed earlier. First, considering only the five Jedi rows
gives us our Jedi numerator:

P (beard∣Jedi) ⋅ P (short∣Jedi) ⋅ P (menace∣Jedi) ⋅ P (red∣Jedi) ⋅ P (Jedi) =
4
6

⋅ 1
6

⋅ 2
6

⋅ 1
6

⋅ 6
11

= .0034

Now let’s do the same thing for the five Sith rows to get the Sith
numerator:

P (beard∣Sith) ⋅ P (short∣Sith) ⋅ P (menace∣Sith) ⋅ P (red∣Sith) ⋅ P (Sith) =
1
5

⋅ 1
5

⋅ 4
5

⋅ 2
5

⋅ 5
11

= .0058

Look very very carefully at the training data on p. 200 and con-
firm that you agree with the above numbers. Using a pencil to
write marks on the training data often helps you to keep every-
thing straight.

Throw away the denominator

Okay, those are the two numerators. To get true probabilities,
we have to divide by the denominators, of course. But the nice

1If you have trouble seeing this, go back to the definition of conditional

probability on p. 178. We’re really calculating
P (beard,Jedi)

P (Jedi)
here, which is

“the number of bearded Jedi divided by the number of total Jedi.”

204 CHAPTER 19. NAÏVE BAYES (1 OF 3)

thing is: the denominators are the same in the two cases! For both
expressions, we would need to divide by P(beard, short, menacing,
red) (in words, “what’s the probability that any random person
would be a bearded, short, menacing person with a red lightsaber?”)
This of course has the same value even if we compute it twice. For
this reason, we throw away the denominator since in the end all
we really care about is “which is higher, P(Jedi ∣ stuff) or P(Sith ∣
stuff)?”

In this case, P(Sith ∣ stuff) is the higher of the two quantities (.0058
vs. .0034) and so we boldly predict: “this person looks like a Sith!
Sound the alarm.”

All that counting and dividing, of course, is a pain. So we’ll get
Python to automate it for us. That’s the subject of the next chap-
ter.

Chapter 20

ML classifiers: Naïve Bayes (2 of 3)

How can we automate the calculations of the previous chapter in
Python? Let’s assume that our data is in a Pandas DataFrame
called “t” (for “training”) as it was in the last chapter (p. 200).
Now imagine writing this function:

def predict(face, height, demeanor, lightsaber):
...

This function takes as input a new (unlabeled) data point and re-
turns a prediction for it: either the word “Jedi” or the word “Sith.”

We’ll do most of the work outside the function, actually. We’ll
read in the file and then pre-compute all the probabilities that we’ll
need for our calculations. This is effectively the training stage:
we’re “training” our classifier function on the data.

If you think it through, the calculations from Chapter 19 imply the
need for the following probabilities:

• P (label) for every one of the target labels (these are the “pri-
ors”)

• P (value ∣ label) for every value in a column and every target
label (the conditionals)

In our case, this amounts to:

205

206 CHAPTER 20. NAÏVE BAYES (2 OF 3)

• Priors:
– P (Jedi)
– P (Sith)

• Conditionals:
– P (clean ∣ Jedi) and P (clean ∣ Sith)
– P (beard ∣ Jedi) and P (beard ∣ Sith)
– P (tall ∣ Jedi) and P (tall ∣ Sith)
– P (medium ∣ Jedi) and P (medium ∣ Sith)
– P (short ∣ Jedi) and P (short ∣ Sith)
– P (menacing ∣ Jedi) and P (menacing ∣ Sith)
– P (calm ∣ Jedi) and P (calm ∣ Sith)
– P (red ∣ Jedi) and P (red ∣ Sith)
– P (green ∣ Jedi) and P (green ∣ Sith)
– P (blue ∣ Jedi) and P (blue ∣ Sith)

These are all straightforward to compute with Pandas. I find it
convenient to create a dictionary, called something like “probs,” to
store all the probabilities. To compute the priors, all we have to do
is figure out what fraction of the rows go with each label:

probs = {}
probs['Jedi'] = len(t[t.type=='Jedi'])/len(t)
probs['Sith'] = len(t[t.type=='Sith'])/len(t)

For the conditionals like “P (calm ∣ Sith)”, we ask: considering only
the rows that have Sith labels, what fraction also have calm labels?
That boils down to this:

probs['calm|Sith'] = (
len(t[(t.type=='Sith') & (t.demeanor=='calm')]) /
len(t[(t.type=='Sith')]))

The other 19 conditionals follow exactly the same pattern. (It may
strike you that we’re repeating a lot of very similar code here, and
making slight edits to each one, and that there’s a better, more
general way. You’re right. Stay tuned for Section 20.2.)

207

Now for the actual predict() function. All we have to do is multi-
ply everything out per the above equations and see which of the two
numerators is greater. The result is in Figure 20.1. Stare carefully
at it and convince yourself that it does precisely the same calcula-
tions we did in Section 19.3 (p. 203). Note that we don’t use the
t variable inside this function at all. We’ve already computed all
the probs, and once we’ve done that, the DataFrame and the data
itself ceases to matter. We run the function just by passing it the
values derived from our spycam:

print(predict("beard","tall","calm","blue"))
print(predict("clean","tall","menacing","red"))

'Jedi'
'Sith'

def predict(face, height, demeanor, lightsaber):
jediness = (probs[face+"|Jedi"] *

probs[height+"|Jedi"] *
probs[demeanor+"|Jedi"] *
probs[lightsaber+"|Jedi"] *
probs["Jedi"])

sithness = (probs[face+"|Sith"] *
probs[height+"|Sith"] *
probs[demeanor+"|Sith"] *
probs[lightsaber+"|Sith"] *
probs["Sith"])

if jediness > sithness:
return "Jedi"

else:
return "Sith"

Figure 20.1: Our Naïve Bayes ML predict() function.

208 CHAPTER 20. NAÏVE BAYES (2 OF 3)

20.1 Estimating confidence

Our predict() function, as written, just gives a binary answer:
either Sith or Jedi. It may be useful to know how confident it is
in its prediction for any given input. All we need to do is compute
the correct ratio. Remember that jediness and sithness are just
the numerators of probabilities, and that those probabilities have
the same denominator. Therefore, in order to compute the true
P (Jedi ∣ e), where e is all our evidence (calm, beard, and so forth),
we just need to compute:

P (Jedi ∣ e) =
jediness

jediness + sithness

and similarly,

P (Sith ∣ e) =
sithness

jediness + sithness

The denominator drops out when we divide the quantities anyway.

So let’s enhance our predict() function to return a list of two
values: the prediction, and the confidence level (on a scale of .5 to
1, meaning “only 50% confident in our prediction” all the way to
“absolutely 100% confident in our prediction.” To wit:

def predict(face, height, demeanor, lightsaber):
...
if jediness > sithness:

return ["Jedi", jediness/(jediness+sithness)]
else:

return ["Sith", sithness/(jediness+sithness)]

(We’re returning a list here, of the two values.) Taking it for a spin:

predict("clean","tall","menacing","red")
predict("beard","tall","menacing","blue")

20.2. CODING IT MORE GENERALLY 209

['Sith', 0.9760957241941071]
['Jedi', 0.7298292697172792]

So we’re incredibly confident that our clean-shaven, tall, menacing,
red-wielder is a Sith, but not nearly so confident that our bearded,
tall, menacing blue-wielder is a Jedi.

20.2 Coding it more generally

The above calculation of the probabilities left something to be de-
sired, since it was hardcoded and repetitive. We can improve on
this by writing our code in a more general way, rather than explic-
itly referring to problem-specific names like “Jedi” and “demeanor”
and “blue.” Here’s one way to do all the training calculations:

t = pd.read_csv("...")

probs = {}
features = t.columns[0:len(t.columns)-1]
target = t.columns[len(t.columns)-1]

for label in t[target].drop_duplicates():

Calculate priors.
probs[label] = len(t[t[target] == label])/len(t)

Calculate conditionals.
for feature in features:

for value in t[feature].drop_duplicates():
probs[value+"|"+label] = (

len(t[(t[target] == label) &
(t[feature] == value)]) /

len(t[t[target] == label]))

Lots going on here. First, after reading the data, we set features
to be the names of all the columns except the last one, and target
to be the name of the last one.

210 CHAPTER 20. NAÏVE BAYES (2 OF 3)

Then we loop through all the different target labels (e.g., “Jedi”
and “Sith”), calculating both priors and conditionals. The priors
are straightforward: they’re just the fraction of rows that match
the label, like we did in the top box on p. 206.

We’re making an assumption when calculating conditionals: that
all the values in the columns are unique (i.e., that we won’t have,
for example, an “out-of-state” column with some “beard” values
and also have a “married” column with “beard” values.) As long
as this is true, we know we have a unique string to use as a key
(like “medium|Sith”) and it won’t have a name collision with any
other conditional.

The predict() method itself will be generalized as follows: instead
of taking exactly four parameters named “face”, “demeanor”, etc.,
it will take a list of parameter values, so that it can be called like
this:

predict(['beard','tall','menacing','blue'])

The code is in Figure 20.2 (p. 211). We use the variable scores
to keep a list of the numerators for each target label: this is only
necessary to compute the confidence level in the result. We go
through all the possible target labels, computing our score for each,
and adding it to scores. Along the way, each time we encounter a
label who has a higher score than any previous label, we remember
it (and its score) in the variables top_label and top_score. That
way, at the end of the loop, we can return our list of two elements:
the predicted label, and our confidence in it.

20.3 Measuring performance

Okay, so how well does this classifier work? This depends on how we
measure its “goodness.” You may remember from Chapter 29 of the
first volume of this series that this is sometimes a nuanced decision.
For the spaceship case, perhaps it’s more important to nail every
potential Sith, even at the risk of unnecessarily investigating and
detaining some Jedi. If we wanted to do this, we would need our

20.3. MEASURING PERFORMANCE 211

def predict(values):

Compute one score for each target label.
scores = []

Keep track of the highest score, and its label, as we go.
top_score = 0
top_label = ""

for label in t[target].drop_duplicates():

Start with the prior
score = probs[label]

Multiply in the conditionals
for value in values:

score *= probs[value+"|"+label]
scores.append(score)

If the score we just computed is the highest so far,
we have a new most-likely label.
if score > top_score:

top_score = score
top_label = label

return [top_label, top_score / sum(scores)]

Figure 20.2: The predict() function, written more generally.

measure of performance to penalize false negatives more than it
does false positives.

Most commonly, we’ll simply ask, “what percentage of the time
is it right?” In other words, we’ll count errors the same in either
direction (predicting Sith for someone who is actually a Jedi is just
as “bad” as predicting Jedi for an actual Sith). That’s what we’ll
do first.

Now as we know, we can’t test a classifier’s performance on the
data it’s trained on and expect to get anything accurate. So we’ll
need to split our data into a training set and a test set. This can
be done easily in Pandas with:

212 CHAPTER 20. NAÏVE BAYES (2 OF 3)

complete_data_set = pd.read_csv("security_cam.csv")
train = complete_data_set.sample(frac=.7)
test = complete_data_set.drop(train.index)
t = train

This call to .sample() randomly1 chooses 70% of the original data
set’s rows and copies them to a new DataFrame called “train”.
Then the next line makes “test” a DataFrame of all the others (the
remaining 30%). For convenience, we then copy train into the t
variable so that none of our previous code has to change.

All our probabilities are thus computed based only on the training
data (the random 70% of the data set). We can then use the test
set to compute our accuracy. All we need to do is iterate through
the test set, passing each row to predict() and seeing whether
we get the correct answer:

num_correct = 0
for i in range(len(test)):

row = test.iloc[i]
p = predict([row['face'],row['height'],

row['demeanor'],row['lightsaber']])
if p[0] == row['type']:

num_correct += 1

print("We got {}% correct on the test data.".format(
num_correct/len(test)*100))

1You might ask, “why not just take the first 70% of the rows as the training
data, and the last 30% as the test data? Why choose randomly?” The answer is
that it’s probably okay to do that, but sometimes there is meaning to the order
of the rows in the data set and we want to avoid biasing the training vs. test
rows one way or another. For example, if our security_cam.csv was arranged
chronologically, then the first 70% of the spycam measurements would all have
been taken earlier than the ones we’d test our performance on. A big deal?
Possibly not...but on the other hand, perhaps the makeup of our spaceship
clientele has changed over time, and thus not shuffling the rows would lead to
inaccuracies.

20.3. MEASURING PERFORMANCE 213

We get a different answer every time we run our program, since it
will choose a different training/test split in each case.

We got 82.63% correct on the test data.

If we did want to err on the side of caution, and penalize false-Jedi
predictions more than false-Sith predictions, we could do that as
follows:

num_missed_jedi = 0
num_missed_siths = 0
for i in range(len(test)):

row = test.iloc[i]
p = predict([row['face'],row['height'],

row['demeanor'],row['lightsaber']])
if p[0] != row['type']:

if p[0] == 'Jedi':
num_missed_siths += 1

if p[0] == 'Sith':
num_missed_jedi += 1

penalty = num_missed_jedi + num_missed_siths * 2
our_score = (1 - penalty/len(test)) * 100

Our score on the test data was 66.33.

Here we’re penalizing actual-Siths-that-we-predicted-were-Jedi twice
as much as actual-Jedi-that-we-predicted-were-Sith. Our score is
no longer a “percentage,” really; it’s just a number – kinda sorta
between 0 and 100 (although it could be lower if we misidentified
enough Siths) – which we can use to compare with other classifiers.

Chapter 21

ML classifiers: Naïve Bayes (3 of 3)

21.1 Numeric variables

In all the examples above, we had categorical features. Computing
something like “P (calm ∣ Jedi)” is thus just a matter of counting
the Jedi rows which (exactly) match the value calm. But what if
we have a numeric feature, like a person’s age or salary?

One quick-and-dirty way to deal with numeric features is to “bin”
them, kind of like a histogram. Note that this is actually what we
already did with the “height” column in the Jedi example: instead
of heights like 4’9" and 6’6", we had values like short and tall.

This has obvious drawbacks. For one, we’re throwing away all the
detail present in the measurement and treating different values ex-
actly alike. For another, it’s up to us to somewhat arbitrarily choose
how many bins to use and where the demarcation lines are. This
has an ad hoc feel to it.

Gaussian Naïve Bayes

Better is to treat the continuous variable as what it really is: a
number. Gaussian Naïve Bayes is probably the most common
way to deal with this in a principled fashion: we make the as-
sumption that the numeric feature is distributed normally (“nor-
mal”==“Gaussian”), and estimate its mean and standard deviation
from the training data. Then, to estimate P (value ∣ target_label)

215

216 CHAPTER 21. NAÏVE BAYES (3 OF 3)

for any particular test data point’s value, we choose the estimated
value of its probability density (p. 31) and use that.

Remember from Section 5.2 (p. 36) that if a variable is “distributed
normally” it means that its values are “bell-curvy.” There’s some
average value which occurs a lot, and values farther and farther
from that average are less and less likely to occur.

Now suppose we had a numeric height feature (measured in inches)
instead of a categorical one. Our training data (in the “t” DataFrame)
might look like this:

face height demeanor lightsaber type
clean 62.5 menacing green Sith
beard 68.3 calm green Jedi
clean 78.1 menacing red Sith
beard 63.9 calm blue Jedi
beard 61.9 calm blue Jedi
clean 68.2 calm blue Sith
clean 80.1 menacing red Jedi
clean 33.5 calm green Jedi

. . .

Our Gaussian Naïve Bayes assumption will be that for each class,
the height feature is distributed normally. Given this assumption,
we can characterize its normal distribution with just two param-
eters: its estimated mean and standard deviation. So we take all
the Jedi rows, and calculate their heights’ mean and standard
deviation:

t[t.type=='Jedi'].height.mean()
t[t.type=='Jedi'].height.std()

64.0571
9.6619

Performing the same calculation for the Sith rows gives us:

21.1. NUMERIC VARIABLES 217

t[t.type=='Sith'].height.mean()
t[t.type=='Sith'].height.std()

68.3902
9.3197

Interesting. Looks like Sith Lords are a bit taller than Jedi in
general, and slightly less variable.

Now let’s say we’re doing a Jedi-vs.-Sith prediction for a person
whose height (according to our security camera) is 69 inches. We’ll
need to know the value of the density at x=69 for both our es-
timated Jedi and estimated Sith distributions. Using the SciPy
library, we can get “frozen” distributions for each:

import scipy.stats
jedi_height = scipy.stats.norm(64.0571, 9.6619)
sith_height = scipy.stats.norm(68.3902, 9.3197)

Think of a frozen distribution as just a variable on which we can
call a .pdf() method to find the height of its distribution at a
particular value. Let’s see how high the estimated Jedi and Sith
densities are for a height of 69 inches:

jedi_height.pdf(69)
sith_height.pdf(69)

0.036230663486274517
0.042717943988373371

Not surprisingly, the Sith number comes out a fair bit higher, since
according to our estimated density, the average Sith’s height is taller
than the average Jedi’s.

218 CHAPTER 21. NAÏVE BAYES (3 OF 3)

Keep in mind that the “.0362” and “.0427” numbers here are a bit
hard to interpret. They are not “the probability that a Jedi/Sith
is exactly 69 inches tall” – that probability, as with all continuous
random variables, is zero. Instead, it’s “the value of the density at
x=69” which isn’t really in any units that make sense. It’s okay,
though, since we are throwing away out denominator and doing
relative comparisons anyway.

By the way, there are also other useful things you can call on a
frozen SciPy distribution, including .cdf() to get the value of the
cumulative density function at any point, .ppf() to get a quan-
tile, .rvs() to generate random values from it, ordinary statistical
things like .median(), .mean(), .std(), and other more exotic
statistical things like moments, confidence intervals, differential en-
tropy, survival functions, etc. See the documentation for details.

Incorporating into the classifier

Let’s add this feature to our classifier. First, the training code
for the not-so-generally-coded version (p. 206), which had lines like
this:

probs['tall|Sith'] = (
len(t[(t.type=='Sith') & (t.demeanor=='tall')]) /
len(t[(t.type=='Sith')]))

Since height is now numeric, we need to replace all those height-
related lines with code like this:

sith_heights = t[t.type == 'Sith'].height
sith_height = scipy.stats.norm(sith_heights.mean(),

sith_heights.std())
jedi_heights = t[t.type == 'Jedi'].height
jedi_height = scipy.stats.norm(jedi_heights.mean(),

jedi_heights.std())

21.1. NUMERIC VARIABLES 219

The “sith_height” and “jedi_height” variables are now our frozen
distribution functions. In predict(), then, we simply use the ap-
propriate one as another multiplier:

def predict(face, height, demeanor, lightsaber):
jediness = (probs[face+"|Jedi"] *

jedi_height.pdf(height) * <-- CHANGED
probs[demeanor+"|Jedi"] *
probs[lightsaber+"|Jedi"] *
probs["Jedi"])

sithness = (probs[face+"|Sith"] *
sith_height.pdf(height) * <-- CHANGED
probs[demeanor+"|Sith"] *
probs[lightsaber+"|Sith"] *
probs["Sith"])

if jediness > sithness:
return "Jedi"

else:
return "Sith"

Squint at that code and notice the changed lines from Figure 20.1
(on p. 207). We’ve removed the “probs[height+"|Jedi"]” lines,
since they’re no longer applicable: height is numeric now. Instead,
we multiply our jediness/sithness by the value of the correspond-
ing class’s estimated density at that point.

To incorporate this numeric variable into the more general version
of the code (p.209), we need to intelligently distinguish between
numeric and categorical columns. This can be done via the .dtype
accessor on a DataFrame column:

print(t.lightsaber.dtype)
print(t.height.dtype)

dtype('O')
dtype('float64')

220 CHAPTER 21. NAÏVE BAYES (3 OF 3)

(The “O” stands for “object,” which is Pandas’ non-intuitive way of
telling you that the column is something non-numeric, like a string.)
You can directly compare the result to “np.dtype("float64")”,
but the safer and preferred way is to use NumPy’s issubdtype()
function which more intelligently detects any numeric type (ints,
floats, etc., no matter the precision).

Our new generic implementation begins with:

probs = {}
densities = {}
target = t.columns[len(t.columns)-1]
num_fs= [c for c in t.columns[:-1]

if np.issubdtype(t[c].dtype,np.number)]
cat_fs = [c for c in t.columns[:-1]

if not np.issubdtype(t[c].dtype,np.number)]

We’re creating a densities dictionary, somewhat similar to our
probs dictionary, to store feature-specific information for our nu-
meric variables (probs will continue to store information for cat-
egorical variables). Instead of simple numeric values, densities
will store frozen distribution functions. Additionally, instead of a
single features list like we had on p. 209, we now have two lists –
num_fs and cat_fs – for the names of the numeric and categorical
features, respectively.

Something else in that code might be new to you: we’re using
something called a list comprehension, which is just a sleek way
of creating a list without the need for a for loop. Notice the boxies
after the equals signs for num_fs and cat_fs, and the if clauses.
This code says “if column c is a numeric variable, put it in num_fs,
otherwise put it in cat_fs.”

All right, now we can populate densities (and probs):

21.1. NUMERIC VARIABLES 221

for label in df[target].drop_duplicates():
rows_with_this_label = df[df[target] == label]
probs[label] = len(rows_with_this_label)/len(df)
for feature in numeric_features:

density = scipy.stats.norm(
rows_with_this_label[feature].mean(),
rows_with_this_label[feature].std())

densities[feature+"|"+label] = density
for feature in categorical_features:

for value in df[feature].drop_duplicates():
probs[value+"|"+label] = (

len(df[(df[target] == label) &
(df[feature] == value)]) /

len(df[df[target] == label]))

Our generic predict() function from (p.210) needs to be adjusted
somewhat, since if we just pass a list of values, we can’t tell which
feature a numeric value is supposed to go with. There are various
ways to solve this, but we’ll choose to pass a key/value pair string
in this case (like "height=69.3"). Flip to p. 222 for the complete
code (Figure 21.1). We call the function like this:

predict(['beard','height=65','menacing','blue'])
predict(['beard','height=85','menacing','blue'])

['Jedi', 0.85863336769968801]
['Jedi', 0.72742228657164021]

And how does this thing do?

We got 82.33% correct on the test data.

Not too shabby.

222 CHAPTER 21. NAÏVE BAYES (3 OF 3)

def predict(values):

scores = []
top_prob = 0
top_answer = ""

for label in df[target].drop_duplicates():

prob = probs[label] # Start with the prior

for value in values:
if "=" in value:

Numeric feature.
num_feature, num_value = value.split("=")
num_value = float(num_value)
prob *= densities[num_feature+"|"+label].pdf(

num_value)
else:

Categorical feature.
prob *= probs[value+"|"+label]

scores.append(prob)

if prob > top_prob:
top_prob = prob
top_answer = label

return [top_answer, top_prob / sum(scores)]

Figure 21.1: A general Naïve Bayes predict() function, enhanced
to allow numeric features (which are passed as key/value strings like
"height=51.5").

Chapter 22

APIs

Back in Chapter 15, I called the screen-scraping scenario “the worst
of all possible worlds.” Using an API, the subject of this lesson,
is sort of the best. I say “sort of” because it’s certainly not the
easiest. The easiest is when you have a ready-made CSV file with
exactly the data you want, and you suck it into a DataFrame, done.
The thing is, much of the data you’ll be interested in analyzing as
a Data Scientist wasn’t put together like that for you. Instead, it
exists as part of a vast database somewhere, and you need flexibility
and power to extract on demand exactly the parts you want. This
is what a good API lets you do.

API actually stands for “Application Programming Interface,” which
is a pretty uninformative acronym. What it really means is “a set
of functions someone has provided for you to call in order to access
their data, together with clean documentation telling you precisely
what each of those functions do.” As you’ll see with experience,
some APIs are better designed than others, and make it easier to
get what you want. In this chapter we’ll look at two examples and
generalize some common principles from them.

223

224 CHAPTER 22. APIS

22.1 REST APIs

Another strange pseudo-acronym you’ll encounter is “REST”1, which
is a style of API. REST APIs have the following characteristics:

• They’re designed to be used over the Web. (Although “over
the Web” may not mean what you think it means; for one,
it doesn’t mean “using a browser.” Instead, it means “access-
ing the data using HTTP requests in the form of structured
URLs/hyperlinks.” We’ll be writing Python code to retrieve
what appear to be pseudo-Web-pages outside our browser.)

• They’re simple and elegant. Unlike their predecessor (and
competitor) protocols SOAP and RPC, REST was designed
and promoted by people2 who didn’t like clutter and who
wanted communication to be streamlined and compactly spec-
ified. REST APIs are typically nice to use.

• They’re based directly on the HTTP protocol itself, and un-
der the hood make use of the HTTP operations like GET, HEAD,
POST, DELETE, PUT, etc. Because of this, different REST APIs
tend to be pretty uniform in how they work.

• They’re “stateless,” as HTTP is itself. This means the server
retains no memory of the past requests from a client. (“Server”
is a word meaning “a machine on the Internet that you want to
access,” and “client” here essentially means “your own com-
puter, which makes requests of the server.”) This has some
limitations, but makes APIs quick and simple to use.

• The data they provide can come in a variety of formats, typ-
ically JSON or XML.

Other terms

APIs that conform to Roy Fielding’s original spec are known collo-
quially as – I kid you not – “RESTful.”

1This sort of stands for “REpresentational State Transfer,” another utterly
unhelpful phrase.

2Originally Roy Fielding in his 2000 Ph.D. dissertation from UC-Irvine.

22.2. RESTFUL APIS AND THE REQUESTS PACKAGE 225

You’ll also sometimes hear the buzzwords “Web services” or “SOA”
(Service-oriented Architecture). Although these terms are a bit
broader and communicate something subtly different than just “the
use of Web-based APIs” (REST or otherwise), in practice you will
see terms like this used jointly to refer to the same technologies. If
you hear someone talking about “a Web services approach,” your
ears should perk up and you should anticipate being able to apply
at least some of the lessons in this module.

Finally, the term endpoint refers to a particular, addressable part
of an API that is normally defined by a base URL. For instance,
the standard Twitter search API is at https://api.twitter.com/
1.1/search/tweets.json and the endpoint for getting full infor-
mation about specific tweets is https://api.twitter.com/1.1/
statuses/lookup.json. In general, an API will have many differ-
ent endpoints, each of which defines its own parameters and is used
for a particular type of information request.

22.2 RESTful APIs and the requests
package

Python’s requests package is an easy way to make a call to an ex-
ternal API and get the results. It basically encapsulates the under-
the-hood stuff that formulates, sends, and parses the results of an
HTTP request.

HTTP defines various operations to communicate with a server such
as GET, POST, and HEAD. The requests package bundles these up in
functions like: requests.get(), requests.post(), etc. The most
common method we’ll use in API access is the .get() command.
It can actually be used to retrieve any Web-accessible page on the
network:

import requests
class_home_page = requests.get(

"http://stephendavies.org/data219")
print(class_home_page.content.decode('utf-8'))

https://api.twitter.com/1.1/search/tweets.json
https://api.twitter.com/1.1/search/tweets.json
 https://api.twitter.com/1.1/statuses/lookup.json
 https://api.twitter.com/1.1/statuses/lookup.json

226 CHAPTER 22. APIS

That “.content.decode('utf-8')” thing is kind of a pain. The
first part (.content) gives you the actual HTML code of the page it-
self (rather than a variable representing the entire request/response
sequence). The second part says to take that big string and in-
terpret it as a format that can represent all Unicode characters.
Unicode and other character encodings are an interesting subject
in their own right, but for now, just get in the habit of calling the
.content.decode('utf-8') method on every packet of data you
get from an API.

Anyway, if you run the above code, you’ll see the (gnarly) HTML
code for the entire course web page on your screen as one big string.
Seeing this emphasizes that when we execute RESTful API requests,
we’re really not doing much more than accessing “web pages,” where
“web page” here means a set of results that the server puts together
for us. This similarity to how browsers work is what makes RESTful
APIs so simple and powerful.

22.3 The Star Wars API

Most of the time we won’t get HTML back, but rather a data format
such as XML or JSON. Predictably, I’ll start with a Star Wars
example. The SWAPI (Star Wars API) is a neat little database
that returns JSON data about entities in the Star Wars universe.
Let’s ask it for “person with ID 13” (whoever that turns out to be):

response = requests.get("https://swapi.co/api/people/13")
print(response.content.decode('utf-8'))

{'name':'Chewbacca', 'height':'228', 'mass':'112', 'hair_color':'brown',
'skin_color':'unknown', 'eye_color':'blue', 'birth_year':'200BBY',
'gender':'male', 'homeworld':'https://swapi.co/api/planets/14/', 'films':
['https://swapi.co/api/films/2/', 'https://swapi.co/api/films/6/',
'https://swapi.co/api/films/3/', 'https://swapi.co/api/films/1/',
'https://swapi.co/api/films/7/'],
'species':['https://swapi.co/api/species/3/'],
'vehicles':['https://swapi.co/api/vehicles/19/'], 'starships':
['https://swapi.co/api/starships/10/',
'https://swapi.co/api/starships/22/'], 'created':'2014-12-10T16:42:45',
'edited':'2014-12-20T21:17:50', 'url':'https://swapi.co/api/people/13/'}

22.3. THE STAR WARS API 227

Looks like we got Han Solo’s wingman Chewbacca. That output is
a little hard on the eyes, though. Let’s call json.loads() on that
string (see p. 71) to get a Python dictionary with all Chewie’s info,
and then pretty-print it:

from pprint import pprint
import json
chewie = json.loads(response.content.decode('utf-8'))
pprint(chewie)

{'birth_year': '200BBY',
'created': '2014-12-10T16:42:45.066000Z',
'edited': '2014-12-20T21:17:50.332000Z',
'eye_color': 'blue',
'films': ['https://swapi.co/api/films/2/',

'https://swapi.co/api/films/6/',
'https://swapi.co/api/films/3/',
'https://swapi.co/api/films/1/',
'https://swapi.co/api/films/7/'],

'gender': 'male',
'hair_color': 'brown',
'height': '228',
'homeworld': 'https://swapi.co/api/planets/14/',
'mass': '112',
'name': 'Chewbacca',
'skin_color': 'unknown',
'species': ['https://swapi.co/api/species/3/'],
'starships': ['https://swapi.co/api/starships/10/',

'https://swapi.co/api/starships/22/'],
'url': 'https://swapi.co/api/people/13/',
'vehicles': ['https://swapi.co/api/vehicles/19/']}

Better. You can see that the API gave us a well-structured chunk
of data, in a dictionary, which we can explore and manipulate in all
the usual ways. Notice Note that some of the data consists of other
REST URLs, which we could then choose to further query. This is
a sign of a well-written API.

Let’s use the URL we got for Chewie’s home world and make an-
other API call to retrieve that:

228 CHAPTER 22. APIS

chewie = json.load(response.content.decode('utf-8'))
pprint(json.loads(requests.get(

chewie['homeworld']).content.decode('utf-8')))

{'climate': 'tropical',
'created': '2014-12-10T13:32:00.124000Z',
'diameter': '12765',
'edited': '2014-12-20T20:58:18.442000Z',
'films': ['https://swapi.co/api/films/6/'],
'gravity': '1 standard',
'name': 'Kashyyyk',
'orbital_period': '381',
'population': '45000000',
'residents': ['https://swapi.co/api/people/13/',

'https://swapi.co/api/people/80/'],
'rotation_period': '26',
'surface_water': '60',
'terrain': 'jungle, forests, lakes, rivers',
'url': 'https://swapi.co/api/planets/14/'}

Cool: now we have information on the planet Kashyyyk, which we
could then further explore aspects of. We could geek out all day
with this.

22.4 The Twitter API

Twitter’s API uses the same principle, although it’s of course larger
and more complicated. In addition, there’s the hurdle of authen-
ticating your Python program with the API so you can access the
data.

Authentication

Many APIs require some form of authentication, which essentially
means you need to provide some personal information to identify
you to the site. Since we’ll be dealing only with open APIs, this isn’t
a security thing as much as it’s a “control of information” thing. By

22.4. THE TWITTER API 229

forcing you to register with the site and provide some contact info,
the organization retains a measure of control and knowledge over
how its information is used. Also, many sites impose rate limits
which constrain how much information an account can suck from
the site every hour.

Every site has a different procedure for this, and the documentation
varies considerably in helpfulness. It’s usually a matter of finding
and connecting the dots. Twitter, like many sites, uses the OAuth
authentication protocol (see oauth.net), an open standard that
allows users to grant one website permission to access data from
another. (You’ve probably used this without realizing it if you’ve
ever enabled some third-party app which then caused a confirmation
dialog box to pop up saying, “application so-and-so is requesting
access to the following information of yours...do you approve?”)

For Twitter, here’s the procedure that works as of this writing:

1. If you’re not actually a Twitter user, create a Twitter account.
2. Sign on to dev.twitter.com.
3. Go to apps.twitter.com and create an “application.” For

our purposes, an application is sort of like a project, of which
you can have several. It’s mainly an organizational thing.

4. Navigate to your application and choose “Keys and Access
Tokens.” Create an Access Token.

You will now see, on the “Keys and Access Tokens” page, four
strings of gobbledygook, all four of which you’ll need:

• A “consumer key.” Mine is 9dFucBtR1P58pJICXGV2gaKhj.
• A “consumer secret.” (I’ll keep mine secret.)
• An “access token.” Mine is
1019144197-5dhD0p1VbE80kPnzZrhjq43G08iMbguggkn67q1.

• An “access token secret.” (I’ll keep mine secret.)

What do all these different things mean? Honestly, you don’t need
to know. Just realize they’re all necessary components of the way
Twitter authenticates, and if you just use them all in the right
places, you’ll be able to get to any Twitter data you want, pro-
grammatically.

oauth.net
dev.twitter.com
apps.twitter.com

230 CHAPTER 22. APIS

(Btw, the second and fourth of those items – the “secrets” – are
not supposed to be shared with anyone, nor to appear in human-
readable form in your source code. For one-off data analysis projects,
I confess I don’t think this is super important.)

Authenticating with the requests_oauthlib package

To authenticate with OAuth, we’ll use Python’s requests_oauthlib
package. You may have to install it first, by typing “conda install
requests-oauthlib” at your operating system’s command line.
Then, this code should work:

from requests_oauthlib import OAuth1
cons_key = "(your key)"
cons_secret = "(your consumer secret)"
access_token = "(your access token)"
access_secret = "(your access secret)"
oauth = OAuth1(cons_key, cons_secret, access_token,

access_secret)

We now have a variable called oauth which can be passed to func-
tions in the requests package to get data.

HTTP GET parameters

The Twitter API is documented at https://dev.twitter.com/
docs, a page well worth perusing in detail. You’ll see numerous
endpoints documented there, each of which has its parameters listed
when you click through.

Conceptually, making an API request is like making a function call:
you’re triggering some operation, passing parameters, and getting
a return value. The syntax is a bit different though. In Python,
you’re used to making a function call like this:

get_user_timeline('katyperry',4) <-- (not real; I'm making this up)

https://dev.twitter.com/docs
https://dev.twitter.com/docs

22.4. THE TWITTER API 231

to indicate something like “get the latest four tweets from user
@katyperry.” Now in order to “call” a “function” from the API
and “pass” these “parameters,” you code up a URL with syntax like
this:

(all one string:)

https://api.twitter.com/1.1/statuses/user_timeline.json?scre
en_name=katyperry&count=4

Stare at all that nonsense. Note that our “parameters” are expressed
as key/value pairs, with no spaces, at the end of the URL: after a
“?”, and each separated by “&” signs. The following code, then:

four_from_katy = json.loads(requests.get(
"https://api.twitter.com/1.1/statuses/" +

"user_timeline.json?screen_name=katyperry&count=4",
auth=oauth).content.decode('utf-8'))

for tweet in four_from_katy:
print(tweet.text)

produces this result (as of today):

Sending <3 out to all of you on this #ShoesdayTuesday! I will be
donating 10% from the sale of every shoe and handb...
https://t.co/TsyHuFquc6

this is how you wash with styyylesss https://t.co/C7rlCUGv9Y

OMGEE We're leaving it to you, America! We couldn't choose between
@GraceLeermusic & @LaurenMascitti so we're leavi...
https://t.co/OH2X3o9XAV

It's the end of the #AmericanIdol journey for #DemiRae - but the
beginning of a new journey for her. Keep being the...
https://t.co/P5Fqx2Q7l5

232 CHAPTER 22. APIS

22.5 URL encoding

Sometimes the parameters you want to put into a URL contain
spaces or punctuation characters. You’ll need to encode those prop-
erly in order for the URL to be valid and for the API to not get
confused.

If a value you want to pass contains a space, you’ll need to convert
that space to a plus sign (“+”). The search endpoint for Twitter is
https://api.twitter.com/1.1/search/tweets.json, for exam-
ple, and requires a “q” parameter with your query string. I could
search for Star Wars toys with:

toys = json.loads(requests.get(
"https://api.twitter.com/1.1/search/tweets.json?q=" +

"star+wars+toys&count=5",auth=oauth).content.decode(
'utf-8'))

Note how instead of putting “star wars toys” in the URL, I put
“star+wars+toys”. In case you’re in a shopping mood, btw, this
endpoint returns a dictionary of information:

print(toys.keys())

['statuses', 'search_metadata']

It looks like the tweets themselves (“statuses”) are in the statuses
key, so:

for tweet in toys['statuses']:
print(tweet['text'])

22.6. SPECIALIZED PACKAGES 233

The #StarWars portfolio of #toys is about to get bigger. #Hasbro
announced it’s going to make #JabbatheHutt's sail...
https://t.co/FYC1DLftXX

RT @hottoysofficial: #HotToys 1/6th scale #ObiWanKenobi (Regular
& Deluxe Version) collectible figures from #StarWars EP3 are
available for...

HotToys Old Luke Skywalker Star Wars Movie Series 12'' Man Figure
Collection https://t.co/NbHgtpnDwi #Toys https://t.co/ejrGXjVT3F

Star Wars Black Series 6" Rey (JEDI TRAINING)Toys R Us
Exclusive https://t.co/ArxT9kPjZt https://t.co/lcLbp7pwjG

If you have weird characters other than spaces, you have to convert
them to a “percent syntax” in which you encode each weird character
as a percent sign followed by the proper two hexadecimal digits.
This is a pain to do by hand, but don’t worry: the quote_plus()
function from the urllib.parse package makes things easy:

import urllib.parse
print(urllib.parse.quote_plus(

"http://cs.umw.edu/star wars toys! 20% off"))

'http%3A%2F%2Fcs.umw.edu%2Fstar+wars+toys%21+20%25+off'

Now, instead of using the original URL that had the illegal charac-
ters (like “!” and space and “%”), we can just use the quote_plus()’d
version in its place when we call the API.

22.6 Specialized packages

For many popular APIs, including Twitter, you may find Python
packages written to streamline and hide some of the protocol id-
iosyncrasies. These may be easier to use, depending on how well
written and maintained they are. For Twitter, there are numerous
ones: python-twitter, TwitterAPI, tweepy, TweetPony, twython,
and more. This is a testimony to how powerful (and common) it is
to be able to access data through external APIs.

Chapter 23

ML classifiers: kNN (1 of 2)

Let’s return to the ML classification problem, for which Naïve Bayes
and Friends from Chapters 19–21 – and the Decision Trees from
Volume One – are so far our only solution.

In some ways the technique in this lesson is at the opposite extreme
from Naïve Bayes. Instead of very generally assuming that each of
the features is an independent and separate indicator of a data
point’s class (as the “Naïve Bayes assumption” did) the kNN (for
“k-nearest neighbors”) algorithm assumes that a point’s features
are very much bound together. In order to classify a point, a kNN
classifier finds the closest training points to it, and predicts the
label that those points suggest (majority rules).

The parameter k in kNN is simply the number of “closest training
points” we’ll consider. It is nearly always an odd number, so that
in the two-class case there are no ties. Suppose we have a 7-NN
classifier, and we’re asked to classify a particular person as either
Jedi or Sith. If we find the seven most similar training points to
our person, and discover that four of them are Jedi and the other
three are Sith, we’ll predict “Jedi.” The basic idea is that simple.

Figure 23.1 shows a visual example. Here we have training data that
a bank uses to decide whether to extend home loans to applicants.
The bank keeps track of two features: how many years the potential
customer has been at his/her current job, and the total amount of
credit card debt he/she is carrying. The training points are shown

235

236 CHAPTER 23. KNN (1 OF 2)

on the plot as either red X’s (these customers defaulted on their
loans in the past) or green +’s (they repaid their loans).

Figure 23.1: Training data for a bank’s home mortgage operations.

Now suppose Mr. Blue Question Mark walks in. Should we approve
his loan application? A 1-NN classifier would say no, since the
closest data point to the blue question mark is a red X. A 3-NN
classifier, on the other hand, would say yes, since if we take the
three nearest neighbors of the question mark, we get two greens
and one red. (See Figure 23.2.)

Figure 23.2: The 1, and 3, “closest” points to our mystery man.

23.1. DISTANCE MEASURES 237

23.1 Distance measures

Much hinges on the question of closeness. What do we mean when
we say two data points are “close” together? There are some options
here, many of which are common sense. The approach we used
above was to take the ordinary Euclidean distance, also called the
“straight-line distance” (or “crow-flies distance”) between the data
points. We just use the Pythagorean Theorem where each feature
is plotted on an axis. And in fact this is the most common choice.

You probably remember the formula for the distance between two
points in a plane. Less well known is that the Pythagorean formula
works in any number of dimensions. In other words, if I have one
n-dimensional data point whose values are (x1, x2, x3, ..., xn) and
another whose are (y1, y2, y3, ..., yn), the distance between them is:

d =
√
(x1 − y1)2 + (x2 − y2)2 + (x3 − y3)2 + ⋅ ⋅ ⋅ + (xn − yn)2

You can’t visualize more than three dimensions (and most people
can do only two), but you can compute it, and you get a perfectly
sensible number.

This isn’t the only approach people use. In general, we can use any
distance measure (or “distance function,” or “distance metric”)
that assigns a numerical “distance” value to any two points. To be
valid, a distance measure must simply satisfy certain common sense
rules.1 Another common choice is the Manhattan distance (or
“taxicab distance”) which is essentially the shortest path between
the two points that doesn’t travel diagonally (i.e., the path only
travels along axes.)

23.2 Feature standardization

Now I actually did something sneaky to you with the bank example.
When I showed you the plots, I calculated the crow-flies distances

1Including: the distance between two points must always be greater than
or equal to 0; the distance from x to y must be the same as the distance from
y to x; and the distance from x to z must not be any greater than the distance
from x to y to z (the “triangle inequality.”)

238 CHAPTER 23. KNN (1 OF 2)

to Mr. Blue Question Mark as they appeared on the page. But if
you look at the scales of those axes, you’ll realize I didn’t compute
them right! These variables are on vastly different scales. In terms
of absolute differences, the amount of credit card debt, measured
in the tens of thousands, completely overwhelms the work history,
which is at most a few decades. Taking the straightforward Eu-
clidean distance between two people, then, would actually be quite
a blunder: clearly a difference of $50 of credit card debt isn’t nearly
as significant as a difference of 50 years in seniority!

The underlying data for Figures 23.1 and 23.2 is here:

print(bank)

num_yrs cc_debt default
0 1.0 28000 yes
1 0.5 13000 yes
2 1.5 1000 no
3 2.0 21000 yes
4 2.5 5000 no
5 3.1 4000 yes
6 3.2 25500 yes
7 4.1 24000 no
8 4.5 14000 no
9 5.3 2000 no
10 5.9 25500 no
11 6.1 20000 no
12 7.0 6000 no
13 3.2 7500 maybe

Let’s compute the Euclidean distance from each of the points to
Mr. Blue Question Mark (row #13), and sort by that new column
(remember that in Python, ** is used for “to-the-power-of”):

pts_dist = np.array([])
for row in bank.itertuples():

pts_dist = np.append(pts_dist,
np.sqrt((row.cc_debt - 7500)**2 + (row.num_yrs - 3.2)**2))

bank['dist'] = pts_dist
print(bank.sort_values('dist'))

23.2. FEATURE STANDARDIZATION 239

num_yrs cc_debt default dist
13 3.2 7500 maybe 0.000000
12 7.0 6000 no 1500.004813
4 2.5 5000 no 2500.000098
5 3.1 4000 yes 3500.000001
9 5.3 2000 no 5500.000401
1 0.5 13000 yes 5500.000663
8 4.5 14000 no 6500.000130
2 1.5 1000 no 6500.000222
11 6.1 20000 no 12500.000336
3 2.0 21000 yes 13500.000053
7 4.1 24000 no 16500.000025
6 3.2 25500 yes 18000.000000
10 5.9 25500 no 18000.000202
0 1.0 28000 yes 20500.000118

It’s madness. The “closest” point to Mr. Blue is the one with a
num_yrs of 7 and a cc_debt of 6000...the green point that’s pegged
all the way to the right side of the plot! (See Figure 23.1.)

If you think it through, you’ll realize why. Moving left-or-right on
this plot is cheap; it’s differences in vertical position that generate
large distances. The far-right green plus really is very close to
Mr. Blue, because her credit card debt is very close to his ($6,000
vs. $7,500). Her 7 years of consecutive work history compared to
his 3.2 just isn’t a factor, because it’s measured in single digits.

This is a very common issue with data sets, and fortunately, there’s
an easy way around it. Instead of using the absolute numbers in
our Pythagorean formula calculation (or Manhattan distance cal-
culation, or whatever), we first transform our features so they are
all standardized (or “Z-score normalized2.”) All we have to do
is take each feature, and:

1. subtract its mean from each point, then
2. divide each point by its standard deviation.

This puts all features on the same level playing field, so to speak.
If you remember from your stats class, what we’ve done is compute

2This definition of the term “normalized” has nothing to do with the nor-
malization of data sets we learned about in Sections 10.5 and 11.3, btw.

240 CHAPTER 23. KNN (1 OF 2)

the Z-score for each data point: the number of standard deviations
above (or below) the mean it is. Now no feature gets an advantage
in the distance calculation over any other feature, even if they’re
on wildly different scales: 2.5 standard deviations is 2.5 standard
deviations, no matter what the underlying units.

Here’s code to do that with the bank example:

def zscores(arr):
return (arr - arr.mean()) / arr.std()

bank.cc_debt = zscores(bank.cc_debt)
bank.num_yrs = zscores(bank.num_yrs)

Now, if we compute distances with these Z-scores, instead of the
raw values, we get something that looks much more reasonable:

zscore_dist = np.array([])
for row in bank.itertuples():

zscore_dist = np.append(zscore_dist,
np.sqrt((row.cc_debt - bank.iloc[len(bank)-1].cc_debt)**2 +

(row.num_yrs - bank.iloc[len(bank)-1].num_yrs)**2))
bank['dist'] = zscore_dist
print(bank.sort_values('dist'))

num_yrs cc_debt default dist
13 -0.181877 -0.667388 maybe 0.000000
5 -0.231804 -1.024786 yes 0.360869
4 -0.531366 -0.922673 no 0.432797
8 0.467174 -0.003647 no 0.928342
2 -1.030636 -1.331128 no 1.077471
9 0.866590 -1.229014 no 1.189415
1 -1.529906 -0.105761 yes 1.460345
3 -0.781001 0.711151 yes 1.503103
7 0.267466 1.017493 no 1.743769
6 -0.181877 1.170664 yes 1.838051
12 1.715350 -0.820559 no 1.903400
11 1.266006 0.609037 no 1.930188
10 1.166152 1.170664 no 2.279389
0 -1.280271 1.425948 yes 2.364006

23.3. CATEGORICAL FEATURES 241

The data is plotted on Z-score normalized axes in Figure 23.3. As
you can see, the nearest neighbor to Mr. Blue is the point .023
standard deviations lower than the mean job seniority, and 1.02
standard deviations lower than the mean credit card debt, which is
precisely the red X nearest to the question mark.

Figure 23.3: Both variables have been Z-score normalized (note
the axis scales)!

23.3 Categorical features

Now what do we do if our features are categorical? We can just
make them numerical, but in a principled way. If we have a bi-
nary feature, with only two possible values – public/private,
collegeGraduate/notACollegeGraduate – it’s easy: we just as-
sign one number (say, “1”) to one value and another (“2”) to the
other one. Now we’ve turned a categorical column of employed-
or-unemployed’s into a numeric column of 1-or-2’s, which lets us
compute Z-scores and distance measures as we did above.

With more than two possible values, though, you have to be careful.
Consider a feature whose three values are “baseball,” “football,”

242 CHAPTER 23. KNN (1 OF 2)

and “lacrosse.” Many people might unsuspectingly assign the
numbers 1, 2, and 3 to these values and then treat the feature
as a numeric one. But you can’t do this. Here’s why: assuming
the original values were on a categorical/nominal scale (recall the
“Scales of Measure” chapter from Volume I of this series), convert-
ing them to numbers in a simpleminded fashion like this imposes
an interval scale where none exists.

Think about it. A person whose favorite sport is baseball isn’t
any more like a football fan than she is like a lacrosse fan. Yet if
we turn baseball into 1, football into 2, and lacrosse into 3,
that’s exactly what our kNN classifier is going to think. It will view
baseball fans and lacrosse fans as “further apart” because after all,
3 minus 1 is 2.

In order to avoid biasing the classifier with this non-information, we
use a technique called one-hot encoding. We turn each categor-
ical feature into a whole set of binary features, one for each value.
So instead of a sport feature with values baseball, football, and
lacrosse, we use three features – called baseball, football, and
lacrosse – each with values of 0 or 1. Example:

age edLevel sport
37 HS football
41 college baseball
19 college football
22 college lacrosse

⇒

age HS college football baseball lacrosse
37 1 0 1 0 0
41 0 1 0 1 0
19 0 1 1 0 0
22 0 1 0 0 1

Perhaps you can see why it’s called “one-hot” encoding: each row
has exactly one “hot” (i.e., 1) entry for each of the one-hotted fea-
tures. Specifically, every row has either a 0 for HS and a 1 for
college, or vice versa; and every row has a 1 for exactly one of
football, baseball, and lacrosse, and 0 for the other two. This

23.3. CATEGORICAL FEATURES 243

is sort of like going from long form to wide form data, if you
think about it.

You can use np.where() function to create one-hot features, or the
scikit-learn package’s OneHotEncoder.fit_transform() func-
tion. It’s a little weird; when you create your OneHotEncoder, you
have to pass it an argument of “sparse=False” if you want it to
work the way you expect.

from sklearn.preprocessing import OneHotEncoder

ohe = OneHotEncoder(sparse=False)
onehot_features = ohe.fit_transform(df[['edLevel','sport']])

Careful: although this function takes a DataFrame as input, it re-
turns a NumPy array as output:

print(df[['edLevel','sport']])

edLevel sport
0 HS football
1 college baseball
2 college football
3 college lacrosse
3 lacrosse
Name: sport, dtype: object

print(onehot_features)

[[1. 0. 0. 1. 0.]
[0. 1. 1. 0. 0.]
[0. 1. 0. 1. 0.]
[0. 1. 0. 0. 1.]]

If you want these columns back in your DataFrame, you’ll have to
stick them back in there:

244 CHAPTER 23. KNN (1 OF 2)

df['HS'] = onehot_features[:,0]
df['college'] = onehot_features[:,1]
df['baseball'] = onehot_features[:,2]
df['football'] = onehot_features[:,3]
df['lacrosse'] = onehot_features[:,4]
df = df.drop(['edLevel','sport'],axis=1)

print(df)

age HS college baseball football lacrosse
0 37 1.0 0.0 0.0 1.0 0.0
1 41 0.0 1.0 1.0 0.0 0.0
2 19 0.0 1.0 0.0 1.0 0.0
3 22 0.0 1.0 0.0 0.0 1.0

But as we’ll see in the next chapter, the array itself is ready-made for
scikit-learn’s powerful classifier implementations. Stay tuned.

Chapter 24

ML classifiers: kNN (2 of 2)

Last chapter gave the theory of kNN classifiers. Now how to code
one in Python?

Conceptually it’s pretty easy. We’ll want to Z-score normalize ev-
erything first, of course. Then, for a new, unlabeled data point,
we’ll compute the “distance” (via whichever measure we choose)
between it and every point in the training set. Then, we sort these
points by distance, choose the k with the smallest distance, and
take a majority vote.

We’ll use our bank loan example, but with a lot more rows. Let’s
synthesize a data set real quick:

NUM = 1000
default = np.random.choice(['yes','no'], p=[.3,.7], size=NUM)
cc_debt = np.where(default == 'yes',

np.random.normal(12000,4000,NUM).clip(0,40000).astype(int),
np.random.normal(7000,3000,NUM).clip(0,40000).astype(int))

num_yrs = np.where(default == 'yes',
np.random.uniform(0,10,NUM).round(1),
np.random.uniform(2,12,NUM).round(1))

bank = pd.DataFrame({'debt':cc_debt,'num_yrs':num_yrs,
'default':default})[['debt','num_yrs','default']]

In our simplistic, synthesized world, we’re assuming that 30% of
our 1,000 people default on their loans, and that those who do tend

245

246 CHAPTER 24. KNN (2 OF 2)

to have a bit more credit card debt and somewhat fewer years at
their current job. The resulting DataFrame looks like this:

debt num_yrs default
0 7318 8.3 yes
1 2524 9.5 no
2 14866 5.1 yes
3 10611 5.4 no
4 9897 3.7 no
..
995 5136 6.8 no
996 7594 11.4 no
997 7851 7.1 no
998 0 7.5 no
999 13697 7.0 yes
[1000 rows x 3 columns]

and we can plot it:

sns.pairplot(data=bank,x_vars=['num_yrs'],y_vars=['debt'],hue='default')

to get the grouped scatter plot in Figure 24.1.

Figure 24.1: Synthesized bank data.

24.1. CODING KNN BY HAND 247

24.1 Coding kNN by hand

To use this as training data, we’ll Z-score normalize the features.
We’ll also need to Z-score the new data points that come in to be
classified, so we’d better remember the mean and standard devia-
tion of each feature for later use.

def zscores(arr):
return (arr - arr.mean()) / arr.std()

debt_mean = bank.debt.mean()
debt_std = bank.debt.std()
num_yrs_mean = bank.num_yrs.mean()
num_yrs_std = bank.num_yrs.std()

bank.debt = zscores(bank.debt)
bank.num_yrs = zscores(bank.num_yrs)

debt num_yrs default
0 1.321445 0.152280 yes
1 0.877662 -0.407452 no
2 0.150633 -1.000109 yes
3 2.152262 -1.790319 yes
4 0.927766 1.238819 no
..
995 -1.450414 -0.670855 no
996 -0.777325 0.415683 no
997 -0.172235 0.942490 no
998 0.385818 0.316907 yes
999 -0.669958 1.600998 no

Now let’s write a function called predict() (to match the name we
used in Chapters 20 and 21) which will make a loan-default predic-
tion for a new applicant. We’ll also write a dist() (for “distance”)
function to help it do its job.

def dist(x,y):
return np.sqrt((x[0]-y[0])**2 + (x[1]-y[1])**2)

248 CHAPTER 24. KNN (2 OF 2)

As you can see, we’re using Euclidean distance here (Pythagorean
Theorem). Our predict() will call this dist() function for every
point to determine that point’s Euclidean distance from our test
point. Then, it will sort those by distance, pick the top k, and
choose the majority:

def predict(debt, num_yrs, k):
bank['dists'] = dist([bank.debt, bank.num_yrs],

[(debt - debt_mean) / debt_std,
(num_yrs - num_yrs_mean) / num_yrs_std])

k_closest_pts = bank.sort_values('dists').iloc[0:k]
return k_closest_pts.default.value_counts().index[0]

Can you understand what this function is doing?

First, notice that because of the magic of Pandas vectorized opera-
tions, we don’t even need a loop. The first line of the function calls
dist() a grand total of once, giving it a list of the entire training
data’s x-values and y-values as the first argument, and then the
new point’s x-value and y-value (both Z-score normalized) as the
second argument. Pretty slick!

Then walk through how the majority rule is applied. Suppose
predict() is passed a value of 7 for k (to do 7-NN). The vari-
able “k_closest_pts,” after the next line, will be a DataFrame
that looks like so:

debt num_yrs default dists
651 -0.058795 -0.720668 yes 0.101662
254 -0.010493 -0.720668 yes 0.105948
515 0.057728 -0.854746 no 0.106971
384 0.076899 -0.821226 no 0.120755
418 -0.147929 -0.754187 yes 0.123796
873 0.087356 -0.821226 yes 0.131212
672 -0.061782 -0.955304 no 0.135271

Notice how the rows are ordered in decreasing distance from our
new data point. In the final line of the function, we take the

24.2. THE SCIKIT-LEARN LIBRARY 249

.value_counts() of this DataFrame’s default column. This pro-
duces an intermediate value like:

yes 4
no 3
Name: default, dtype: int64

and when we take .index[0] of that, we get the label with the
highest value count. In this case, it’s “yes,” soooo...let’s not give a
loan to that guy.

Evaluating the hand-coded version

We can measure how well this classifier performs using essentially
the same code we wrote back on p. 212:

num_correct = 0
for i in range(len(test)):

row = test.iloc[i]
p = predict(row['debt'], row['num_yrs'], 3)
if p == row['default']:

num_correct += 1
print("We got {}% correct.".format(

num_correct/len(test)*100))

We got 73.667% correct.

Not all that great, but looking again at Figure 24.1 (p. 246) you can
see why! There’s a huge region in that space where defaulters and
non-defaulters have about the same prominence. For new points
that fall in the midst of that morass, we’re only guessing. In a
region like that, no classifier is going to have much of a chance.

24.2 The scikit-learn library

As I alluded to in the last chapter, there’s a great Python package
called scikit-learn that implements many machine learning algo-
rithms, including kNN (and Naïve Bayes). Let’s see how to make

250 CHAPTER 24. KNN (2 OF 2)

use of it, returning to the Jedi/Sith security camera example. Our
original data set, which we’ll randomly divide into training and test
sets, looked like this:

s = pd.read_csv("security_cam.csv")
train = s.sample(frac=.7)
test = s.drop(train.index)
print(train)

face height demeanor lightsaber type
879 beard tall calm green Jedi
770 beard medium calm blue Jedi
49 clean short calm blue Sith
892 clean short calm red Sith
774 clean medium menacing blue Jedi
..

Recall that the OneHotEncoder’s .fit_transform() method re-
turns a NumPy array:

from sklearn.preprocessing import OneHotEncoder

ohe = OneHotEncoder(sparse=False)
one_hotted_features = ohe.fit_transform(

train.drop(['type'], axis=1))

[[1. 0. 0. 0. 1. 1. 0. 0. 1. 0.]
[1. 0. 1. 0. 0. 1. 0. 1. 0. 0.]
[0. 1. 0. 1. 0. 1. 0. 1. 0. 0.]
[0. 1. 0. 1. 0. 1. 0. 0. 0. 1.]
[0. 1. 1. 0. 0. 0. 1. 1. 0. 0.]

. . .

It’d be good practice to run your eyeballs over those five rows and
compare them with the categorical data, to verify that they line up.
The first row, which says “1 0 0 0 1 1 0 0 1 0,” means: “yes, a

24.2. THE SCIKIT-LEARN LIBRARY 251

beard; no, not clean; not medium or short, but tall; yes calm,
but no, not menacing; and a lightsaber that is not blue, is green,
and is not red.” (Remember, the OneHotEncoder puts the feature
values in alphabetical order.)

Now to actually perform kNN, we create a KNeighborsClassifier
variable, telling it the value of k we want.

from sklearn.neighbors import KNeighborsClassifier

knn = KNeighborsClassifier(n_neighbors=5)

Here, we’re doing 5-NN. In scikit-learn, we “fit” a classifier to
training data by calling the .fit() method. It takes two argu-
ments: the feature columns, and the target column:

knn.fit(one_hotted_features, train.type)

Finally, we call .predict() on the classifier – passing it the features
for our test points – and it gives us back a column of its predictions
for each one.

knn_predictions = knn.predict(
ohe.fit_transform(test.drop(['type'], axis=1)))

Comparing the true answers with the kNN predictions, side-by-side,
lets us see how well we did:

results = pd.DataFrame({'true_answer':test.type,
'prediction':knn_predictions})

print(results)

252 CHAPTER 24. KNN (2 OF 2)

true_answer prediction
1 Sith Sith
4 Jedi Sith
8 Jedi Jedi
13 Jedi Jedi
21 Sith Sith
..

and we can sum up how many times they coincided to get a measure
of accuracy:

(test.type == knn_predictions).sum() / len(test) * 100

85.667

So our 5-NN classifier was correct more than 85% of the time in its
Jedi-vs-Sith calls. (That last line of code uses a convenient shortcut,
by the way: when “test.type == knn_predictions” is evaluated,
it gives an array of Trues and Falses, specifying whether each test
point was classified correctly or incorrectly. Taking the .sum() of
that array treats the Trues as 1’s and the Falses as 0’s, which is a
nice and easy way to simply count the number of Trues.)

scikit-learn for Naïve Bayes

Let’s use scikit-learn for Naïve Bayes too, and then compare the
two.

Naïve Bayes doesn’t treat its features as numerical, so we don’t need
to one-hot encode them. Oddly, though, scikit-learn requires us
to convert them to numbers anyway, and for this it provides the
very misleadingly named OrdinalEncoder:

24.2. THE SCIKIT-LEARN LIBRARY 253

from sklearn.preprocessing import OrdinalEncoder

oe = OrdinalEncoder()
converted_features = oe.fit_transform(

train.drop(['type'], axis=1))

(Don’t confuse this with the OneHotEncoder from the same package;
they have a lot of letters in common!)

I say the name is misleading because the word “ordinal,” as you re-
member from the “Scales of Measure” chapter in the first volume of
this series, implies that there is a meaningful order to the possible
values of a variable: “cool” is closer to “warm” than it is to “hot,”
for instance. But the Naïve Bayes classifier, as we’ve seen, makes
no such interpretation. So “ordinally encoding” our categorical fea-
tures so we can pass them to a CategoricalNB variable which will
(properly) not interpret them on an ordinal scale seems like exactly
the wrong verbiage. But they didn’t ask me.

The result of this is an array of numbers:

face height demeanor lightsaber
879 beard tall calm green
770 beard medium calm blue
49 clean short calm blue
892 clean short calm red
774 clean medium menacing blue
..

[[0. 2. 0. 1.]
[0. 0. 0. 0.]
[1. 1. 0. 0.]
[1. 1. 0. 2.]
[1. 0. 1. 0.]

. . .

You can see that for the lightsaber feature, the OrdinalEncoder
used 0 for blue, 1 for green, and 2 for red (again in alphabetical
order).

254 CHAPTER 24. KNN (2 OF 2)

Similarly to kNN, we create a CategoricalNB variable, .fit(), it
to the training data, and then call its .predict() method:

from sklearn.naive_bayes import CategoricalNB

naive_bayes = CategoricalNB()
naive_bayes.fit(converted_features, train.type)
nb_predictions = naive_bayes.predict(

oe.fit_transform(test.drop(['type'], axis=1)))
(test.type == nb_predictions).sum() / len(test) * 100

81.0

Naïve Bayes was the loser with this training set: only 81% accuracy
as opposed to 5-NN’s 85+%. However, that turns out to be far from
the whole story. The full story will require another chapter.

Chapter 25

Two key ML principles

25.1 “The bias-variance trade-off”

Earlier in the book (p. 94) I made a reference to something called
“the bias-variance trade-off.” This turns out to be one of the most
important general principles in all of ML, and it’s now time to look
at it in detail.

The bias-variance trade-off is a manifestation of the “no free
lunch” principle. Classifiers that possess one advantage inherently
have a counteracting disadvantage. Here are the two key terms:

• bias1 – the degree to which a model is expected to misclassify
items, even those in its own training set, because it just can’t
“bend” enough to catch every data point.

• variance – the degree to which a model will differ based on
the particular training set that is chosen, because it “bends”
too much to try and catch every data point.

1Tip: when thinking about this topic, try to erase your previous definitions
for the word “bias” that you have running around in your brain. They proba-
bly don’t apply. The normal meaning of the word “bias” implies a systematic
propensity to err in a particular direction. Like, “you’re biased towards thinking
people are shorter than they are, because you’re tall.” But in this chapter, bias
just means “being ‘off’ in general, in whatever direction, and probably not the
same direction each time.”

255

256 CHAPTER 25. TWO KEY ML PRINCIPLES

The basic theory is as follows. Suppose you have a very simple
classifier that takes 714 training points from a security camera and
tries to identify a single, smooth, perfectly straight line roughly
separating Jedi from Sith. Maybe our model says “just use the
lightsaber feature by itself, and call ‘Jedi’ or ‘Sith’ based on
whether the test point’s lightsaber value is more typical of the Jedi
Knights or the Sith Lords in the training set.”

This simple classifier can be said to have low variance. Why?
Because if, instead of those particular 714 training points chosen
from the population, I had sampled a different 714 training points,
the classification decisions I would make on new data would be about
the same. To see why this is the case, consider how different the
training sets would have to be in order for me to make any different
decisions. Let’s say the lightsaber colors for my original 714 training
points were:

Jedi Sith
red 17 85
blue 283 28
green 299 2

Clearly, my very simple classifier is going to predict Sith for red-
lightsaber wielders and Jedi for anyone else. Now if I had collected
a different training set, the numbers above would be different, but
they would have to be a lot different to change any of my future
predictions. I’d have to have an additional 68 red Jedi, for in-
stance, or 255 additional blue Sith, or a whopping 297 additional
green Sith. Not likely.

That’s the bright side. On the dark side, by classifying points in
this way, this simple model is going to get a lot of data points
wrong: 17 + 28 + 2 = 47 points incorrect in its own training set, in
fact. This mean it’s a pretty high bias classifier.

It’s a tradeoff. In exchange for being virtually immune to the id-
iosyncrasies in the training sample, we’ve sacrificed some precision.

25.1. “THE BIAS-VARIANCE TRADE-OFF” 257

The other extreme can be seen by visualizing a 1-NN classifier.
When given a new data point, 1-NN will find the single nearest
neighbor to it in the training set, and call Jedi or Sith accordingly.
This is very low bias – heck, we’re guaranteed to get every training
point correct! 2 But it is also very high variance: swap out
the training set for another, and you’ll get many, many different
classifications. Our classifier has essentially memorized a zillion
individual examples, and will regurgitate all that intricate detail
on command. But had we gotten a different random sample, the
“single nearest neighbor” to a test point would have been totally
different, and might result in a different classification.

“Overfitting”

Another very important term to learn here is the word “overfit-
ting.” That’s what our 1-NN classifier is doing. When a model is
overfitting, it means that it is allowing itself to be “too flexible” in
its quest to bend exactly to its training points. It thus gets hyper-
calibrated to a particular training set. Instead of locking on to the
true, general, repeatable patterns of the underlying data-generating
process, it’s locking on to whatever idiosyncrasies were present in
the particular data points it was given. And this will almost always
lead to bad performance on new data.

There are formulas you can use to work out quantitatively what
the estimated bias and variance are for a classifier. But I think
this dichotomy is more important from a conceptual perspective.
The main lesson is: the more your classifier “bends” (i.e., has a
very wiggly and flexible boundary between its ranges of predicted
values) the more precise it potentially is in selectively labeling data
points. However, this also means that a lot of its decisions are
going to hinge on the particular data sample it was trained on,
which means it will probably be overfitting: picking up noise in
addition to signal.

2Think about it: if we go through the training points one by one, and treat
them as new points, the “nearest neighbor” to each one will be itself! (Unless
there are data points with identical feature values but different labels, in which
case whatcha gonna do.)

258 CHAPTER 25. TWO KEY ML PRINCIPLES

kNN vs. Naïve Bayes

Let’s compare how 3-NN and Naïve Bayes perform on these two di-
mensions. Figure 25.3 at the end of the chapter (p. 262) defines two
functions. One runs a Naïve Bayes classifier on a security camera
data set, using a random sample of 70% for training, and returns
the percentage accuract on the test set. The other does the same
for a kNN classifier (its second parameter is the value of k.)

We can then run the following code to test each classifier on 200
different random training sets:

nb_performances = np.empty(200)
for i in range(200):

nb_performances[i] = naive_bayes(s)

knn_performances = np.empty(200)
for i in range(200):

knn_performances[i] = kNN(s, 3)

results = pd.DataFrame({'Naive Bayes':nb_performances,
'3-NN':knn_performances})

results_l = pd.melt(results, [], var_name='classifier',
value_name='accuracy')

facet = sns.FacetGrid(results_l, col='classifier')
facet.map(plt.hist, 'accuracy', bins=20)

The result is shown in Figure 25.1. It is very revealing. First, notice
that on average, the 3-NN classifier beats Naïve Bayes. The mean
accuracies are:

print("NB: mean accuracy {:.2f}%.".format(nb_performances.mean()))
print("3-NN: mean accuracy {:.2f}%.".format(knn_performances.mean()))

NB: mean accuracy 80.47%.
3-NN: mean accuracy 86.81%.

This tells us that 3-NN has lower bias, which is a good thing:
good enough for another 6%-ish prediction accuracy, in fact.

25.1. “THE BIAS-VARIANCE TRADE-OFF” 259

Figure 25.1: The accuracies of Naïve Bayes and 3-NN classifiers,
on 200 different training sets.

The second thing to notice, though, is that the performance of 3-NN
is more variable. Its range is from 70-92, as opposed to Naïve Bayes’
73-85. This means that on some training sets, its performance is
actually lower than the worst of any of the Naïve Bayes runs. The
standard deviation bears this out:

print("NB: std dev {:.2f}.".format(nb_performances.std()))
print("3-NN: std dev {:.2f}.".format(knn_performances.std()))

NB: std dev 2.04.
3-NN: std dev 4.07.

So 3-NN has higher variance, which is a bad thing. If we get
unlucky with our training set, we’re going to have an inaccurate
classifier. As I said, there’s no free lunch.

It’s tempting to think that high variance isn’t as bad as high bias.
After all, even though we might get unlucky, shouldn’t we still
choose the option with the higher mean?

But the problem is that in real life, our training set and our new
data are almost never measured at the same time, and in exactly
the same circumstances. We collected data at some point in the

260 CHAPTER 25. TWO KEY ML PRINCIPLES

past, train our classifier on it in the present, and will run it to
classify new data in the future. If the patterns in the data fluctuate
at all between past and future (as they invariably do), then a high-
variance classifier will “lock on” to those (obsolete) patterns in the
past and try to apply them to the future data. A low-variance
classifier won’t make that mistake, since it’s not as ambitious: it’s
settling for less precise, but more generally applicable trends.

Varying k

Restricting our focus for the moment to just kNN classifiers, the
question arises as to the optimal value of k. It may or may not
surprise you to learn that there’s no easy answer to this, and that
it varies widely by data set and in fact even by the training set
chosen.

Here’s some code to try all (odd) values of k between 1 and 29.
For each value, it runs ten different trials and averages their perfor-
mance, so that we can smooth out the differences from particularly
lucky or unlucky training sets:

ks = np.array([])
performances = np.array([])

for k in range(1,30,2):
for trial in range(10):

ks = np.append(ks, k)
performances = np.append(performances, kNN(s, k))

results = pd.DataFrame({'k':ks, 'performance':performances})
agg_results = results.groupby('k').performance.mean()
agg_results.plot(kind='line', color='red',ylim=(70,100))

The resulting plot is in Figure 25.2. This Sith/Jedi data set is simple
enough that there aren’t many really noticeable trends. Basically,
as long as k is above 5 or so, we max out the performance. Only
when k = 1 or k = 3 do we see the too-high-variance problem come
into play.

25.1. “THE BIAS-VARIANCE TRADE-OFF” 261

Figure 25.2: The accuracy of a kNN classifier on the Sith/Jedi
data, as we fiddle with the number of nearest neighbors used.

Real-life data sets normally have more variation than this. Often,
there’s an optimal range for k that’s quite a bit better than values
outside that range, and there’s no surefire way to predict what that
range will be until you try it.

In general, though, the big picture is that as k increases, the classi-
fier becomes lower-variance and higher-bias. Can you see why? For
low values of k, we’re picking the one (or three, or five, or ...) train-
ing points that just happen to be nearest to our new data point.
That’s going to be a lot different depending on which points hap-
pen to be in the training set. But if k is, say, 99, then no matter
what training set we get, we’re going to classify most points the
same. Like the simple “just go based on lightsaber color” classifier
described on p. 256, too many different things would have to simul-
taneously change between training sets in order for any different
result.

262 CHAPTER 25. TWO KEY ML PRINCIPLES

Run Naive Bayes, and return the accuracy as a percentage.
def naive_bayes(s):

train = s.sample(frac=.7)
test = s.drop(train.index)

oe = OrdinalEncoder()
converted_features = oe.fit_transform(

train.drop(['type'], axis=1))

naive_bayes = CategoricalNB()
naive_bayes.fit(converted_features, train.type)
nb_predictions = naive_bayes.predict(

oe.fit_transform(test.drop(['type'], axis=1)))
return (nb_predictions==test.type).sum() / len(test) * 100

Run kNN, and return the accuracy as a percentage.
def kNN(s, k):

train = s.sample(frac=.7)
test = s.drop(train.index)

ohe = OneHotEncoder()
one_hotted_features = ohe.fit_transform(

train.drop(['type'], axis=1))

knn = KNeighborsClassifier(n_neighbors=k)
knn.fit(one_hotted_features, train.type)
knn_predictions = knn.predict(

ohe.fit_transform(test.drop(['type'], axis=1)))
return (knn_predictions==test.type).sum() / len(test) * 100

Figure 25.3: Two functions, each of which chooses a random 70%
of a data set’s rows for training, runs a classifier on the remaining
rows, and returns its percent accuracy. Note that every time either
of these functions is called, a different answer will be returned, since
a new training set will be chosen at random.

25.2. “THE CURSE OF DIMENSIONALITY” 263

25.2 “The curse of dimensionality”

A second key ML principle goes by the humorous name “the curse
of dimensionality.” It goes something like this. Suppose that
in addition to height, demeanor, lightsaber, and face, we also
have at our disposal many other features about Jedi & Sith: their
ages, salaries, home planets, personality profiles, number of traffic
tickets, etc. This is good news, right? It gives us more and more
data to sift through statistically and discover potential correlations
with, right? What’s not to like?

Yes, but there’s a catch. It turns out that as we increase the number
of features more and more (or, put another way, as we increase the
“dimensionality” of the problem from our original four dimensions
to 5, 6, 7, ..., and up into the hundreds) we have a data spar-
sity problem. This means there aren’t enough training points to
adequately cover all of this ground.

In terms of kNN classifiers, you can think of it this way: effectively,
all the points become far apart. We want to find the 3 (or 15, or
77) “nearest neighbors,” but when we have so many features (many
of which will turn out to be irrelevant for the problem), we find
that any two data points will differ on a large number of them.
Essentially, our noise swamps our signal.

When we have tons of features, we need an enormous number of
training samples in order to guarantee that we have several samples
with each combination of values (or their ranges). In our original
problem, we didn’t need too much data to ensure that we’d have at
least a few tall, green-lightsabered, menacing individuals with a
clean face. But how many training points will we need before we
have several tall, green-lightsabered, menacing, 38-year-old, ex-
troverted, abstract-thinking individuals from Tatooine with 4 traffic
tickets and a beard who earn 6,000 Galactic credits annually? An-
swer: a lot. And if we don’t have that many, a kNN classifier trained
on all those features is going to struggle trying to find “people like
this one” in order to make a prediction.

The moral to the story is that we will often need to trim our set
of features, sometimes aggressively, if we have too many. It feels

264 CHAPTER 25. TWO KEY ML PRINCIPLES

wasteful – all this great data on all these people, and we’re throwing
it away! – but it’s the right thing to do. This process is called
feature selection, and we’ll cover it more fully in the next chapter.

In the meantime, here are three useful principles for avoiding the
curse:

1. By far the most important thing to recognize is that if you
have additional features that are truly correlated with the tar-
get – and don’t simply repeat information contained in the
features you already have – it’s okay to include them. Adding
more stuff that actually contains useful information for pre-
diction isn’t generally a problem. The problem is when you
add features that are largely noise, since they will overwhelm
the truly significant features if there are too many of them.

2. A common rule of thumb is to make sure you have at least
five training points for each combination of feature values. (In
our Jedi example, with three heights and three lightsaber
values and two values for the other features, this would imply
a training set of at least (3×3×2×2)×5 = 180 training points.)

3. When the size of the training set becomes too small, use para-
metric methods (like Naïve Bayes or linear regression) rather
than instance-based methods (like kNN) because they suffer
less from the curse.

Chapter 26

Feature selection

The “curse of dimensionality” (p. 263) makes us inclined to actually
use fewer features in our classifier than we have at our disposal.
This is for two reasons:

• Many of the available features are likely to be “noisy,” meaning
they are only loosely correlated with the target feature, if at
all. Including noisy features will make it more difficult for any
classifier to separate the wheat from the chaff: the features
which truly are predictive will get drowned out by those that
merely clutter the picture.

• Even for those features which do contain substantive, reliable
information about the target, it’s not likely that they’re all
independent of each other. If (say) five of our twenty fea-
tures each furnished some unique and meaningful informa-
tion about what the target label is likely to be, that sounds
great...but it’s more likely that some (or even all) of these
five are correlated with each other, and hence contain over-
lapping information. We’ll get a better-performing classifier
if we avoid giving it redundant features that contain pesky
noise to boot.

So how do we reduce the feature space? There are essentially three
approaches:

265

266 CHAPTER 26. FEATURE SELECTION

1. Subset selection. We’ll simply choose a subset of the origi-
nal features and use those “as is” (after normalizing them or
one-hot-encoding them, of course).

2. Shrinkage (a.k.a. “regularization”). Especially popular
with linear models, we can essentially “tone down” some of the
less important features by shrinking their coefficients towards
zero.

3. Transforming the feature space. In this case, we actually
don’t use the original features at all; instead, we form a set of
new features out of parts of the original features. This may
sound weird – especially since our new features don’t have any
obvious “meaning”; they’re just combinations of some of the
original ones – but it can be very powerful and informationally
efficient.

I’ll say much more about the first of these, since the latter two
require some advanced math.

26.1 Subset selection

Let’s say we have four features in our original data set (call them
F0, F1, F2,andF3, to stick with Python’s numbering convention.)
As stated above, we may not want to actually use all four. So
which ones could we use?

It turns out we have 24 (which is 16) choices of different feature
sets to use. They are:

• all four of them
• just F0, F1 and F2

• just F0, F1 and F3

• just F0 and F1

• just F0, F2 and F3

• just F0 and F2

• just F0 and F3

• just F0

• just F1, F2 and F3

26.1. SUBSET SELECTION 267

• just F1 and F3

• just F1 and F2

• just F1

• just F2 and F3

• just F2

• just F3

• none of them (just use the prior)

The way we get the number “24” is to reason as follows: “each
feature can either be included, or excluded, in any feature set we
choose. So for each of the four features, there are two independent
choices (either take it or leave it) which leaves us with 2 × 2 × 2 × 2
different possible sets of features.”

The one using all of the features is most likely to overfit, and the
one using none of them is most likely to underfit. Often the best-
fitting classifier (on new data! not the original training data) will
be one of the intermediate ones.

So...how do we find that best-fitting classifier then?

Consider all subsets

The obvious solution is to say “we’ve identified all possible subsets
of features, let’s try ’em!” And indeed we can do this if the number
of features is modest. Train a classifier (whether Naïve Bayes, kNN,
or anything else) using only the features in a given subset, compute
the error rate, and then choose the subset with the lowest error
rate.

Figure 26.1 (p. 269) contains some code that does just that (for
Naïve Bayes)1 The security_cam2.csv file we’re using here is the
one from Chapter 20, with both categorical and numerical features
in it.

The output I got when I ran this was:

1Notes: the is_numeric_dtype() function distinguishes between numeric
and categorical variables, so we can normalize one and one-hot the other. Also,
on some versions of Pandas, you may have to call “.reshape(-1,1)” on the value
of “df[feature].values” in the else branch of the prepare_this_puppy()
method.

268 CHAPTER 26. FEATURE SELECTION

beard,height,lightsaber: 93.87
beard,demeanor,height,lightsaber: 93.40
beard,demeanor,lightsaber: 93.20
beard,lightsaber: 90.00
demeanor,height,lightsaber: 90.00
height,lightsaber: 90.00
demeanor,lightsaber: 90.00
lightsaber: 90.00
beard,demeanor,height: 85.80
beard,height: 85.60

By a hair, the feature set that excludes demeanor but includes ev-
erything else did the best, with 93.87% accuracy. Right behind it
was the full feature set. (If we ran this multiple times, with different
training set choices, our results would vary somewhat.) This isn’t
too surprising, since in this artificial data set, all of the features
were pretty indicative of Jediness/Sithness, and they all were fairly
independent of each other.

Sadly...

Now here’s the deal. Although we might think we could declare
victory with this “consider all the possible subsets and choose the
best” technique, it turns out that except in very small cases, it’s
absolutely impossible. Consider: what if instead of four features,
we had forty? (Certainly not a large number of features by any
means.) We would have had:

240 = 1,099,511,627,776

or over a trillion different possible sets of features. Even if we
could train a thousand different classifiers on our training data every
second, here’s how long it would take:

1,099,511,627,776 ×
1 second

1000 classifiers
×

1 minute
60 seconds

×
1 hour

60 minutes
×

1 day
24 hours

×
1 year

365 days

= 34.9 years !

26.1. SUBSET SELECTION 269

from sklearn.preprocessing import OneHotEncoder
from sklearn.naive_bayes import CategoricalNB
from pandas.api.types import is_numeric_dtype

w = pd.read_csv("security_cam2.csv")
train = w.sample(frac=.7)
test = w.drop(train.index)

Given a DataFrame and a set of column headings to include, return a
NumPy matrix with all these features prepared and concatenated.
"Prepared" means: (1) for categorical variables, one-hot them, and
(2) for numeric variables, compute their Z-scores.
def prepare_this_puppy(df, include):

ohe = OneHotEncoder(sparse=False)
prepared_features = []
for feature in include:

if is_numeric_dtype(df[feature].dtype):
thing = df[feature]-df[feature].mean()/df[feature].std()
prepared_features.append(np.array([thing.values]).transpose())

else:
prepared_features.append(ohe.fit_transform(

df[feature].values.reshape(-1,1)))
return np.concatenate(prepared_features, axis=1)

feature_sets = ['lightsaber,face,height,demeanor',
'lightsaber,face,height',
'lightsaber,face,demeanor',
'lightsaber,face',
'lightsaber,height,demeanor',
'lightsaber,height',
'lightsaber,demeanor',
'lightsaber',
'face,height,demeanor',
'face,height',
'face,demeanor',
'face',
'height,demeanor',
'height',
'demeanor']

scores = pd.Series()

for feature_set in feature_sets:
train_features = prepare_this_puppy(train,feature_set.split(","))
test_features = prepare_this_puppy(test,feature_set.split(","))
naive_bayes = CategoricalNB()
naive_bayes.fit(train_features,train.type.values)
nb_predictions = naive_bayes.predict(test_features)
scores[feature_set] = round(

sum(nb_predictions == test.type)/len(test)*100,2)

scores = scores.sort_values(ascending=False)[:10]
for feature_set, score in scores.items():

print("{}: {:.2f}".format(feature_set,score))

Figure 26.1: Trying all possible feature subsets with Naïve Bayes.

270 CHAPTER 26. FEATURE SELECTION

Ouch. You probably haven’t even been alive for that long. And
obviously the situation gets worse the greater the number of fea-
tures. If we had merely 100 features (also not an unreasonably
large number at all), the universe will have long since died of heat
death by the time we’re finished considering subsets, even if we had
every computer that had ever been made working non-stop on the
problem.

26.2 “Greedy” approaches

So we have to find a way to choose a subset of features without
considering every different possibility. The most common way to
do this is to use a greedy algorithm. (You may remember this
term from the first volume of this series, when we talked about the
“greedy” decision tree induction algorithm.) A greedy algorithm is
a procedure that finishes computing quickly because it repeatedly
takes shortcuts. More precisely, a greedy algorithm always chooses
the immediately best-looking option and goes with it, ignoring the
fact that if it took more time and considered further ahead, it might
have made an ultimately better choice.

(To further illustrate a greedy algorithm: imagine a chess program
that always tried to take a piece if one was open to capture. It fig-
ures, “hey, taking the opponent’s pieces is a good thing, and there’s
a piece sitting there unprotected: why not take it?” Obviously such
an algorithm might play well against a newbie, but against even a
modestly sophisticated player it would suck, since it would be easily
lured into traps. Without being able to consider the longer-term
consequences of what it’s doing, it would make many decisions that
looked good in the near-term but which would soon be revealed as
dumb.)

Forward selection

The most common greedy algorithm used for feature selection is
called forward selection:

26.2. “GREEDY” APPROACHES 271

Forward selection algorithm

1. Train p different one-feature classifiers, where p is the number of
features, and see how each one does. Choose as the winner the
feature that works the best in isolation.

2. Now, for each of the p−1 remaining features, train a classifier with
your original winner plus the new one. Choose as the winner the
“best”2 two-feature classifier.

3. Repeat this for each of the p− 2, p− 3, p− 4, . . . remaining features,
finding the “best” three-feature, four-feature, five-feature, . . . clas-
sifier.

4. Your final answer is the best of the “best.” Out of the “best” one-
feature, two-feature, etc. classifiers, choose the one with the best
performance. This is the feature set you’ll declare the winner.

Two things are important to see here. First, you’re training and
considering a vastly smaller number of classifiers than you are in
the “best subset” approach we did previously. For the forty feature
case, you’ll be considering:

forward selection ∶ 40 + 39 + 38 + ⋅ ⋅ ⋅ + 1 = 780 classifiers

best subset ∶ 240 = 1,099,511,627,776 classifiers

So the time it will take to do this has gone from 35 years to .78
seconds. Not bad.

The other thing to recognize is that we are not by any means guar-
anteed to get the best possible set of features this way. In fact,
we almost certainly won’t. To see this, you have to realize that the
feature that looks the best of all in isolation might not be one of the
pair of features that works best as a pair. And this phenomenon
continues every iteration of our forward selection loop.

This can seem weird at first: if feature F26 gives us the best one-
feature classifier of all forty, shouldn’t feature F26 plus another one
be the best two-feature classifier? The answer is not necessarily.

2I put “best” in quotes here because it may well not actually be the best
two-feature classifier out of all possible two-feature classifiers, as we’ll see.

272 CHAPTER 26. FEATURE SELECTION

Much of the reason why has to do with the overlap between fea-
tures – recall that they will almost certainly contain redundant
information among them, and so if you knew from the outset that
you wanted a two-feature classifier, you might well choose F4 and
F39 instead of F26, which was a great solo artist but didn’t pair up
as well with anyone else.

Backward selection

As you might have guessed, you can do this entire process “in re-
verse,” which is appropriately called backward selection:

Backward selection algorithm

1. Start by including every feature (instead of none of them).
2. Train p different p−1-feature classifiers, each of which leaves out one

feature. Choose as the winner the one with the best performance.
3. Now, repeatedly leave out another feature, and choose as a winner

the best p − 2-feature, p − 3-feature, p − 4-feature, . . . classifier.
4. Your final answer is the best of the “best.” Out of the “best” p− 1-

feature, p − 2-feature, etc. classifiers, choose the one with the best
performance. This is the feature set you’ll declare the winner.

Backward selection has the same advantages and disadvantages as
forward selection. Unsurprisingly, it will ordinarily not produce
the same “best” feature set that forward selection does (nor that
best-subset does). Often data scientists perform both forward and
backward selection and then spend some time scrutinizing the fea-
ture sets each came up with to decide on their final, best feature
set.

Evaluating classifier “goodness”

By the way, I repeatedly referred to “best performance” in the de-
scription above. What does this mean in practice?

From the bias-variance trade-off, we know that more complex (“wig-
gly”) classifiers will tend to overfit a data set. Hence we can’t blindly

26.3. SHRINKAGE 273

use performance on a training set to choose between a four-feature
classifier and a five-feature classifier, because the five-feature one
will almost certainly win for the wrong reasons. If it has more fea-
tures to work with, it has more flexibility, and hence will surely
“wiggle” closer to the points it trains on. This could be a blessing
but also a curse, depending on whether it’s really picking up signal
or locking on to noise.

There are two different ways of dealing with this problem in order
to “fairly” compare classifiers of different complexities. I think of
them as the math-oriented and the computer-science-oriented ways:

• The “math-oriented” way. If you use the entire data set
to train on, you can still adjust for the complexity factor by
penalizing more complex models in a principled way. The
details are outside the scope of this class, but I’ll throw the
following buzzterms at you so that if you see them you’ll know
what category to file them under: “Mallows’ Cp” , AIC,
BIC, and adjusted R2. All of these are ways of taking a
model’s error rate and adjusting it in light of how complex
that model is, and therefore how likely it is to overfit.

• The “computer-science-oriented” way. Just use a sep-
arate training set and test set, drrr. Any overfitting that a
complex model might do will automatically be penalized since
it will perform poorly on the data it was not trained on.

26.3 Shrinkage

For completeness, I briefly mention two other common methods
of dealing with the too-many-features problem. The first, most
commonly used in linear regression/classification, goes by the gen-
eral term “shrinkage,” and its two most common variants are
called ridge regression and lasso regression. These can both be
thought of as ways of “partially including” features. Each of them
has a parameter you can dial to control how aggressively they will
“shrink” coefficients to zero. This helps when some of your features
are correlated with others, since dialing down their influence will
prevent them from jointly dominating the prediction. The math-

274 CHAPTER 26. FEATURE SELECTION

ematics are subtle, although one point worth mentioning is that
with lasso, feature coefficients can actually be reduced all the way
to zero, which effectively eliminates them and performs a kind of
feature selection as in the previous section. (Ridge regression does
not have this property.)

26.4 Transforming the feature space

Finally, one of the coolest approaches to reducing the feature space
is to transform it into a different set of dimensions. This may
sound heady, and it is: it involves some linear algebra which you
may know or learn someday. But the basic idea is that the raw
features themselves, as given in the data set, may not be the most
useful measurements of the data: perhaps some combinations of the
features can give us more mileage. Instead of height, age, salary, and
work experience, perhaps we can take some mathematical function
of height-and-age, and another mathematical function of salary-
and-work-experience, and work with those two combined features
instead. (Often, the combined features will involve components of
all the original features, not just in pairs as in this example.) The
general term dimensionality reduction is what to look for in this
area, together with specific techniques like principal components
analysis (PCA) and singular value decomposition (SVD).

Chapter 27

Association Analysis

Classification isn’t the only machine learning task. Another one
is called association analysis, in which the goal isn’t to predict
the class of new data items, but rather to determine which features
of a data set have “interesting” relationships. Usually, “interesting”
means “correlated in a way that can be taken advantage of.”

The principles of association analysis are used in fields as diverse as
bioinformatics, recommender systems, and cybersecurity intrusion
detection. Another common application is market basket anal-
ysis, in which it can be employed to detect which sets of products
tend to be bought together. This information is useful, for instance,
to retailers who seek optimal product placement and effective mar-
keting campaigns.

27.1 Market basket analysis

All competitive grocery stores today keep track of their customers’
purchases as they check out. Even if they don’t have a rewards pro-
gram to lure customers into getting a store-specific “VIP card,” they
still know which sets of products were bought together in a single
trip to the store. Each such trip, consisting of multiple products
being purchased, is called a transaction.

This type of association analysis relies on a huge table (DataFrame)
of 1’s and 0’s. Each row is a transaction, and each column is a

275

276 CHAPTER 27. ASSOCIATION ANALYSIS

product the store sells. A “1” in an entry indicates that at least
one of that product was bought in that transaction. (Interestingly,
quantities typically aren’t stored; just binary information about
“did this purchase contain at least one of that item or not?”) Here’s
one such data set:

diet_soda apples beer chips_ahoy diapers cat_food
0 1 0 0 0 0
1 1 0 0 0 1
1 1 1 0 1 0
0 0 1 1 1 0
1 1 0 1 1 0
1 1 1 1 1 1
0 0 0 0 0 1
.

The first customer in this set apparently just ran into the store to
grab a bag of apples, while the second one bought some Diet Coke,
an apple, and a couple bags of cat food, etc.

Now, some terms:

• itemset: An itemset is a group of one or more items. For
instance, “{apples,beer,cat_food,chips_ahoy}” is an itemset,
as is “{diet_soda}”.

• support count: The support count for a given itemset is
the fraction of transactions in the entire data set that con-
tain that itemset. In the sample data above, the support
count for “{diet_soda}” is 4

7 = .571, since four out of the
seven transactions contained diet soda. The support count
for “{apples,chips_ahoy,diapers}” is just 2

7 = .286.

• association rule: An association rule is a statement of a re-
lationship between two itemsets. It looks like this: “{A,B} ⇒
{C},” which means “people who buy A and B tend to also buy
C.” The itemset before the arrow is called the antecedent
and the one after it is called the consequent. Association
rules are general correlations, not hard-and-fast mandates.
Their reliability can be measured with the metrics below:

27.1. MARKET BASKET ANALYSIS 277

– support: An association rule’s “support1” is the frac-
tion of transactions in the data set that contain both its
antecedent and its consequent. It’s a measure of how
widespread and applicable it is. The rule “{diet_soda,
apples} ⇒ {beer}” has a support of just 2

7 = .286 in the
data set above. A rule’s support is always between 0 and
1.

– confidence: An association rule’s “confidence,” on the
other hand, is a measure of its reliability. It’s the fraction
of the times that it could apply where it’s actually correct.
In terms of support, it’s support(whole rule)

support_count(antecedent) The rule
“{diet_soda,apples} ⇒ {beer}” has a support of 2

4 = .5
in the data set above, since out of the four times that
diet soda and apples were purchased together, beer was
also purchased in two of them. A rule’s confidence is
always between 0 and 1.

– lift: Finally, an association rule’s “lift” is a numerical
measure of how much predictive power it has. The key
concept is that we want to know how likely the conse-
quent is to be satisfied when the antecedent is satisfied
relative to how likely the consequent is to be satisfied any-
way. Quantitatively, it’s confidence(whole rule)

support_count(consequent) . A rule’s
lift is always between 1 and ∞. A lift of 1 means it’s es-
sentially useless: knowing the antecedent is true doesn’t
really make the consequent any more likely.

If we crunch all the numbers, we want to look for association rules
with high support, high confidence, and high lift. Which of those
three end up being the greatest priority depends somewhat on the
application. If a rule doesn’t have high support, it doesn’t come
up much, so it may not be very useful. If it doesn’t have high
confidence, then the trend it signifies isn’t super reliable, and we
need to be aware of that. And if it doesn’t have high lift, then its
antecedent doesn’t tell us a whole lot that we didn’t already know.

1Note that the term support properly applies to a rule, whereas the term
support count applies to an itemset. The mlxtend package calls them both
“support,” though.

278 CHAPTER 27. ASSOCIATION ANALYSIS

27.2 Implementation: the mlxtend library

Surprisingly, scikit-learn doesn’t seem to have an association
analysis implementation out of the box. (At least, Stephen couldn’t
find one.) There is one in the open source mlxtend library, though,
by Sebastian Raschka & friends. You may need to run “conda
install mlxtend” at the command line for Spyder to access it.

Let’s take it for a spin. First, we’ll generate a synthetic data set
with a known association. We’ll stock five items for sale in our
pretend store, each of which will have a different prior probability
of being purchased (about 60% of all transactions will have bananas,
80% will have pizza, etc.) However, we’ll ensure that in addition to
2,000 purely random ones, we’ll have a solid thousand transactions
with both bacon and eggs. This should guarantee that “{bacon}
⇒ {eggs}” comes out to be a meaningful association.2 Figure 27.1
(p. 279) gives some code to synthesize such a data set.

Okay, let’s analyze. First, let’s shuffle the DataFrame’s rows so
they’re in a random order (not strictly necessary, but just on prin-
ciple) and then let mlxtend do its work:

transactions = transactions.sample(frac=1)

from mlxtend.frequent_patterns import apriori
from mlxtend.frequent_patterns import association_rules

itemsets = apriori(transactions, min_support=0.1,
use_colnames=True)

(Note that passing frac=1 to the .sample() method says “give me
all the rows, please; but in a shuffled order.)

2“...and {eggs} ⇒ {bacon} too, right?” you ask. Well, not necessarily, or
at least not as strong: since 70% of the random transactions have eggs anyway,
and only 10% of them have bacon, we’re going to get a lot of bacon-less egg-full
transactions, which will dial down the confidence of that association. But let’s
wait and see what mlxtend says.

27.2. IMPLEMENTATION: THE MLXTEND LIBRARY 279

eggs = []
bacon = []
bananas = []
pizza = []
coffee = []

for i in range(2000):
eggs.append(np.random.choice([1,0],p=[.7,.3]))
bacon.append(np.random.choice([1,0],p=[.1,.9]))
bananas.append(np.random.choice([1,0],p=[.6,.4]))
pizza.append(np.random.choice([1,0],p=[.8,.2]))
coffee.append(np.random.choice([1,0],p=[.3,.7]))

for i in range(1000):
eggs.append(1)
bacon.append(1)
bananas.append(np.random.choice([1,0],p=[.6,.4]))
pizza.append(np.random.choice([1,0],p=[.8,.2]))
coffee.append(np.random.choice([1,0],p=[.3,.7]))

transactions = pd.DataFrame({ 'eggs':eggs, 'bacon':bacon,
'bananas':bananas, 'pizza':pizza, 'coffee':coffee})

Figure 27.1: Synthesizing a grocery shopping cart data set.

This code uses the so-called apriori algorithm. It computes the
support count only for those itemsets that have a certain minimum
support level (in this case, min_support=0.1). This is for simple
combinatorics reasons: if you think about it, the number of possible
itemsets is rather large if we have many columns. In fact, if we have
N columns, there are 2N different itemsets!3 The apriori algorithm
is smart about not evaluating them all, because it uses an easy trick:
in order for an itemset to have greater than (say) .1 support count,
all of its subsets must also have at least that much support. This
lets apriori whittle down greatly the number of itemsets it needs to
consider.

3Sample numbers: if we have 100 different items for sale in
our store – certainly not a very large number at all – we’ll have
1,267,650,600,228,229,401,496,703,205,376 different itemsets to consider. This
is far, far more than the number of atoms in the universe.

280 CHAPTER 27. ASSOCIATION ANALYSIS

Let’s print out the ten itemsets with the greatest support count:

itemsets.sort_values('support',ascending=False).head(10)

support itemsets
0.816000 [eggs]
0.801667 [pizza]
0.650667 [eggs, pizza]
0.593333 [bananas]
0.486000 [bananas, eggs]
0.475333 [bananas, pizza]
0.401667 [bacon]
0.387667 [bananas, eggs, pizza]
0.380667 [bacon, eggs]
0.316000 [bacon, pizza]

Not surprisingly, the one-item itemsets feature prominently in the
list, with eggs on the very top since not only did all of our second
batch of 1000 transactions have eggs, but about 70% of the others
did as well.

Now, let’s generate (and compute stats on) all possible association
rules involving those item sets:

rules = association_rules(itemsets)
print(rules.sort_values('confidence',ascending=False).head(10))

antecedents consequents support confidence lift
(bacon, coffee) (eggs) 0.11900 0.95454 1.18626
(bacon, pizza) (eggs) 0.29966 0.94631 1.17603

(bacon) (eggs) 0.38100 0.94619 1.17588
(bacon, bananas) (eggs) 0.22500 0.94537 1.17486

(bacon, bananas, pizza) (eggs) 0.17566 0.94275 1.17160
(bacon, coffee) (pizza) 0.10133 0.81283 1.02760

(coffee) (pizza) 0.24933 0.80777 1.02120
(eggs, coffee) (pizza) 0.20000 0.80645 1.01953

(pizza) (eggs) 0.63633 0.80446 0.99975
(coffee) (eggs) 0.24800 0.80345 0.99849

27.3. APPLYING THE KNOWLEDGE 281

As expected, “{bacon} ⇒ {eggs}” has a very high confidence (and
support, and lift), as do rules of the form “{bacon + various other
stuff} ⇒ {eggs}.” Even in this synthetic case, however, the lift
values aren’t all that high numerically, so don’t expect them to be.

27.3 Applying the knowledge

This is the point where the ML ends and the domain application
begins. What should a store do if armed with these statistics? In
this case, we’ve learned that {bacon} ⇒ {eggs} is a good bet. So
we might ask ourselves: what product(s) that we’re currently not
selling very frequently (at least to bacon & egg lovers) would we like
to sell more of? That choice of product will have lots to do with
inventory levels, the amount of markup we have on the product
(i.e., how much profit we make on it), and so forth.

Let’s say we’ve identified a target product to market to these bacon
& egg lovers: a new brand of bagels that’s targeted specifically to
big breakfast eaters. It might make sense to position this item in
our store somewhere between the aisles that bacon and eggs are sold
on, so that every person buying both bacon and eggs will have to
walk past it. This is just one simple example, but profit margins in
grocery stores are so small that the difference between booming and
going out of business can rely precisely on many micro-decisions like
this, each inspired by a micro-insight from the data.

Chapter 28

“Special” data types

I’ll end this book by alluding to a number of “special” types of data
that require somewhat different techniques to analyze that what
we’ve learned so far.

One example is time series data, where observations are made at
regular, fixed points in time and one might be interested in iden-
tifying overall trends (“stays at our hotel are going up!”), seasonal
contributions within those trends (“summers have more customers
in general than winters do”), and noise components that may ob-
scure both effects (“we simply had a bad year last year.”) A whole
body of literature has arisen to treat time series with specialized
techniques.

Another example is free-text data (a.k.a. free-form text, a.k.a.
natural language data) where the “data” is comprised of actual
written sentences in a language like English. This very unstructured
stream can be analyzed using a bevy of specialized techniques, from
simple word counts to sequences of words (“n-grams”) to full parsing
of sentences. Often, techniques like stemming algorithms are used
to recognize that words like “jump,” “jumped,” and “jumping” all
represent the same basic concept. As with time series, the methods
for working with natural language are well studied, numerous, and
form an entire subfield on their own.

Yet another example is geographic data (a.k.a. geospatial data,
a.k.a. geodata) used to represent points or areas on Earth. Lon-

283

284 CHAPTER 28. “SPECIAL” DATA TYPES

gitude and latitude, along with a set of transformational functions,
can be used to annotate data about events and perform computa-
tions to learn from them.

All of these topics (and others) each deserve their own course(s),
and can only be hinted at here.

28.1 Graph-based data

One other special data type which we’ll spend some time on in this
concluding chapter is graph-based (or network-based) data. It
is rapidly becoming one of the most important types of data in the
world, especially in view of the rise of our highly interconnected
world (socially, culturally, economically, etc.) This type of data also
a relatively “new kid on the block,” which means that humankind
is just now starting to get a handle on how to analyze it. It’s an
exciting area to learn about because there’s so much (even relatively
basic stuff) that’s unknown and waiting to be discovered.

I’m using the word “graph” in a specialized sense here. It has
nothing to do with the x-y plot that word usually invokes in one’s
mind. It is instead a special kind of data structure, or paradigm for
organizing data. Rather than rows in a table, a graph, or network,
consists of vertices (singular: vertex) connected by edges:

28.1. GRAPH-BASED DATA 285

The circles are the vertices (also sometimes called nodes) and the
lines are the edges (sometimes called links or arcs). This basic
structure can be used to describe innumerable kinds of things:

• People and the social ties between them.
• Computers on a network and the connections that join them.
• International banks and the transactions they’ve performed

with one another.
• Physical locations and the routes/roads that connect them.
• The pages on a particular website, and which ones link to

which others.
• Scholarly research papers and the citations they make of one

another.
• Etc.

Part of what makes graph-based data so important and powerful
is this plethora of different applications. Aristotle, in fact, thought
that this vertex-and-edge thing was so universal that essentially all
the information we might want to conceive could be reduced to,
and represent with, this structure.

Graph terms

A whole specialized vocabulary has sprung up for talking about
graphs and their properties. Here are just a few common terms and
their meanings:

• order and size – Colloquially, researchers sometimes refer
to the number of vertices in a graph as its order, and the
number of its edges as its size. (The ratio of these quantities
becomes a subject of interest as well.)

• to traverse – We use the verb “traverse” to mean “follow a
link from one node to another.” This often comes up in the
context of searching for data in the graph, or finding a path
through the graph with certain features.

• directed/undirected – In the graph above, vertices are con-
nected by simple lines. This is called an undirected graph,
and means that there is no intrinsic directionality to the edges:

286 CHAPTER 28. “SPECIAL” DATA TYPES

a pair of vertices simply either is, or is not, joined by an edge.
Sometimes, we care about which “way” the edge goes – for
instance, if we represented a family tree, and the edges indi-
cated parent/child relationships. Saying “Sam is the daughter
of Betty Lou” is very different than saying “Betty Lou is the
daughter of Sam.” For this kind of graph, we will add arrow-
heads to the edges to show this. We typically say that one
can only traverse directed links in the forwards direction (i.e.,
in the direction of the arrow).

• a simple graph vs. a multigraph – With most graphs,
there is at most one edge between any two pairs of vertices.
(Either the locations have a road between them or not, ei-
ther the two people are friends or they’re not, etc.) In some
cases, though, we may allow multiple edges per vertex pair.
Perhaps in our application we need to know how many roads
connect two locations, or how many communications were
sent from person A to person B. Graphs that allow this are
called multigraphs. Multigraphs are also typically allowed
to have self-loops (an edge from a vertex to itself) which is
not allowed in a simple graph.

• attributes – Both vertices and edges can be annotated with
special pieces of information called attributes. If vertices
represent people, perhaps we want to attach age or gender
information to each one. If edges represent communications
between companies, maybe we want to attach a date to each
edge indicating when that communication took place. We
can depict attributes on the visual display (or not) through
a variety of means: text annotations, color/shape/size of the
vertex, the thickness of the line, and so on.

• weighted graphs – One particularly common type of edge
attribute is a number called the weight of the edge. This
is often depicted visually as the number positioned closely to
the middle of the edge itself. Typically this weight represents
some sort of “cost” of “using” that edge – for instance, the
distance (in feet) of the network cable between the two com-
puters, or the travel time (in minutes) of using the route from

28.1. GRAPH-BASED DATA 287

one city to the other.

• the degree (of a vertex) – A vertex’s “degree” is simply
the number of connections it has. In the diagram above, the
bottom-most node has degree 1, the one on the far right has
degree 0, and the one at far left has degree 2. For directed
graphs, this notion expands to that of “in-degree” and “out-
degree,” which give the number of incoming arrows and out-
going arrows, respectively.

• the degree sequence (of a graph) – If we take a census of
the degrees of all the vertices in a graph, and list them in
descending order, we get the degree sequence of the entire
graph: The degree sequence of the red graph on p. 284, as
you can tediously verify, is:

6, 5, 4, 4, 4, 3, 3, 3, 3, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 0

• the degree distribution (of a graph) – A graph’s “degree
distribution” can be thought of as a histogram of its degree
sequence: how many nodes are there of degree 0? Of degree
5? Of degree 10? Etc. The degree distro can tell us a lot
about the overall properties and structure of a large graph.
Here’s the one for our example:

288 CHAPTER 28. “SPECIAL” DATA TYPES

• dyads, triangles, and cliques – The word dyad is essen-
tially just a synonym for edge. It means, “any pair of nodes
that are completely connected together,” where “completely
connected” means “have an edge between them.” This term
may seem unnecessary until you consider the related terms
triangle and clique. A triangle (△) is a set of three nodes
which are completely connected to each other – meaning, there
is an edge between each pair of them.1 “Clique” is the more
general word for “some number of nodes, all of which have an
edge to each of the others.” We’ll sometimes preface the word
clique with a number, and say “this graph has a 5-clique” or
“these eighteen vertices form an 18-clique.” Note that a clique
is a very strong binding between the vertices in a group –
they’re totally inbred. Our red example on p. 284, despite
having a fair number of edges, has only a single triangle (can
you find it?) and no cliques of higher order.

• a complete graph – a (or “the”) complete graph of a certain
order is simply one that has every possible edge. A complete
graph of order 4 will be of size 6, since there are 6 possible
different pairs of vertices, and hence 6 possible edges.

• subgraph – a subgraph of a graph is simply one that has
a subset of its vertices and a subset of its edges. A clique,
then, is a complete subgraph of a certain order. Sometimes
we refer to an induced subgraph of a graph: this is where
we take (1) some subset of the original graph’s vertices as the
vertices of the induced subgraph, and then (2) all the edges
in the original graph that connected vertices that we kept. In
this way, specifying only the vertex subset completely defines
what the induced subgraph will be.

• connected – a graph is connected (sometimes called “fully
connected,” which means the same thing) if every vertex is
“reachable” from every other vertex by traversing its edges.
The red example graph on p. 284 is not connected, because

1Don’t confuse the word triangle with triad, by the way, which simply
means “any set of three nodes we might consider, regardless of whether there
are edges between any of them.”

28.1. GRAPH-BASED DATA 289

there’s a pair of vertices at the top of the page that don’t
connect to anything else (and also one lonely guy at the far
right).

Now what does “connected” mean for a directed graph? There
are two notions: “strongly connected” and “weakly con-
nected.” A directed graph is strongly connected only if you
can reach every vertex from every other vertex only be travers-
ing edges in the directions indicated. (No going backwards on
a one-way street.) It’s weakly connected, on the other hand,
merely if it’s connected once we ignore the directionality of
the arrows.

• component – a component (also sometimes confusingly
called a “cluster”) of a graph is a connected subgraph. Very
simple. Every graph will contain one or more components,
each of which is a sort of island which can’t be reached from
the others. The red example on p. 284 has three components.
A common term is “giant component” which is used to de-
scribe situations in which a graph is not fully connected...but
almost is. The big mass of nodes which are all connected to
each other is called the giant component to distinguish it from
the onsie-twosie others that aren’t connected. Our example
graph is of just this type.

• community – in contrast to components, a community is a
much vaguer, more nuanced concept. Unlike component-ness,
which has a razor sharp criterion (all its nodes are reachable
from each other, period) a community is an attempt to de-
fine a group of nodes that are “reasonably” connected to each
other, at least when compared to their connections with those
outside the community.

Imagine a small social network for a high school class in which
most girls were friends with most of the other girls, most boys
were friends with most of the other boys, but there was also
the occasional boy-girl friendship. We could identify the set
of girl nodes, and the set of boy nodes, as “communities” be-
cause they are relatively cohesive internally and relatively de-
coupled from one another. Note that you can’t ever really

290 CHAPTER 28. “SPECIAL” DATA TYPES

definitively declare: “such-and-such a set of nodes is a com-
munity, whereas this set definitely isn’t.” It’s more subtle than
that. There’s degrees of “community-hood” depending on how
dense the connections are within and outside the community.

The subfield of community detection is devoted to algo-
rithms that will identify such groups according to various cri-
teria. It is a critical part of social network analysis.

• cycle – in a graph, a cycle is a group of nodes that are
connected in a ring: you can start at one, traverse edges to
the others, and then return to where you started.

Special kinds of graphs

Certain patterns arise often enough to deserve their own names.
Here are some special kinds of graphs:

• tree – A tree is a directed, connected graph with no cycles. (A
“family tree” for an asexually-reproducing organism is a good
example of this, and often in fact we use the terms parent
and children to refer to the node that points to a particular
vertex, and the nodes that vertex points to, respectively.)
You’ll remember these from the decision tree chapters in
the first volume of this series: a decision tree is in fact a tree.

A tree has the interesting property that exactly one of its
nodes will have no parent (we call it the “root” of the tree)
and that there is exactly one traversable path from the root
to any other node in the graph.

Trees are used to represent a myriad of recursive hierarchical
structures, such as organizational charts (The President su-
pervises the VPs, each VP supervises Directors, each Direc-
tor supervises Managers...), building assemblies (the engine
is composed of a piston assembly, a crankshaft, and a cylin-
der head, which are each composed of...), information storage
(the C:\ drive contains My Documents, My Computer, and My
Pictures; My Documents contains DATA 101, DATA 219 and
love letters,...) and countless more.

28.1. GRAPH-BASED DATA 291

• DAG – Certain kinds of directed graphs, even if they’re not
trees, must inherently be cycle-free to even make sense. For
instance, the graph of CPSC course prerequisites at http://
ianfinlayson.net/misc/cpsc.png (see below) must be cycle
free because the edges indicate required prerequisites, and if
there were a cycle in there...no one could ever graduate! These
kinds of graphs are called DAGs (“directed, acyclic graphs”)
and are often used for managing workflows in projects.

• regular graph – A graph is d-regular if all of its nodes have
degree d. The graph below, for instance, is 3-regular (check
it out!)

http://ianfinlayson.net/misc/cpsc.png
http://ianfinlayson.net/misc/cpsc.png

292 CHAPTER 28. “SPECIAL” DATA TYPES

• bipartite graph – A graph is bipartite if its vertices can
be split into two groups, and every edge only joins a vertex
from one group with a vertex from the other. In a two-gender,
completely heterosexual society, the graph of dating relation-
ships would be bipartite. This kind of graph also comes up
a lot in recommender systems: we have two types of ver-
tices: users, and (say) books. An edge between a user and
a book means that the user has purchased the book. (This
is clearly bipartite, because users never purchase each other,
and neither do books.)

Bipartite graphs can be drawn with two rows of vertices, one
of each type. All the edges run across the middle.

Representations

When we use a graph package like igraph, by Gábor Csárdi, we
can ignore details about how the graph we’re working with is rep-
resented under the hood. (Hint: it’s not a bunch of circles and
lines.) However, there will be times when we need to retrieve, mod-
ify, or manipulate one or more of these representations, so let’s learn
what they are.

Edge list

To a data scientist, perhaps the most straightforward way to rep-
resent a graph is via an edge list, which is very much like a CSV
file or DataFrame. Each line gives two vertex names or IDs, which
are connected by an edge.

28.1. GRAPH-BASED DATA 293

0

1

2

3

4

5

6 7

8

Edge list:

0,2
0,4
1,4
0,5
1,5
0,7
4,7
5,7
6,7
6,8
7,8

For a directed graph, the order of entries within a line would matter,
of course, but for an undirected graph, it doesn’t.

Adjacency matrix

A graph’s adjacency matrix is used in lots of different analysis
techniques. It’s simply a matrix (two-dimensional array) where
every row (and column) corresponds to one vertex. A “1” in an entry
(i, j) means “yes, vertex i and vertex j are connected.” Otherwise,
they’re not.

0

1

2

3

4

5

6 7

8

Adjacency matrix:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 1 0 1 1 0 1 0
0 0 0 0 1 1 0 0 0
1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 1 0
1 1 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1 1
1 0 0 0 1 1 1 0 1
0 0 0 0 0 0 1 1 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Note how for an undirected graph (as we have here) the adjacency
matrix will be symmetric, i.e., a mirror image across the main

294 CHAPTER 28. “SPECIAL” DATA TYPES

(upper-left-to-lower-right) diagonal. Note also that for a high-order
but relatively low-size graph, the adjacency matrix will be huge
(and “sparse”: mostly zeros), much larger than it needs to be.

Adjacency list

A much more compact version of the adjacency matrix is the adja-
cency list, which addresses the sparsity problem. Instead of a big
n × n matrix with mostly zeroes, the adjacency list only gives us,
for each vertex, a list of the other vertices it connects to. It looks
like this:

0

1

2

3

4

5

6 7

8

Adjacency list:

0: [2, 4, 5, 7]
1: [4, 5]
2: [0]
3: []
4: [0, 1, 7]
5: [0, 1, 7]
6: [7, 8]
7: [0, 4, 5, 6, 8]
8: [6, 7]

Descriptive measures

Graphs are extremely expressive, but for that reason they’re hard to
get your head around. If you look at a small graph (order 10, say),
you can stare at it long enough to figure out what the structure is:
who’s connected to whom, where the cliques are, what the compo-
nents are, and so on. But for anything bigger, it’s a maze. Looking
at a two-dimensional representation doesn’t reveal much about the
graph’s inner properties. And it turns out that graphs have many
interesting inner properties that help explain its behavior in the
real world.

We’ve already seen one example of this, with the degree distri-
bution (p. 287). This shows us, generally speaking, how many

28.1. GRAPH-BASED DATA 295

high-connected and low-connected nodes we have, which may im-
ply many things depending on the domain.

Clustering coefficient

Another variable of interest is the clustering coefficient, also
sometimes called the transitivity, of a graph. It measures how
often it’s true that friends-of-a-friend are also friends. If we define
a “chevron” (∧) as two nodes sharing a neighbor (i.e., vertex A is
connected to B, and B is connected to C), the transitivity tells us
what fraction of the time this is a complete triangle (△) (i.e., how
likely it is that A is connected to C). This tells us something about
how tightly clustered the graph is: are people wrapped up in tight-
knit balls, or are their relationships more spread out throughout
the society? (The transitivity of the light-blue graph on p.294 is
.36, whereas the original red one on p.284 was only .2.)

Centrality measures

A question that often arises in graphs is: which nodes are the most
central? By “central” we don’t mean “drawn near the center of the
page,” since that is solely dependent on the layout algorithm, not
the graph structure. What, then, does “central” mean?

One measure is called closeness centrality. For a given node x,
suppose we calculate the sum of the length of the shortest paths
between x and every other node. This is called the “farness,” and
will obviously be higher for nodes that are very far away from at
least some others. It will presumably be the lowest for nodes that
are most centrally located, since they are not hugely far from any
of the other nodes.

If we take the reciprocal of the farness, we get the “closeness,” and
often we normalize this by multiplying by the order of the graph (so
we can compare closeness values between graphs of different sizes.)
The final formula for the closeness centrality of a node x, then, is:

ccloseness(x) =
N

∑v∈V dist(v,x)

296 CHAPTER 28. “SPECIAL” DATA TYPES

where N is the order of the graph, V are the vertices in the graph,
and “dist(a, b)” is the shortest distance2 between two nodes a and
b.

By this measure, the most central vertex in the light-blue graph
is 7 (with a ccloseness of .444), followed by 0, 5, and 4. The “least
central” is node 3, with a measly .111.

A different way to think about centrality is in terms of information
flow. Suppose these vertices are actors in a social network. Which
ones are most crucial to a piece of news finding its way around to
everyone?

One way to measure this is with betweenness centrality. For
a given node x, we ask, “of all the pairs of vertices a and b, how
often is x on the shortest path from a to b?” If information is to
travel from a to b, it’s probably most likely (though not certain)
that it will travel along the shortest path between those two nodes.
So if x is on a lot of such paths, it means it will be a common
conduit of information exchange between others. We define this
mathematically as follows:

cbetweenness(x) = ∑
a,b ∈ V

σ(a, b ∣ x)

σ(a, b)

where the notation “σ(a, b)” means “the number of shortest paths
from a to b” (there could be more than one of these, in case of a tie),
and where the notation “σ(a, b ∣ x)” means “the number of shortest
paths from a to b which pass through x.”3 The larger this number
is, the greater the chance that x will participate in an exchange of
information between any two nodes.

Perhaps not surprisingly, for the light-blue case the same nodes are
central by both these measures. Node 7 has a (normalized; see
footnote) betweenness centrality of .184, followed by nodes 0, 5,
and 4. One difference is between nodes 1 and 8: ccloseness(8) is

2Also sometimes called the “geodesic distance” just to be confusing.
3Sometimes, we normalize this by dividing by (N − 1)(N − 2), to get it to

be a number between 0 and 1 like the closeness centrality is.

28.2. CONCLUSION 297

higher than ccloseness(1) (.348 > .333), but cbetweenness(1) is higher
than cbetweenness(8) (.333 > 0). This is because although 8 is a bit
closer to the heart of the action, he’s not on anyone’s shortest path
to anyone else. (There’s nobody better than node 1, meanwhile,
for getting info from 4 to 5.) Therefore, in terms of information
passing purposes, he’s kind of useless.

Finally, for those who have linear algebra in their arsenal, there
are various ways of using eigenvectors of the adjacency matrix to
measure centrality. One of these algorithms is called PageRank,
which you may be familiar with since it made Google famous and
the number one search engine in the world. The idea is that the
more central your neighbors are, the more central you’re likely to
be. (In terms of playground drama: a popular person is not so
much one with a lot of friends, but rather one with a lot of popular
friends.)

The math involved is beyond the scope of this course, but if you’ve
had some matrix algebra it’s not too hard, and of course igraph
can do the heavy lifting for us.

28.2 Conclusion

This has been nothing but a whirlwind tour to give you a taste
of what graphs are and why they’re important. As I mentioned,
they’re quite possibly the most important type of data in our new
ultra-networked century, and currently they’re not very well under-
stood. They deserve an entire course (or two!) in their own right,
and I hope to teach one someday!

298 CHAPTER 28. “SPECIAL” DATA TYPES

Index

Ω (omega), 174
χ2 test, 14, 52, 191

(overbar), 174
∣ (pipe) (conditional probabil-

ity), 174
∧ (chevron), 295
() (bananas), 59
* (splat) (SQL), 142, 143
, (comma) (joint probability),

174
<> (wakkas), 148
[] (boxies), 20, 55, 66, 69, 77,

220, 243
{} (curlies), 55, 67, 77

<a> (HTML tag), 149
absolute independence (prob-

ability), 182
absolute vs. relative changes,

132
adjacency list, 294
adjacency matrix, 293, 297
adjectives, 155
adjectives_df, 156, 158
adjusted R2, 273
AIC (Akaike Information Cri-

terion), 273

allAboutStephen.html, 152,
153

alpha (for transparency), 22
amoeba, 290
Anaconda, 3
antecedent, 276
API, 223
append() (NumPy), 88, 155
apple, 67
apriori algorithm, 278
arc (graph), 285
Aristotle, 285
array() (NumPy), 155, 168
asexually-reproducing organism,

290
Asian countries, 187
association, 43, 183, 278
association analysis, 275
association rule, 276
associative array, 63
.astype() method, 112, 125,

245
attribute

of a graph edge or vertex,
286

of an HTML element, 149,
166, 168

299

300 INDEX

.attrs (BeautifulSoup), 168,
171

authentication, 228
The Avengers, 98
axis argument, 114

 (HTML tag), 149, 167
background knowledge, 30
backward selection, 272
bacon, 279, 281
bagel, 281
bald, 174
banana (fruit), 67, 279
bananas (parentheses), 59
bandwidth, 31, 32
barbecue, 185
baseball, 241
baseline, 200
Batman, 65
Bayes’ Rule (probability), 182,

201
Bayes, Thomas, 182
Bayesian reasoning, 177
BeautifulSoup, 162
“bell-curvy”, 31, 36, 215
best-fit line, 89
betweenness centrality, 296
bias-variance trade-off, 94, 255,

272
BIC (Bayesian Information Cri-

terion), 273
bing cherry, 67
bipartite graph, 292
bird’s-eye view, 19
bivariate, 7
blonds/blondes, 174
<body> (HTML tag), 148
books, 8, 20

books_num, 20
bottom-up navigation, 163
box plot, 17

notched, 18
boxies (square brackets), 20,

55, 66, 69, 77, 220
boys and girls, 289
brunettes, 174
bs4 (BeautifulSoup library), 162
Bullock, Sandra, 98
bw_method (for gaussian_kde()),

32

C:\ drive, 290
cancer, 185
Carl’s ice cream, 180
Cassandra, 140
categorical random value, 41,

51
CategoricalNB, 253, 268
causal diagram, 185
causal relationship, 185
celebrities, 131
centrality measure, 295
CHEM 211, 82
cherry, 67
chevron (∧), 295
Chewbacca, 226
chi2_contingency() (SciPy),

15
child (tree), 290
chocolate, 180
choice() (NumPy), 41, 51
chopsticks, 187
class (HTML/CSS attribute),

167
class (ML classifiers), 199
class size, 84

INDEX 301

class_ (BeautifulSoup), 170
classifier, 199, 235
client, 224
.clip() method (NumPy), 45,

50
clique, 287, 288
closeness centrality, 295
cluster (of a graph), 289
clustering coefficient, 295
Codd, Ted, 140
coefficients (of a polynomial),

90
coffee, 279
collectively exhaustive, 175, 180
college degree, 176
color scheme, 15
.combine() method (datetime),

120
community (graph), 289
community detection, 290
component (of a graph), 289
“conda install” command, 230,

278
conditional independence, 184,

190
conditional probability, 176, 178,

179, 188, 190, 201, 205
“conditioning on”, 176, 188, 193,

196
confidence, 277
confounding factor, 184, 188
connect() (SQLite), 141
connected (graph), 288
consequent, 276
console, 4
.content (requests package),

226
.contents (BeautifulSoup), 163

contingency table, 8
contradiction, 107
controlled experiment, 185
correlation coefficient, 19, 43,

44
COUNT() (SQL), 143, 144
courses (JSON file), 73, 77
crankshaft, 290
.crosstab() (Pandas), 11
crow-flies distance, 237
Csárdi, Gábor, 292
CSS, 151, 172
CSV file, 75, 97, 107, 122, 148,

223, 292
curlies (curly braces), 55, 67,

77
“the curse of dimensionality”,

263, 265
cycle, 290
cylinder head, 290

DAG (directed, acyclic graph),
290

Darth Vader, 104
DATA 219, 77, 82
data fusion, 97
data sparsity, 263
data-generating process (DGP),

28, 257
database, 139, 223
DataFrame (Pandas), 55, 97
.date() method (datetime), 121
date type (datetime), 118
datetime package, 117
datetime type (datetime), 120
.db file, 141
DBMS, 139
decision tree, 270, 290

302 INDEX

.decode() (requests package),
226

degree (of a graph vertex), 287
degree (of a polynomial), 90
degree distribution, 287, 294
delimiter, 156
denominator, 203
density, 31
depression, 186
DESC (“descending”) (SQL), 144
DiCaprio, Leonardo, 98
dictionary, 55, 65, 77, 166, 168,

171, 206, 227
dimensionality reduction, 274
directed graph, 285, 289, 293
directory (folder), 5, 152
dist(), 247
distance measure, 237
DISTINCT (SQL), 144
distribution, 31, 36, 49, 173
.div() (NumPy), 13, 14
“double boxies”, 20, 114, 243
Downey Jr., Robert, 98
.drop() (Pandas), 114
.drop_duplicates() (Pandas),

114, 209
dtype, 124, 168, 219, 268
Duck Donuts, 69
DVD, 173
dyad, 287

edge (graph), 284
edge list, 292
egg, 279, 281
eigenvectors, 297
element (HTML), 148, 149, 161
“embedded” statement, 142
endpoint, 225

Euclidean distance, 237, 247
event (probability), 173
evidence, 208
example, labeled vs. unlabeled,

199
Exploratory Data Analysis (EDA),

7
exponential relationship, 134
extension (filename), 3, 141,

152

F -test, 191
FacetGrid() (Seaborn), 23, 258
facets, 23, 258
family tree, 290
“farness”, 295
feature, 199, 201
feature selection, 263, 265
Fielding, Roy, 224
file, 5
file object, 71
.find() (BeautifulSoup), 169,

170
.find_all() (BeautifulSoup),

167, 169, 170, 172
Finlayson, Ian, 290
.fit() method, 251
fit_transform(), 243, 250, 268
Five Guys, 69
flat data, 73, 97
folder, 5, 152
football, 241
foreign key (PK), 98
forward selection, 270
Fredericksburg, 180
free text / free-form text, 283
friend-of-a-friend, 295
“FROM” clause (SQL), 141–143

INDEX 303

“frozen” distribution (SciPy),
217, 218

Gaussian (kernel), 31, 93
Gaussian (normal) distribution,

36, 215, 216
Gaussian Naïve Bayes, 215
gaussian_kde() (SciPy), 32
gender, 292
gender_lang, 11, 14–16
gender_lang_m, 12, 14
geodesic distance, 296
geographic data, 283
GET parameter (HTTP), 230
get() function (requests), 225
.get_text() (BeautifulSoup),

168, 171
“giant component” (graph), 289
Girl on the Train, The, 173
“given” (∣) (conditional prob-

ability), 176
GPA, 46
graph, 284
graph (network), 140
greedy (algorithm), 270
GROUP BY (SQL), 144
.groupby() (Pandas), 10, 144
grouped scatter plot, 23, 246

<h1>, <h2>, ... (HTML tags),
149

Hanks, Tom, 98
hardback edition, 173
Hawkins, Paula, 173
<head> (HTML tag), 148, 165
heat map, 15
heatmap() (Seaborn), 15, 51
heights, 44

heterosexual society, 292
hierarchical data, 73, 148
histogram, 10, 21, 27
“how”, 101, 104
HTML, 147, 226
<html> (HTML tag), 148, 164
html.parser (BeautifulSoup),

162
HTTP, 230
HTTP protocol, 224
Hulk, 65

<i> (HTML tag), 149
ice cream, 180
id (BeautifulSoup), 170
IDE, 3
igraph (package), 292, 297
IMDB, 98
 (HTML tag), 149
import, 15, 72, 94, 117, 217,

225, 243, 278
in, 83, 168
“IN” keyword (SQL), 144
in-degree, 287
Inception, 98
independence (probability), 182,

190, 202
index, 63
induced subgraph, 288
Informix, 145
intercept term, 48
IPython, 4
Iron Man, 65
is_numeric_dtype(), 268
.isin() method (Pandas), 112
issubdtype(), 220
itemset, 276

304 INDEX

Jedi, 201, 205, 215, 249, 256
Johansson, Scarlett, 98
join

inner, 97, 101
JOIN (SQL), 144
left, 101
natural, 101
outer, 101, 104
right, 101, 104

joint distribution (probability),
175

joint probability, 174, 178
JSON, 70, 148, 224
.json file, 71, 77
Jupyter Notebooks, 3

Kashyyyk, 228
kdeplot() (Seaborn), 32
kernel, 31, 93
key, 98
key-value pair, 55, 63, 65, 140,

149, 168, 221
KeyError, 80
KNeighborsClassifier, 251
kNN (k-nearest neighbors), 235,

256

label, 199, 201
labeled example, 199
lacrosse, 241
Lady Gaga, 77
lasso regression, 273
least-squares line, 89
len() function

for dictionaries, 65
for lists, 64, 69

 (HTML tag), 155
lift, 277

“LIMIT” clause (SQL), 143
line, best-fit / least-squares, 89
linear algebra, 49, 274, 297
link (graph), 285
list, 64, 77, 110, 122, 156, 168,

172, 208
comprehension, 165, 220

log-log plot, 130
logarithms, 129
long form, 111, 242
loop, 78
Los Angeles Sparks, 56
love letter, 290

machine learning (ML), 199,
235, 275

Mallows’ Cp, 273
Manhattan distance, 237
“many-to-many” relationship,

102
marginal probability, 175, 178
margins (of a contingency ta-

ble), 11, 175
MariaDB, 140, 145
market basket analysis, 275
matrix, 293
MAX() (SQL), 143
mean, 9, 218
melt() (Pandas), 110, 258
merge, 97, 158
Microsoft SQL Server, 140, 145
MIN() (SQL), 143
min_support, 278
mlxtend (package), 278
MongoDB, 140
mosaic plot, 15
movies, 98
Mr. Blue Question Mark, 236

INDEX 305

multigraph, 286
multivariate, 7
mutually exclusive, 175, 180,

182
MVP card, 275
My Computer, 290
MySQL, 140, 145

n-grams, 283
Naïve Bayes classifier, 200, 235
name collision, 101
NaN (“not a number”), 104, 153
natural join, 101
natural language data, 283
NavigableString (Beautiful-

Soup), 163
NBA, 177
ndarray (NumPy), 63
Neo4j, 140
nested

data structures, 66
function calls, 58
loops, 79, 156

network connection, 152
network-based data, 284
“new kid on the block”, 284
the “no free lunch” principle,

255, 259
node (graph), 285
noise, 46, 89
Nolan, Christopher, 98
normal() (NumPy), 37
normal distribution, 31, 36, 215,

216
normal random value, 37, 218
normalized (data set), 107, 114
normalized (variable), 239, 247
NoSQL database, 140

notched box plot, 18
np.where(), 52, 58, 60, 193,

243, 245
“nudge”, 47
numerator, 202, 203

OAuth, 228
“object” (a.k.a. str) dtype,

85, 123, 155, 220
observational study, 185
omega (Ω), 174
one-hot encoding, 242
“one-to-many” relationship, 102
OneHotEncoder, 243, 250, 268
Oracle, 140, 145
order (of a graph), 285
ORDER BY (SQL), 144
order of magnitude, 130
OrdinalEncoder, 252
out-degree, 287
outcome (probability), 173
overbar (), 174
overfitting, 257, 272

<p> (HTML tag), 166
p-value, 43, 52, 194
PageRank algorithm, 297
Pandas, 121
Pandora’s Box, 107
parametric model, 91, 264
parent (tree), 290
parse_dates argument, 122,

124
PCA (Principal Components

Analysis), 274
.pdf() method, 217
Pearson correlation coefficient,

19, 43, 44

306 INDEX

pearsonr() (SciPy), 44, 46
percent syntax, 233
performance (of a classifier),

199, 210
pinterest, 177
piston assembly, 290
pivot, 116
pizza, 279
plain-ol’ Python, 63
polyfit() (NumPy), 89
polynomial, 89
posterior (probability), 177, 182
PostgreSQL, 140, 145
power-law relationship, 134, 135
pprint() function, 72, 227
pre-allocate, 88
predict(), 205, 207, 218, 221,

247
.prettify() (BeautifulSoup),

162
“pretty printing”, 72, 77, 162,

227
primary key (PK), 98
Princess, 104
print() function, 72
prior (probability), 177, 182,

202, 205, 278
probability, 173
probability density, 31, 215
probability measure, 174
probs, 206
Provost’s office, 84
.py file (Python source code),

3
Pythagorean Theorem, 237, 247

quantiles, 9, 218
query (database), 141

quote_plus() function (urllib),
233

rainier cherry, 67
random number, 35
random value, 35, 41, 51, 173,

218
Raschka, Sebastian, 278
rate limit, 228
rate of increase, 135
“raw” counts, 11
RDBMS, 140, 141
“reachable” vertex (graph), 288
read_csv() (Pandas), 6, 122,

124
read_html() (Pandas), 152
read_sql() (Pandas), 141, 142
recommender system, 292
redheads, 173, 174
Redis, 140
redundancy (of information),

107
regex (regular expression), 172
regular graph, 291
regularization, 266
relational database, 140
relative vs. absolute changes,

132
render (a web page), 147
requests package, 225
requests_oauthlib package,

230
REST API, 224
“RESTful” API, 224
ridge regression, 273
Robin, 65
Rock, The, 77
roles, 98

INDEX 307

root node (of an HTML file),
148, 163

RPC, 224
rule, association, 276

.sample() (Pandas), 211, 278
sample space (probability), 174
SAT, 46
sat_scores, 44, 47
Saving Private Ryan, 98
scatter plot, 19

grouped, 23, 246
logarithmic scale, 131
matrix, 19

scatter_matrix() (Pandas),
20

scatterplot() (Seaborn), 23
scikit-learn (package), 243,

249, 278
screen scraping, 152, 161
Seaborn, 15
Seattle Storm, 56
security camera, 200, 206, 217,

249, 256, 268
security_cam.csv, 200, 211,

249
security_cam2.csv, 268
seed() (NumPy), 36
seed (of a random generator),

35
seismic (color scheme), 16
.select() (BeautifulSoup), 172
SELECT statement (SQL), 141–

143
self-loop, 286
semi-log plot, 130, 133
Series (Pandas), 63, 65
server, 224

shrinkage, 266, 273
Sith, 201, 205, 215, 249, 256
size (of a graph), 285
skeleton (of a causal diagram),

186, 189
Skywalker, Luke, 70
smoking, 186
SOA (Service-Oriented Archi-

tecture), 224
SOAP API, 224
.sort() (NumPy), 89
soup, 162
sparse=False (OneHotEncoder),

243, 250
sparse matrix, 243, 250, 293
sparsity, 263
Spiderman, 65
.split(), 156
sprinkles, 180
spycam, 200, 206, 212, 217,

249, 256, 268
Spyder, 3
SQL, 140, 143
SQLite, 141
.sqlite file, 141
sqlite_master, 141
sqrt() (NumPy), 238
standard deviation, 9, 31, 218
standardization, 239, 247
Star Wars, 226
stateless (protocol), 224
statistical significance, 14, 18
stemming, 283
Stephen, Inc., 132
stitching arrays together, 55,

156
stock prices, 132
.str suffix (Pandas), 113, 125

308 INDEX

straight-line distance, 237
strawberry, 180
strongly connected (graph), 289
.strftime() method (datetime),

127
.strptime() method (datetime),

126
Student, 104
subgraph, 288
subset selection, 265
Superman, 65
support, 276
support count, 276
SVD (Singular Value Decom-

position), 274
SWAPI (Star Wars API), 226
Sybase, 140, 145
symmetric matrix, 293
synthetic data set, 35, 43, 192,

245, 278

t-test, 18, 191
table

aggregate data type, 97
contingency, 8, 11
HTML element, 152
relational database, 140,

141
<table> (HTML tag), 149, 152
tag (HTML), 148, 149, 163,

171
tall, 177
target, 199, 201
taxicab distance, 237
<td> (HTML tag), 149, 167,

168
test data, 199, 211
the easy case, 142, 152, 161

Thor, 65
three-way merge, 106
throwing away the denomina-

tor, 203
“tidy” data, 113, 114
.time() method (datetime), 121
time type (datetime), 120
“time”, 117
time series, 283
timedelta type (datetime), 118
<title> (HTML tag), 148, 165
top-down navigation, 163
<tr> (HTML tag), 149
training data, 199, 200, 205
transaction, 275
transitivity, 295
transparency, 22
traversing (a graph), 285
tree, 148, 270, 290
triad, 287
triangle (△), 287, 295
ttest_ind() (SciPy), 18
type(), 69, 163

<u> (HTML tag), 149
UK, 131
 (HTML tag), 155
undirected graph, 285, 293
unemployed, 176
Unicode, 226
uniform() (NumPy), 39
uniform random value, 39
unique rows (with DISTINCT),

144
univariate, 7, 21
unlabeled example, 199
unnormalized (data set), 107
URL, 152, 162, 224, 227

INDEX 309

urllib package, 233

.value_counts() (Pandas), 8,
10, 42, 248

vanilla, 180
“vectorized” operation, 248
vertex (graph), 284
video games, 187
VIP card, 275
VP, 290

wakkas (angle brackets), 148
wall of text, 72
Washington Mystics, 56
weakly connected (graph), 289
web crawler, 162
web developer tools, 161
Web services, 224
weighted graph, 286
Wendell, 104
Whedon, Joss, 98
where() (NumPy), 52, 58, 60,

193, 243, 245
“WHERE” clause (SQL), 143
white noise, 47
Wickham, Hadley, 113
wide form, 109, 242
“wiggly” classifiers, 257, 272
windfall, 134
“with” syntax (opening files),

71
WNBA, 56
Wonder Woman, 65
worst of all possible worlds, 147,

161

XML, 70, 224

y =mx + b, 48, 91

Yoda, 82

Z-score, 239, 247

	Contents
	Intermission and review
	Navigating the Spyder's web
	EDA: review and extensions
	KDEs and distributions
	Random value generation
	Synthetic data sets
	JSON (1 of 2)
	JSON (2 of 2)
	LOWESS
	Data fusion
	Long, wide, and ``tidy'' data
	Dates and times
	Using logarithms
	Accessing databases
	Screen scraping (1 of 2)
	Screen scraping (2 of 2)
	Probabilistic reasoning
	Causality
	Naïve Bayes (1 of 3)
	Naïve Bayes (2 of 3)
	Naïve Bayes (3 of 3)
	APIs
	kNN (1 of 2)
	kNN (2 of 2)
	Two key ML principles
	Feature selection
	Association Analysis
	``Special'' data types

