
DATA 420 Notes – Feb 13-15, 2024

Logistic growth

Let’s return to the Aliens vs. Vampires competition. Recall that the explosive nature of
exponential growth caused the vampires, once they hit their stride, to easily take over
the world. Their numbers just grew and grew and grew without bound...

There’s something obviously wrong about this, though: there aren’t an unlimited num-
ber of humans to bite! Eventually the vampires will exhaust the human population.
And this is actually true of pretty much every exponential growth situation: since ev-
erything in our universe is finite, every exponential growth process will eventually run
out of resources.

(Pause to deeply consider this fact and its implications.)

Now how can we incorporate this into our model? Previously, we had V ′ as:

V ′ = bV

where the “bloodthirstiness” b was measured in

vampires
year

vampire
. (We rationalized this as “for

every vampire now in existence, how many new vampires per year will come into being?”)

Suppose we define a parameter P as the total population of the earth, which includes
both humans and vampires. One first cut at modeling the resource exhaustion would be
this:

V ′ =

{
bV, V < P

0, V = P

This says: “as long as there are humans left to harvest (i.e., the number of vampires
is less than the total population), allow the vampires to grow at our previous rate. As
soon as they exhaust the population, stop.” It gives us a hard cutoff like this:

1

1950 2000 2050 2100 2150 2200 2250

0

1

2

3

4

5

6

7

1e9

Maybe that’s how things would work. But probably not. If you think about it, the
lower the percentage of the population is human, probably the harder it will be for
the vampires to find those few remaining potential victims. So we’d expect that as the
population gets vampirized, the vampirization rate would gracefully level off to zero,
rather than getting suddenly clipped to zero once the last human was extinct.

This approach is called logistic growth. It’s based on the notion of a carrying ca-
pacity, which in general is the maximum number of individuals an environment can
support. A field of dandelions can only support so many dandelions, and the market of
consumers for a product can only support so many purchases before it’s saturated. In
general, some resource places limitation on the growth, and the carrying capacity is the
maximum level a population can grow to before it exceeds that resource.

In the present case, the limiting factor is the number of potential victims. The logistic
growth factor will be the fraction of the population which consists of potential victims.
Mathematically, this is P−V

P
, where P is the total population (including both humans

and vampires). Looked at another way, it’s the ratio of the number of humans to the
total population. Our logistic growth equation will be:

V ′ = bV · P − V

P

= bV · (1− V

P
)

Stare at this and see the logic. We still have bV in there, but now we’re multiplying it
by a factor that will smoothly go from 1 (when everyone is human) to 0 (when nobody
is). This gradually reduces the rate of vampirization until the victims are no more.

2

Graphically, we get what’s known as a sigmoid curve:

1950 2000 2050 2100 2150 2200 2250

0

1

2

3

4

5

6

7
1e9

Here’s the general form this differential equation is often written in:

X ′ = rX · (1− X

K
)

where X is any logistically-growing population of things, r is the growth (or “reproduc-

tive” factor (in things/time
thing

), and K is the carrying capacity (in things). (Double-check for

yourself that the units work out.)

This equation applies to populations, economies, diseases, social phenomena, and a
whole host of other things. It was discovered in the 19th century and is without a doubt
one of the most important equations of all time.

Implementing this in Python simply involves incorporating the logistic factor into
the code, and multiplying each prime by it. Look carefully at the first line of the for

loop’s body. We’re calculating logistic factor for the current iteration as:

1− Vi−1 + Ai−1

Vi−1 + Ai−1 +Hi−1

(H stands for “humans.”) Do you see the logic? We’re looking at the previous time
step (i − 1) and asking, “what fraction of the population is still available to be ab-
ducted/bitten?” When Ai−1 and Vi−1 are both still low (near the beginning of the
simulation) the entire quantity, above, is about 1. When Ai−1 and Vi−1 grow high
enough to rival and overtake the remaining human population, the entire quantitive,
above, shrinks to around 0. That’s why we get the desired effect when we multiply the
prime values by this logistic factor.

3

delta_x = 1/365 # years

start_x = 1940 # year

end_x = 2122 # year

init_pop = 2.3e9 # earth's (human) population, circa 1940

Given an array index, return the corresponding time (year).

def itox(i):

return delta_x * i + start_x

Given a point in time (year) return the corresponding array index (unitless).

def xtoi(x):

return int((x - start_x) / delta_x)

How aggressive are the aliens? At what rate do they abduct victims for every

year after 1940?

aggressiveness = 10000 # (abd/year)/year

How thirsty are the vampires? How many does each one bite, on average, in a

year?

bloodthirstiness = .1 # (vampires/year)/vampire

Our x-values: the precise times at which we will measure and compute the

quantities of interest.

x = np.arange(start_x, 2300, delta_x) # years

Our "stock variables": one for the number of UFO-abducted victims, one for

the number of vampires, and one for the number of potential victims still

available to be snarfed. They are arrays, of course, because we want to track

how many of each quantity there are *at each time period*.

A = np.zeros(len(x)) # abductions

V = np.zeros(len(x)) # vampires

H = np.zeros(len(x)) # humans

Set our initial conditions. When the simulation begins at the stroke of

midnight New Year's Day 1940, there's nobody on spaceships yet, and there's

one lonely vampire in the world.

A[0] = 0

V[0] = 1

H[0] = init_pop

The main simulation loop. For each time period...

for i in range(1, len(x)):

logistic_factor = 1 - (V[i-1] + A[i-1]) / (V[i-1] + A[i-1] + H[i-1])

...calculate the rate of each quantity at this point in time, and...

Aprime = (itox(i) - start_x) * aggressiveness # abd/year

Aprime *= logistic_factor

Vprime = V[i-1] * bloodthirstiness # vamp/year

Vprime *= logistic_factor

...increment the quantities by that amount, times our time period.

A[i] = A[i-1] + Aprime * delta_x # abd

V[i] = V[i-1] + Vprime * delta_x # vamp

H[i] = H[i-1] - Aprime * delta_x - Vprime * delta_x

plt.plot(x, A/1e6, color="green", linestyle="dashed", label="alien abduction")

plt.plot(x, V/1e6, color="red", label="vampires")

plt.plot(x, H/1e6, color="brown", linestyle="dotted", label="humans")

plt.xlabel("year")

plt.ylabel("millions of abductees / vampires")

plt.legend()

plt.show()

4

The output looks like this when it’s run:

The vampires overtake the aliens, as before, but it’s no longer quite as massive a whipping
– since there are only so many humans to consume, the aliens do end up with a modest
piece of the pie.

The Lotka-Volterra model (predator-prey)

This central insight of logistic growth is used in a slightly different way in the hugely
influential Lotka-Volterra predator-prey model, invented independently by Alfred Lotka
and by Vito Volterra in the early 20th century.

The idea is as follows. Suppose we have two species (say, bats and mice) where one
preys on the other for food. Let’s say the number of bats at time x is Bx and the number
of mice is Mx. Then, assuming the populations are well-mixed∗ the number of possible
encounters between them is proportional to the product of Bx and Mx. In symbols:

possible encountersx ∝ Bx ×Mx

(All the “proportional to” symbol ∝ does is let us state this fact without having to
specify the value of the constant (called the constant of proportionality).

∗Meaning, they all have equal access to each other in a sort of well-stirred soup.

5

This makes sense when you think about it. There are Bx ·Mx different possible pairs of
individual bats-and-mice. If each pair has an equal opportunity of “happening” within
a given time period, then the number of possible encounters is directly related to this
product.

Let’s call the constant of proportionality the encounter frequency, which is measured

in units of
encounters/time

bat

mouse
. (“For every mouse we have...then for every bat we have,

how many encounters do we expect per unit time?”) Let’s call the proportion of these
encounters which end successfully for the bat (and in death for the mouse) the kill ratio.
Now we have:

kills

time x
= Bx ×Mx × encounter frequency× kill ratio

This dynamic is the heart of the Lotka-Volterra model.

6

A complete model

Converting into Python, we get:

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

delta_x = 1/30 # mo

x = np.arange(0,240,delta_x) # mo

batBirthRate = 1.2 # (bats/mo)/bat

mouseBirthRate = 1.2 # (mice/mo)/mouse

batDeathRate = 2.1 # (bats/mo)/bat

mouseDeathRate = 1.1 # (mice/mo)/mouse

nutritionFactor = 2 # bats/kill

killRatio = .05 # kills/encounter

encounterFreq = .02 # encs/mo/bat/mouse

B = np.empty(len(x))

M = np.empty(len(x))

B[0] = 10

M[0] = 30

for i in range(1,len(x)):

encounterRate = encounterFreq * M[i-1] * B[i-1] # encounters/mo

killRate = killRatio * encounterRate # kills/mo

batBirths = batBirthRate * B[i-1] # bats/mo

batDeaths = batDeathRate * B[i-1] - killRate * nutritionFactor # bats/mo

mouseBirths = mouseBirthRate * M[i-1] # mice/mo

mouseDeaths = mouseDeathRate * M[i-1] + killRate # mice/mo

Bprime = batBirths - batDeaths

Mprime = mouseBirths - mouseDeaths

B[i] = B[i-1] + Bprime * delta_x

M[i] = M[i-1] + Mprime * delta_x

plt.plot(x,B,color="black",label="bats",linewidth=2,linestyle="solid")

plt.plot(x,M,color="red",label="mice",linewidth=1,linestyle="dotted")

plt.ylim(bottom=0)

plt.legend()

plt.show()

7

Now close your eyes and try to visualize what this simulation will produce. Will we get
an exponential growth of both populations? Or only of one? Or neither? Or will it
approach an equilibrium?

If you’re like I was, you’ll be dumbfounded to see the following oscillatory behavior:

0 5 10 15 20 25 30 35
0

25

50

75

100

125

150

175

200

bats
mice

The populations swing wildly back and forth, sometimes over order-of-magnitude ranges.
Suppose we make the mice less nutritious, or the bats better hunters, or the mice easier
to find, or the bats less likely to die of other causes:

0 5 10 15 20 25 30 35
0

2000

4000

6000

8000

10000

12000

nutrition_factor = .01
bats
mice

0 5 10 15 20 25 30 35
0

20

40

60

80

100

120

kill_ratio = .8
bats
mice

0 5 10 15 20 25 30 35
0

20

40

60

80

100

120

140

160
encounter_frequency = 3

bats
mice

0 5 10 15 20 25 30 35
0

20

40

60

80

100

120

bat_death_factor = 2.1
bats
mice

(In case you’re concerned, we dropped to a low of .0109 mice in that last run.)

If these results all line up with your intuition, pat yourself on the back. They certainly
don’t with mine!

8

