DATA 420 Notes — Feb. 20, 2024

The SIR epidemiology model

Epidemiology is the study of disease outbreaks, distribution, and control. One of the
simplest models of disease propagation in a “well-mixed” society is the classic SIR
model, whose letters stand for “Susceptible,” “Infected,” and “Recovered.” In this basic
model, those are the three stocks which contain human beings in various states. It is
interesting to see what we can learn about the degree to which a disease will permeate
a society based on some simple yet sensible assumptions.

The Susceptible stock denotes persons who are vulnerable to getting a contagious
disease but who have not yet been exposed to it. (Non-susceptible persons, if they
exist, don’t enter into the model’s dynamics at all and are therefore ignored.*) Infected
individuals are those who are currently suffering from the disease and are still contagious.
Once a person is no longer contagious, they are effectively in the Recovered state even
though they may still experience symptoms.

One basic assumption is that we have a closed population, meaning that our stocks
transfer quantities from one to another but never to or from clouds. This means that
people never enter or leave the population but only (possibly) transfer between cate-
gories. Further, the transfers are all “one way”: a person can move from the susceptible
state to the infected state, but never back; and from the infected state to the recovered
state, but never back. This implies, among other things, that the disease is like the
chicken pox: once you have it, you're effectively inoculated against ever having it again.

A version of the entire model is reflected in the following stock-and-flow diagram:
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*If present in sufficient numbers, however, they could possibly impact the fraction_susceptible.



The theory behind the model

Like the Lotka-Volterra model, the SIR model uses the notion of “encounters” which are
proportional to the product of two populations. Just as both a bat and a mouse were
required to have a killing event, so an Infected individual must come into contact with a
Susceptible one to pass on a disease. The rate of infection is therefore based on several
factors:

1. The contact_factor expresses how many other persons an individual comes into
physical contact with per unit time. It is a property of a society, not a disease.

2. A disease’s transmissibility reflects how easily communicable the disease is
between two people who have come in contact. Some diseases are more contagious
than others.

3. In addition to the above two constant factors, there are also the changing fractions
of the society that are in the S and I states. We’'ll model the frac_susc (“fraction
susceptible”) of the population, so that for a given infected person, we can estimate
how many susceptible people (rather than just people-in-general) he/she comes into
contact with each day.

That third item is the trickiest, so let’s unpack it. Suppose Filbert receives the bad
news that he has the disease. He is therefore in the Infected stock. The question we
want to ask is: how many Susceptible people per day will the poor Filberts come in
contact with (and thus possibly infect) each day?

The stock-and-flow diagram calls this the “SI contact rate” since it’s the rate at
which S’s and I's will come in contact. (This is the only case in which the disease can
be transmitted.) It’s in units of “g2%=. We compute:

SI_contact_rate = frac_susc X contact_factor X [;_;

A quick units check confirms we’re not insane:
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So for example, if every Filbert comes into physical contact with 4 other people each
day, about %ths of whom are Susceptible, and there are 50 such Filberts, then there will
be % X 4 x 50 = 150 contacts between S/I pairs every day. That’s 150 opportunities for
things to go bad!

On the recovery side of things, all that really matters is (1) how many Infected indi-
viduals there are, and (2) how long, on average, each one remains infected. If a person
on average is contagious for 5 days, that means that éth of the infected population re-
covers every day. This rate controls how quickly people are removed from the dangerous
Infected pool where their presence threatens more susceptible individuals.



Implementation

Here’s a realization of the SIR model in Python:

mean_infectious_duration = 2 # days
transmissibility = .25 # infections/contact
contact_factor = 5.1 # (contacts/day)/person
recovery_factor = 1/mean_infectious_duration # 1/day

start_x = 0 # days

end_x = 365 / 3 # days

delta_x = 1/24 # days

X = np.arange(start_x, end_x, delta_x) # days

S = np.empty(len(x)) # individuals

I = np.empty(len(x)) # individuals

R = np.empty(len(x)) # individuals

S[0] = 2000

Ifo] =1

R[0] =0

for i in range(l,len(x)):

# Flows.

frac_susc = S[i-1]1/(S[i-1] + I[i-1] + R[i-11)

SI_contact_rate = frac_susc * contact_factor * I[i-1] # contacts/day
infection = SI_contact_rate * transmissibility # infections/day

recovery = I[i-1] * recovery_factor # recoveries/day
# Primes.

S_prime = -infection

I_prime = infection - recovery

R_prime = recovery

# Stocks.

S[i] = S[i-1] + S_prime * delta_x

I[i] = I[i-1] + I_prime * delta_x

R[i] = R[i-1] + R_prime * delta_x

Here are some sample outputs for various values of the parameters:




transmissibility 0.1, contact_factor 10 transmissibility 0.1, contact_factor 5
mean infected duration 2 days mean infected duration 2 days
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As expected, the populations level off at an equilibrium in which they are all either
recovered from the disease, or never had it. The relative levels of these stocks is an
interesting issue.

The “basic reproduction number” R,

It turns out that an interesting quantity can be computed from the various param-

eters in this model. Suppose we multiply the transmissibility (in %), the
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then get a quantity in units of iperson which we call “Ry” (pronounced “R-nought”):

Ry = transmissibility X contact_factor X mean infectious_duration

This number, which combines features of both the community and the disease, can
be thought of as “the number of further infections to be expected for each person who
already has the disease.” The actual number of further infections of course depends
on how much of the population has already been infected: early in an outbreak, it is
higher per infected person than later. So perhaps a better way to think of Ry is: “the
expected number of secondary cases produced by a typical infected individual early in
an epidemic.”



(Incidentally, Ry can be thought of as a unitless quantity, since it’s sort of in units of
“new people who'll be infected per current person infected,” or “people per person.”)

Now it turns out this number has a critical threshold on which all else turns. If R,
is less than 1, then although a few people will get the disease, it is doomed to die out
before it gets much momentum, because each infected person infects on average less than
one other person. This means that a sustained chain reaction isn’t possible: the disease
lacks enough staying power to increase its victims. The limiting factor is the inability of
the disease itself. But when Ry is greater than 1, the disease is bound to move through
the entire population, causing an epidemic. This doesn’t mean that every single person
gets the disease, of course. But it does mean that a significant fraction will. In this case,
the limiting factor is that so many people have already had the disease that there isn’t
a high enough percentage of susceptible victims left to keep it going.

In a simulation, this sort of threshold is called a “tipping point” because the be-
havior of the model changes qualitatively (not just quantitatively) when parameters are
altered within a certain sensitive, critical range.



