DATA 420 Notes — Feb. 6, 2024

Simulating System Dynamics (SD) models

A System Dynamics problem presents itself as a complex interaction of different variables
over time. Our goal in understanding such a system is to formulate a model of it, and
then simulate the model. The results of the simulation will give us a good idea about
how the complex system will act over time when it is given certain initial conditions.
Even simple looking models are often not possible to solve analytically, and hence the
simulation tells us something that is not feasible to determine any other way.

Stock-and-flow diagrams

bloodthirstiness:
(vampires/year)fvampire

R

bitings
abduction
)_ Abductees
(A)

time:
years

aggressiveness:

(abductions/year)/year

Our main task is to turn a System Dynamics diagram (like the one above) into a running
program.



First, some basic terminology and concepts about these so-called “stock and flow” dia-
grams:

stock variable. These are represented on the diagram by boxes. A stock variable is

typically something that accumulates as time goes on: it is a quantity that goes
up or down in value, and we want to track how it changes over time. For this
reason, we will normally use an array/vector to represent it, so that its value at
each moment in time can be preserved.

derived stock variable. These are represented on the diagram by any white circle

that has an incoming arrow from a box (or from another derived stock variable.)
If a white circle has an incoming arrow from a box, then it is essentially another
stock variable: we are interested in tracking how it accumulates or decreases over
time. The only way in which it differs from a box is that its value is usually based
on a simple calculation from a box. Hence we can give our main attention to
tracking the box’s value as it changes throughout the simulation, and then make
a simple conversion of those values to obtain the derived stock variable’s values.
For the same reason as above, a derived stock variable will normally be an array of
values. (By the way, there aren’t any derived stock variables in the aliens/vampires
example, above. There is one in the example later in these notes, however.)

variable. These are represented on the diagram by white circles. Each one will cor-

respond to a variable in the program. These usually have constant (unchanging)
values, and so are represented in our simulation programs as scalars (not arrays).
“Bloodthirstiness” and “aggressiveness” are two examples.

cloud. “Clouds” in the diagram represent boundaries on our area of interest. As System

flow.

Dynamics pioneer Dana Meadows says, every system interacts with an environ-
ment, and it’s up to us where exactly we want to draw the system boundary.
Whenever we have a cloud, it effectively means “comes from somewhere, in unlim-
ited quantities” or “goes to somewhere in unlimited quantities” and that’s that.

Finally, a flow is depicted on the diagram by an oval on top of a thick, arrowed

line. It represents a quantity whose value will change over time, and which will
influence the value of some stock variable. Though it is a scalar, it is a dynamic
(changing) quantity, and hence will be continually computed in the main loop of
the simulation in order to help properly calculate the values of the stock variable(s)
it influences.



Outline of basic procedure

The basic idea behind a computational simulation is to run through a loop a certain
number of times, each time simulating one “tick” on a virtual clock. In other words, each
time through the loop represents a (short) period of time, during which the important
characteristics of the system (stored in program variables) may change. Often we wish
to keep track of a particular variable’s values over time, so that when the simulation is
over we can look back and see its general trend as the simulation progressed. This is an
ideal use for arrays since they can store a long sequence of successive values.

To write a Python program to simulate a system depicted in a stock-flow diagram, follow
this general procedure:

1.

Create a delta x variable to represent a time increment, and an x array to rep-
resent the time (in units of interest for this problem) for every point in your
simulation. (Label the units!)

. Identify the circles with no incoming arrows at all. If a circle represents a constant

(unchanging) value, then create a program variable to represent it. (Label the
units!)

Identify all the circles whose only incoming arrows are from the circles already
defined as variables in your program. Create a variable to represent each one,
using the relevant formula. (Label the units!) Keep doing this until the only
circles left have incoming arrows from boxes. (These will be your derived stock
variables, and will be dealt with momentarily.)

Create an array for each stock variable (box). Set the first value of this array to
its initial condition (i.e., its value when the simulation begins.)

Run through the simulation loop for the specified total time and time increment.
Each time through the loop:

a. Determine the (temporary) values of any flows and remaining ordinary vari-
able(s). Depending on the nature of the circle/oval, this could be (a) an equa-
tion based on current values of other circle(s) and/or stock variables, (b) a
special value based on the current time (for instance, a “pulse” variable that
takes on certain values at specific “clock ticks”) or other things.

b. Create a “prime” variable for each stock, equal to its incoming/outgoing.
c. Set the next value for each stock (array) to its new value on the next clock tick.

For any derived stock variable that has not been defined yet, use a formula to create
it based on its incoming arrows. Note that since at least one of these incoming
arrows is from a stock variable (which is an array), this circle’s variable will also
be an array.

Finally, plot any array(s) of interest.



Example: Drug dosage (single-dose)

Let’s follow this procedure for a specific example. Look carefully at the stock-and-flow
diagram below:

elimination constant:

{l.l"h n, -I::_::I

\ half-life:
hrs
f’fﬂ-
g S

Drug in Plasma
(D) (pg)

S l-r'-_h.l'
\ a4 T
s plasma volume:

Plasma (ml)
concentration:
pg/mi

elimination

Notice that there are seven elements in this diagram. One of them — “Drug in Plasma”
— is a stock variable, which we’ll call “D”. Three of them — “half life,” “plasma volume,”
and “elimination constant” — are ordinary variables. The first two of these three are

ordinary variables because they have no incoming arrows at all. The last of the three
(elimination constant) is also an ordinary variable because it has no incoming arrow
from a box, only from another circle. One element — “elimination” — is a flow. One
element, “plasma concentration,” is a derived stock variable because it has an incoming
arrow from another box variable. Finally, we have one cloud, which we’ll effectively
ignore.

Translating this into a Python simulation program is a combination of following the
outlined procedure, and using our heads. We begin:



1. Create a delta_x variable to represent a time increment, and an x array to represent
the time (in units of interest for this problem) for every point in your simulation. (Label
the units!)

We always need to decide two basic things about our simulation: (1) how long (in
simulated time) will it run for? (2) how much simulated time will elapse between
each virtual “tick of the clock?” These two choices are rather arbitrary at this
point, but they affect the amount of memory your program requires as it runs,
and ultimately, its speed. For now, we’ll simulate 8 hours of the patient’s body,
and set our “granularity” to five minutes:

simulation_hours = 8 # hrs
delta_x = 5/60 # hrs
X = np.arange(0,simulation_hours,delta_x) # hrs

2. Identify the circles with no incoming arrows at all. If a circle represents a constant
(unchanging) value, then create a program variable to represent it. (Label the units!)

The circles with no incoming arrows are “half life” and “plasma volume.” Some
realistic values for these — depending on the drug and the patient’s weight — might
be 3.2 hours, and 3000 ml, respectively. Hence, at the top of our Python program,
we will define these:

half_life = 3.2 # hrs
plasma_volume = 3000 # ml

3. Identify all the circles whose only incoming arrows are from the circles already defined
as variables in your program. Create a variable to represent each one, using the relevant
formula. (Label the units!) Keep doing this until the only circles left have incoming
arrows from boxes. (These will be your derived stock variables, and will be dealt with
momentarily.)

We have one circle whose only incoming arrow is from a previously defined variable:
elimination constant. This value describes the rate at which a drug is removed

from an organism’s system; the formula for it turns out to be 151?_/22 where t/; is the
half-life. So we write:*
elimination_constant = math.log(2)/half_life # 1/hr

*Incidentally, don’t worry about singular vs. plural when you’re writing your comments about units.
Here I typed “hrs” (hours) for the first few variables and then “1/hr” (per-hour) for the next one.
Same diff.



4. Create an array for each stock variable (box). Set the first value of this array to its
initial condition (i.e., its value when the simulation begins.)

We have one stock variable, so we create a long-enough array for it:

D = np.empty(len(x)) # ug

This line of code creates an array called D which will hold all the values over time
as the simulation runs. FEach of the values in this array will have units of ug
(micrograms. )t

Then, we initialize the first value of that array to be its value at the start of the
simulation. Say our patient took two 325mg pills of the drug:

D[0] = 2 * 325 * 1000 # ug

5. Run through the simulation loop for the specified total time and time increment.

As you saw above, the variable delta x (written mathematically as Az) is our
granularity, set to 5 minutes. The x values in this array mean that every iteration
through our loop represents five minutes of time. Put another way, we will be
recomputing the concentration of drug in the patient’s blood every five minutes.
We now write the loop itself:

for i in range(l,length(x)):

This establishes a loop variable called i whose value will change each time through
the loop. In this case, its values will be 1 through 96. Our simulation will run for
96 clock ticks of 5 minutes each, for a total of 480 minutes, or 8 hours. Note that
the variable i will take on values 1, 2, 3, ..., 96. It will not have values %hr,
%hr7 %hr7 - %hr. The latter is the job of the elements of the x array, not the i
variable. i does not represent a time value, but simply an iteration number, and
an array index. The sequence 5, 10, 15, ... does represent the time (in minutes)
corresponding to each point of the simulation: the first iteration through the loop,
when i=1, represents the time 5 minutes; when i=2, the time is 10 minutes; and
SO on.

The reason we start our loop with i equal to 1 is that we have already set up the
initial condition D[0] = 2 * 325 * 1000. In the loop, then, we need to begin by
computing D[1] based on D[0], then D[2] based on D[1], and so forth. Clearly,
we need to begin the process with element number 1.

"Don’t be confused by the “np.empty” bit — that just means that we don’t need to initialize any of
the array’s elements with any particular values to start with, since we’re going to be writing each value
explicitly in our loop anyway. (If this confuses you, use “np.zeros” instead, which does exactly the
same thing except it makes all the elements of the array zero.)



Now we move on to the body of the loop.

FEach time through the loop:

a. Determine the (temporary) values of any flows and remaining ordinary variable(s).
Depending on the nature of the circle/oval, this could be (a) an equation based on
current values of other circle(s) and/or stock variables, (b) a special value based on
the current time (for instance, a “pulse” variable that takes on certain values at
specific “clock ticks”) or other things.

We have only one flow: “elimination.” (Recall that “plasma concentration” is
a derived stock variable.) Hence, inside the body of the loop, we compute its
value.

elimination = elimination_constant * D[i-1] # ug/hr

This is a pretty standard equation for a balancing feedback loop: Note that we
are computing the elimination rate at step % of the simulation. This requires
using the amount of drug present in the plasma at the previous iteration, which
is why we use i-1 inside the “[]1” symbols after the array name. This is the
common pattern of computing a new value based on a previous value.

By the way, the units for a flow will always be the units for the stocks it connects
divided by the time increment.

b. Create a “prime” variable for each stock, equal to the incoming/outgoing flows it is
experiencing.

This is normally a pretty easy step: we just take the sum of all the inflows,
and subtract the sum of all the outflows. In the drug example, D’ is only a
single flow: negative elimination. (Why negative? Because the elimination flow
is flowing out of, not into, the stock.)

Dprime = -elimination # ug/hr

c. Set the next value for each array to its new value on the next clock tick.

This is pretty much always a super easy step: we use Fuler’s method to compute
the new value of the stock based on its previous value and its rate of change.

D[i] = D[i-1] + Dprime * delta_x # ug

Our super simple model of the body assumes instantaneous absorption of the
drug. Therefore, the only thing that affects the amount of drug in the plasma
each clock tick is the amount that is eliminated. Note carefully the array indexes
in this line of code. We are setting D[i] to a value based on D[i-1]. This means
we are using the previous value of the drug in plasma (at array position i-1)
to compute the nezt value (at array position i.)

7



Also, we multiply by the time increment because each step in the iteration
represents a certain amount (in our example, 5 minutes) of time. Hence, the
amount of elimination that will occur during a simulated clock tick is, say,
five-minutes’ worth, and this must be accounted for.

6. For any derived stock variable that has not been defined yet, use a formula to create it
based on its incoming arrows. Note that since at least one of these incoming arrows is
from a stock variable (which is an array), this circle’s variable will also be an array.

At this point, we have accomplished a great deal — nearly our whole purpose. The
D array now contains values corresponding to the amount of drug in the patient’s
plasma that was present at five-minute increments over a period of 8 hours. All
we need to do now is compute the concentration of the drug over that time, and
plot it. First, we compute the concentration of the drug:

plasma_concentration = D / plasma_volume # ug/ml

using a standard formula. Note that this is a NumPy operation: since D is an
array (not a scalar), this line of code divides every one of its 96 values by the
plasma_volume, all in one fell swoop.

7. Finally, plot any array(s) of interest.

plt.plot(x, plasma_concentration)

Adding labels and ranges is just window dressing.

This is your brain on drugs

—— concentration
200 A

150 A

100 4

Plasma concentration (ug/ml)

50 A

0 T T T T T T
0 1 2 3 4 5 6 7 8

Time since dose (hours)




For reference, here is the entire program:

import numpy as np
import matplotlib.pyplot as plt
import math

simulation_hours = 8 # hrs
delta_x = 5/60 # hrs
x = np.arange(0,simulation_hours,delta_x)

half life = 3.2 # hrs
plasma_volume = 3000 # ml
elimination_constant = math.log(2)/half_life # 1/hr

D = np.empty(len(x))
D[0O] = 2 * 325 * 1000 # ug ("u" = "micro")

for i in range(l,len(x)):
elimination = elimination_constant * D[i-1] # ug/hr

Dprime = -elimination # ug/hr
D[i] = D[i-1] + Dprime * delta_x # ug
plasma_concentration = D / plasma_volume # ug/ml

plt.plot(x, plasma_concentration, color="brown", label="concentration")
plt.xlabel("Time since dose (hours)")

plt.ylabel("Plasma concentration (ug/ml)")

plt.title("This is your brain on drugs")

plt.ylim(bottom=0)

plt.legend()

plt.show()




