
DATA 420 Notes – Jan. 23, 2024

The units trick

“Suppose your car’s gas mileage is 35 mpg. You take a 4-hour trip where
you average about 50 mph. If gas costs $2/gallon, how much is your fuel
cost for this trip?”

Problems like the above turn out to be easy to solve once you know the trick. The trick
is to consider the units of the quantities in addition to the number, and always make
sure that you combine them in ways that make sense.

The rules are simple:

1. If two values have the same unit, you can add or subtract them. Your result will
have the same unit. Example: 6 hotdogs

game
+ 2 hotdogs

game
= 8 hotdogs

game
.

2. If two values have different units, you can’t add or subtract them at all. Example:
5 apples− 3 games

season
= (nonsense).

3. Curiously, no matter what the units are, you can always multiply or divide two
quantities. Your result will have the multiplication or division of the units as its
unit. Example: 3 feet×6 feet = 18 feet2. Example: 30 dollars÷3 pizzas = 10 dollars

pizza
.

Now in the above example problem, we have four relevant quantities:

35 miles

gallon

4 hours

1

50 miles

hour

2 dollars

gallon

We can scratch our head to try to remember and apply formulas. But it turns out
that because of the units, there’s only one meaningful way to combine these quantities
anyway! And that’s:

2 dollars

gallon
× gallon

35 miles
× 50 miles

hour
× 4 hours

1

Notice how we had to flip (take the reciprocal of) one of the quantities to get the units
to “cancel out.”

2 dollars

gallon
× gallon

35 miles
× 50 miles

hour
× 4 hours

1
=

2 · 50 · 4
35

dollars

1

A couple of notes:

• Don’t worry about singular or plural when canceling out units. “Gallons” is the
same thing as “gallon”; that’s just an artifact of inconsistent English syntax.

• When a number has no denominator, it’s effectively in the numerator, with a
denominator of 1. (Like in the “4 hours” example.)

It’s amazing how much mileage (no pun intended!) we’ll get out of this rule this semester.
Note that violating it is always wrong: you will be guaranteed to get a nonsensical
answer as soon as you do.

Rethinking math functions

When I first learned about functions in math, the first (and only) thing I thought of
was something symbolic, like this:

y(x) =
x3

1 + cos x
.

Defining a function this way is called expressing it symbolically , analytically, or “in
closed form”.

In fact, I’ll let you in on a misconception I had for a long time, which greatly hampered
my understanding of math until I had an epiphany one day and defused it. For the
longest time, I thought that all functions had to be symbolic like this. In other words, I
thought that our math teacher was progressively telling us about more and more kinds
of functions — polynomials, exponents, trig functions, logarithms, etc. — and that the
only way to “make” a function was to combine those building blocks the teacher gave
us. Looking back, I probably had that misconception because the only examples the
teacher ever gave us were built this way. In any event, I thought that unless there were
a way to express a function symbolically, it wasn’t “really” a function. In fact, I thought
the definition of a function was a symbolic statement like this.

It’s not true. It’s not even close to true. In fact, “most”∗ functions don’t have any
symbolic form like this.† If you carry this misconception, then you risk being hopelessly

∗This is imprecisely stated — what does “most” mean if there are infinitely many functions that do
have symbolic forms and infinitely many functions that don’t? — but I stick by it. The way I think
of it is as follows. Suppose you picked any old function at random out of a hat; that is, any old set
of pairings from x values to y values. I think you’ll agree that it would truly be remarkable if it just
happened to work out that the x values and the y values were, at every single point on the number
line, related by one of the simple equations we can write down.

†True, there are techniques like the Taylor expansion and the Fourier series that can approximate any

2

trapped inside the world of symbols and symbolic operations, where life is hard. You
have trouble escaping to the world of numbers, where life is easy.

Don’t get me wrong: equations are awesome. When we have an equation, we know
absolutely everything there is to know about the quantities involved. We can instantly
compute to unlimited precision how big y will be for a given x, and vice versa. But
it’s imperative to understand that the above y(x) equation is really just a compact
shorthand for saying “when x is 0, y is 0. When x is 1, y is 0.649. When x is π, y is
∞...” Remember: a function is just an assignment of outputs to inputs: a mapping of
y values to x values. When this mapping happens to follow a simple and predictable
pattern, we can express it as an equation. But if you forget that the equation is just a
stand-in for the mapping of y’s to x’s, you risk losing track of what the equation really
means.

A function is an array

I want you to forget all the symbolic stuff for a minute and think of a function as an
array‡. This may seem weird. After all, an array is just a sequence of values: there’s no
math or other stuff to it. But remember, a function is fundamentally just an assignment
of outputs to inputs: you give it an input, and it gives you an output. So we could say
that the function y is this:

4, 9, -2, 6, 6, 7, 2.54, 19, 37, 5

All this means is that y assigns the output 4 to the input 0, the output 9 to the input 1,
the output -2 to the input 2, etc., and that y doesn’t “exist” for any inputs other than
0 through 9.§

Now I haven’t given a symbolic name to the inputs of y yet. You might expect I would
choose the letter x, to be consistent with what we’ve done so far. But instead, I’m going
to choose the letter i. This is because when we think of a function as an array of values,
we specify which value we want by giving an index to the array. This simply tells us
which of the y values to select. When we’re talking about these indices, we’ll use the
boxie notation (“y[i]”) to designate them. So in the above example, y[0] is 4, y[1] is 9,
y[9] is 5, etc. This, of course, is precisely the syntax that many programming languages,
including Python, use for arrays.

As a second example, we could say that the function z is defined to be:

function by combining infinitely many simple expressions, and that in the limit these infinite sequences
approach what might not have been a closed-form expression to begin with. But that’s beside the point.
I’m talking about concepts here, not approximation techniques, and I maintain that it’s a mistake to
think primarily of a function in terms of symbolic expressions. The symbols’ only purpose are as
aggregate syntactic shortcuts for relations that are, at their root, numeric and individual.

‡In some programming languages, an array is called a “vector.” In Python, we often use a list for
this, although we’ll be using NumPy arrays in this tutorial.

§As you can see, we’re using the Python convention and “start counting at 0.”

3

0, 1, 4, 9, 16, 25, 36, 49

This simply means that z[0] is 0, z[1] is 1, z[2] is 4, etc., and that the only time z makes
sense is when i is in the range 0 through 7.

Incidentally, you may recognize that the z function, unlike the y function, follows a
familiar pattern: z[i] = i2. I implore you: do not be distracted by this. This is just a
coincidence, and whatever you do, don’t get sucked down into that symbolic hellhole.
Just remember that in the vast, vast majority of cases there will be no obvious symbolic
representation for our functions/arrays, and in the rare cases where there is one, we’ll
pretend there isn’t.

Now the index i is always a non-negative integer like 0, 1, 2, · · · . The x value represented
by that value y[i], however, is not necessarily a unitless, non-negative integer. Normally
it represents a value in the real world, like “10.5 seconds” or “50 meters.” These x values
“go” with the i values according to some regular, measured interval. For instance, we
might say that a function s measures the speed of a car at 5 second intervals. In this
case, perhaps s[0] is the speed of the car at some starting time, s[1] is the speed 5
seconds later, s[2] is the speed at 10 seconds after the starting gun, etc. We’ll call that
incremental value “∆x” (pronounced “delta-x”) and always keep it implicitly in mind.

Notation-wise, we’ll use bananas (“y(x)”) when we’re referring to the value of a function
at a “real-world” x point. In the car example, s[0] is the same as s(0), since the first
data point we have for the function (i = 0) corresponds to the starting time for our trip
– say, 9:00am sharp. (x = 9 : 00 : 00). Similarly, s[1] is the same as s(9 : 00 : 05), since
index number 1 corresponds to 5 seconds after 9am. We could make a table:

i x s
0 9:00:00am 0 ft/sec
1 9:00:05am 125 ft/sec
2 9:00:10am 500 ft/sec
3 9:00:15am 1125 ft/sec
4 9:00:20am 2000 ft/sec
...

...
...

I don’t want to belabor the obvious, but it’s important to keep things straight here. Each
value of our function corresponds to both (1) an index, which is simply the number of
the element (0, 1, 2, · · ·) and (2) an actual x value that corresponds to something in
the real world. We could thus refer to our function as either s[i] or s(x), since these are
perfectly equivalent: each i goes with one x, so we could use either one to specify an s
value. Also notice that the i values don’t have any “units” — they’re just plain numbers
— whereas the x values and the function values do (clock time and ft/sec respectively,
in this example.) This will almost always be the case.

4

Numerical calculus

There are basically two halves to calculus: integration (which gives us an “integral”),
and differentiation (which gives us a “derivative.”) Let’s start with integration.

Numerical integration (“integral”)

First, it’s imperative to understand what integration means. It’s so simple it may
surprise you. Integration is simply a running total.

Let’s use the speed example, but we’ll make ∆x equal to 1 hour. Suppose our function
s(x) (or s[i], whichever you prefer) has these values:

30, 75, 75, 75, 70, 70, 70, 55, 30

This function represents my car’s speed (in mph) on a road trip from Denver, Colorado
to Wichita, Kansas, sampled once per hour. For the first hour, I’m driving through town
in Denver to get to I-70, so I’m only going about 30 mph. Then, I get to the highway
and I can go for a few hours at 75 mph. In Kansas (for whatever reason) they lower the
speed limit to 70 mph, and when we get into the Wichita city limits, it’s lowered even
further.

Now suppose I want to know how far I’ve traveled at each point in time. This is
different from speed. In fact, the distance is the accumulation of speed . Think
deeply about that for a second. When I drive for one hour at 30 mph, I get “credit” for
30 miles. After a second hour at 75 mph, I’ve gone a total of 105 mph. A third hour at
the same speed yields 180 mph. Etc. All I’m doing is calculating a running total.

Numerically, I just want to compute another function d[i] (for “d istance”) that represents
the successive running totals of my mileage. We’ll start at:

d[0] = 0

to represent the fact that initially, at the moment I start my road trip, I haven’t gone
anywhere. (This is called our “initial condition.”) Then:

d[1] = 30

because s[0] = 30, and so I’ve gone 30 miles after one hour of driving. Continuing on:

d[2] = 30 + 75 = 105

because s[0] = 30 and s[1] = 75, so I’ve driven one hour at 30 mph and another at 75
mph, giving a total of 105 miles. Next,

d[3] = 30 + 75 + 75 = 180

meaning after three hours I’ve made it 180 miles. At the end of nine hours,

d[9] = 30 + 75 + 75 + 75 + 70 + 70 + 70 + 55 + 30 = 550

5

which is the end of my trip.

Congratulations, you’ve just integrated. d is now the integral of the function s. In a
programming language like Python, some sample code would be:

s = np.array([30,75,75,75,70,70,70,55,30])

d = np.zeros(len(s)+1)

d[0] = 0

for i in range(1,len(d)):

d[i] = d[i-1] + s[i-1]

(The function np.array() in the NumPy library creates an array with a list of specific
values; np.zeros() creates an array with a certain number of all-zero values.)

Look carefully at the body of that loop. We’re just saying: “Make each value of d equal
to the previous value of d plus the corresponding value of s.” So d follows the simple
pattern described above: if s goes 30, 75, 75, 75, 70, · · · , then d goes 0, 30, 105, 180,
255, 325, · · · . Every d value is the accumulation of all the previous s values.

Pesky details

A few pesky things you may have noticed about the code above:

1. There are nine speed values, but ten distance values. This will always be the
case when we integrate. The integrated array needs a starting value (or “initial
condition”; in our case, 0 miles), after which it will add/accumulate each of the
original values. This gives it a length of one more than we originally had. Do not
be alarmed by this.

2. We initialized the d array to be a list of all zeros. You might think, “why not
just make it an empty list, and append the new value to it each time through the
loop?” The answer is two-fold. Conceptually, I like the body of the above loop
better because it makes it clear that “d[i]” is computed in terms of “d[i-1]”.
This is the essence of what a differential equation is, which is mostly what
we’re going to be using this stuff for. Also, operationally, it turns out to be much
more efficient to pre-allocate your entire array of results in memory and then fill in
each value as you go, rather than continually appending which will trigger nasty,
time-consuming resize operations that will grind our code to a halt.

3. Even after initializing the whole d array, we still explicitly set d[0] = 0. This was
just to make clear what the initial condition was, and to draw attention to the
fact that the value of d[0] is not set inside the loop.

4. Note that loop range, because it’s unusual. We start at 1 (not 0) because d[0] is
special – unlike the others, it’s not computed based on any previous value.

6

About ∆x

Now in our example, ∆x was exactly 1 hour. This means we were assuming the car’s
speed was constant over each whole hour. So one hour of driving at 30 mph was exactly
30 miles. Suppose we wanted finer granularity for a more precise answer. What if we
sampled the speed every half hour, instead of every hour? Let’s make a new s[i] array
as follows:

25, 30, 70, 75, 75, 75, 75, 75, 75, 70, 70, 70, 70, 70, 60, 55, 30, 30

Everything’s the same, except that we have 18 values instead of 9, and ∆x is now 1
2
hour.

This means that each interval represents only 30 minutes worth of driving. Therefore,
I have to multiply by 1

2
every time I add to the cumulative sum. In other words, after

half an hour:

d[1] = 25
2
= 12.5

I’ve driven 12.5 miles, and after another half hour:

d[2] = 25
2
+ 30

2
= 27.5

I’m up to 27.5 miles, and after a total of 90 minutes:

d[3] = 25
2
+ 30

2
+ 70

2
= 62.5

I’m up to 62.5 miles, and at the end of the whole trip:

d[18] = 25
2 + 30

2 + 70
2 + 75

2 + 75
2 + 75

2 + 75
2 + 75

2 + 75
2 + 70

2 + 70
2 + 70

2 + 70
2 + 70

2 + 60
2 + 55

2 + 30
2 + 30

2 = 550.

In my program I implement this change by adding a delta x variable of the appropriate
size, and multiplying all the d array contributions by it:

delta_x = .5

s = np.array([25,30,70,75,75,75,75,75,75,70,70,70,70,70,60,55,30,30])

d = np.zeros(len(s)+1)

d[0] = 0

for i in range(1,len(d)):

d[i] = d[i-1] + s[i-1] * delta_x

We could plot our results like this:

plt.plot(d,color="blue")

plt.plot(s,color="green")

plt.show()

Speed is in green (units are in mph) and distance is in blue (units are total miles.) The
x-axis is in units of “half hours” since that’s what our ∆x is. We could of course pretty
up this graph by adding more sensible ranges and descriptions. But the important thing
to do now is simply to observe that the blue line is basically the running total of the

7

green line at each value of x. This is what “integration” means. After the speed (green
line) ramps up and stays constant for a while, the car makes progress towards Wichita
and the distance (blue line) accumulates at a constant pace. When the green line tapers
off towards the end, the blue line keeps increasing (we don’t go backwards!), but not as
fast.

One other interesting observation is that integration is a smoothing process. This means
that jaggy, jarring changes in a function tend to be “smoothed out” a bit in the integrated
version. Look at the green line in the figure: you can easily tell where the Kansas state
line is, and when the speed limit correspondingly drops. But look at the blue line, and
you can barely tell that there’s a change in angle.

The mathematical way to express all this, by the way, is:

di =
i∑

j=0

sj∆x

This just means “the distance at a certain index i is the sum of all the speeds up to
that point, after (of course) multiplying each one by ∆x (to take care of the “half hour”
phenomenon).” That Σ sign just means “sum.” The j is introduced as a sort of “helper
variable” for counting purposes since we need i to stand for the upper limit of the sum
(and the index of the resulting distance array.)

8

You may recognize that this is nearly identical to the way we write an integral:

d(x) =

∫ x

0

s(χ) dχ

the main difference being that we are now integrating over the whole continuous range
of the real-world x values, instead of at discrete i points. For this reason, too, we use
“d” instead of “∆” to mean “really, really small increments.” In our work, we want ∆x
to be small, because that means finer precision, but not too small, because that means
too much memory (and a slow program.) So we’ll never actually do integrals in the
pure mathematical sense. Nevertheless, this is exactly what an integral is: successive
addition to get a cumulative sum.

Numerical differentiation (“derivative”)

Since integrals and derivatives are in some sense “opposites,” and since integrals are
basically glorified adding, you’re probably guessing that derivatives have something to do
with subtracting. Indeed that is the case. If integration is really cumulative summation,
differentiation can be seen as pairwise subtraction.

(If you’ve never studied calculus before, take note of the following strange terminology:
although we “take the integral” by “integrating,” we “take the derivative” by “differen-
tiating.”)

Derivatives tell us how fast a function is changing at every one of its points. We know
that evaluating the function at a particular point tells us the value of the function at that
point. Evaluating the derivative at that same point tells us how volatile that number is:
if we scootched over slightly to the left or right of that point, would the function’s value
be radically different, or only slightly different?

Let’s go back to the car trip example. Previously, we started by knowing the speed at
each point in time, and we integrated to compute the distance at each point. Differenti-
ation is simply the opposite process: if we start with the position, we can compute the
speed.

Suppose we know that the number of miles we have traveled so far at the end of each
hour is:

0, 30, 105, 180, 255, 325, 395, 465, 520, 550

In other words, at the end of our first full hour of driving, we’ve gone 30 miles; after two
hours, 105 miles; after three hours, 180 miles, and so on. These are distances, so we’ll
represent them as the function d[i] for 0 ≤ x ≤ 9.

To compute the speed at each hour, all we have to do is take one point and subtract
the previous point. Consider, for instance, the third hour. At its completion, we have

9

traveled 180 total miles, whereas when it started, we had only gone 105. Obviously,
then, we must have traveled 75 miles during that hour. This gives us a speed of 75 mph,
and so s[2] = 75. What about the last hour? We started it with 520 miles under our
belt, and ended it with 550. So the average speed during that last bit (s[8]) was 30 mph.
If we crank through the data and compute this difference for each of the pairs of values,
we have differentiated the function.

The Python code is again straightforward:

d = np.array([0,30,105,180,255,325,395,465,520,550])

s = np.zeros(len(d)-1)

for i in range(0,len(s)):

s[i] = d[i+1] - d[i]

and yields the same array s of speed values we started with in the previous section: 30,
75, 75, 75, 70, 70, 70, 55, 30. Differentiation is the opposite of integration.¶

Note that again, we have one fewer value in our s array than in our d array. This is
because if we have n data points in an array, there are only n− 1 “differences” we can
take, and so only n− 1 points in the derivative array. If there are four data points, for
example, we can take #3 minus #2, and #2 minus #1, and #1 minus #0, but that’s
it: only three differences.

As before, one simplifying assumption we’ve made in the above algorithm is that the
units of time are exactly 1 (one hour.) This means that going from 30 miles (at the end
of one time step) to 105 miles (at the end of two) means we traveled 75 miles in one
hour, which then corresponds to exactly 75 mph. Very often we have some other unit
than 1, so let’s relax this assumption just as we did before. Suppose our total distance
every half hour was thus:

0, 12.5, 27.5, 62.5, 100, 137.5, 175, 212.5, 250, 287.5, 322.5, 392.5, 427.5, 462.5, 492.5, 520, 535, 550

¶Incidentally, the so-called “Fundamental Theorem Of Calculus” blew my mind when I first heard
it. If you’ve studied it, you’ll remember that the fundamental theorem states that integration is the
inverse of differentiation. But how can “taking the slope of a line” somehow be the exact reverse of
“finding the area under a curve?” Those two geometrical notions seemed so different to me that the
purported relationship between the two appeared nonsensical. Seen as simply adding and subtracting,
however, the relationship is clear. The fact that we got the exact same s array back (above) when we
integrated-then-differentiated isn’t black magic: it’s a simple consequence of the fact that we added,
then subtracted. We added up the numbers to integrate, then subtracted each one back off from the
cumulative total to differentiate.

10

All we need to do is divide by 1
2
after doing the subtraction. The reason is that the

number of miles between each pair of time steps now corresponds to a half -hour of
driving, not a whole one. So we have to multiply this pseudospeed by 2 (or divide by 1

2
,

same diff) to get a real speed in mph. In Python:

delta_x = .5

d = np.array([0,12.5,27.5,62.5,100,137.5,175,212.5,250,287.5,322.5,

357.5,392.5,427.5,462.5,492.5,520,535,550])

s = np.zeros(len(d)-1)

for i in range(0,len(s)):

s[i] = (d[i+1] - d[i]) / delta_x

Note that we multiplied by ∆x when we integrated, but divided by it when we differ-
entiated. This “dividing by ∆x” is apparent in the mathematical version of the above
code:

si =
di+1 − di

∆x

or just

si =
∆d

∆x

and in the corresponding continuous version:

s(x) =
dd

dx

(Yeah, I know “dd” looks weird, but we’re using d for distance so just go with it.)

Another way of thinking about it: just as integration is a process of accumulation,
differentiation is a process of anti-accumulation. By subtracting off d[i] from d[i+1], we
are stripping off any accumulation d has experienced up to that point, and preserving
only the “immediately new” accumulation — the change that the function has recently
experienced.

11

