DATA 420 Notes — Feb. 22, 2024

Parameter sweeps

Every simulation has input parameters, from the birth rate of mice to the leakage rate
of insulation to the transmissibility of diseases. Changing these parameters changes the
simulation’s behavior, sometimes in obvious ways, but often not. One of the principal
benefits of a simulation is the ability to ezperiment with the parameters and see their
effects, both individually and in concert with one another. This is what helps give us a
more comprehensive understanding of a complex system’s behavior over the myriad of
scenarios and environments it may be exposed to.

So far, we've been playing with the knobs and dials in ad hoc fashion. Run the
simulation, look at a plot, adjust a parameter and run it again, adjust a parameter and
run it again, etc. This is exactly the right approach when first exploring a model. You
don’t know yet what’s interesting about it, or where the critical ranges might be.

Eventually, though, we identify a key range of some parameters in which the model
exhibits interesting and non-obvious behavior. We’d like to systematically vary a pa-
rameter (or two) gradually between certain bounds, so we can get a clear idea of how
the simulation behaves across an entire region.

Our solution for this is called a parameter sweep. It’s just what it sounds like:
we're going to “sweep” a parameter (or two) throughout a range of values, running
the entire simulation separately for each value. Instead of plotting the results of every
single simulation (which would be an overwhelming amount of TMI), we need to find a
way to quantify something about their outputs that captures the effect we’re trying to
measure. We can then draw a different kind of plot: not the stock values over time, but
the simulation outputs vs. their inputs.

This may seem computationally infeasible, but you’ll be surprised how far we can
get with just an ordinary laptop these days. In the event where we do face resource
constraints, we’ll usually manage to get around them with a few simple techniques
(principally parallelism).

Step 1: identify an output of interest

To perform a parameter sweep, we’ll need to boil an entire colorful, pretty, multidimen-
sional, informative plot down to a single number (or numbers). Yes, this is limiting,
but our analysis during a parameter sweep is limited to one aspect of the simulation’s
behavior. (It doesn’t mean we can’t separately analyze all sorts of other things.)

Let’s take the SIR model as an example. When we ran it, we got a full plot of the
S, I, and R stock levels over time. Is there a simpler way to capture some important
subset of this information, though, and reduce it down to a number? Sure: the fraction



of the population that end up getting sick. This is a number of great interest even in the
absence of a plot of the entire dynamics.

In terms of last class’s simulation, this is simply:

frac_ever_infected = (I[-1] + R[-1]) / (S[0] + I[0] + R[0])

(Remember, in Python you can give a negative index to an array to count backwards
from the end. So while A[0] and A[1] are the first two values of an A array, A[-1] and
A[-2] are the last two values. The code above therefore says: “take the last value of
the I array and the R array, and add them together for the numerator.”)

So at simulation’s end, we add up the currently (I) and formerly (R) infected people,
and divide by the total population. This is easy to quantify, and as we’ll see, easy to
plot.

There might be other quantities of interest as well, like the number of days it takes
the outbreak to reach its peak, or the length of time that 30% or more of the workforce
is staying home sick. No matter what the case, we need a way to take the simulation’s
results and convert them into a meaningful number.

Step 2: parameterize the simulation

The simulation already has “parameters,” so you might wonder what this step is needed

for. It turns out that mechanically, we're going to want to put our entire simulation
into a (Python) function, and give this function arguments representing the parameters.
I normally name this function “runsim()” (for “run simulation.”) When called, this
function will execute the entire simulation for a set of parameters, and then return the
output(s) identified in step 1. In our case, we have only one output: the fraction of
people ever infected.

Consider SIR. Our simulation looked like this (abbreviated):

mean_infectious_duration = 2 # days

transmissibility = .25 # infections/contact
contact_factor = 5.1 # (contacts/day)/person
...stuff...

for i in range(1l,len(time_values)):
...stuff...

plt.plot(time_values,S,color="blue",label="S")

...stuff...




We're going to put all this in a function, like so:

def runsim(mean_infectious_duration=2, # days
transmissibility=.25, # infections/contact
contact_factor=5.1, # (contacts/day)/person

plot=False):
...stuff...

for i in range(1,len(time_values)):
...stuff...

if plot:
plt.plot(time_values,S,color="blue",label="S")
...stuff...

frac_ever_infected = (I[-1] + R[-1])/(S[0]J+I[0]+R[0])
return frac_ever_infected

Notice a few key things:

1.

Syntactically, “putting it all in a function” amounts to (1) adding the function
declaration (“def”) and (2) indenting all the code one more tab to the right.

The key “parameters” to the simulation (transmissibility, contact _factor,
and mean_infectious_duration) literally became parameters (arguments) in the
Python-function sense.

. These parameters have default values. (Recall that in a Python function declara-

w_"

tion, you can use the syntax to provide a default value for parameters that
are not given in the function call.)

. I added a new parameter called “plot” which controls whether or not the simula-

tion actually plots something. We will set this to True when calling runsim() on
an ad hoc, exploratory basis, but False (the default) when performing a parameter
sweep.

The return value of the function gives the output(s) of interest. In this case, since
the frac_ever_infected is the only output, we just returned it as a number. I
often find it convenient to return a dictionary of values, though, since there are
often multiple quantities identified in step 1, and we can thereby easily return
several metrics at once.



Step 3: run the parameter sweep

Beginning coders are sometimes surprised when they run the above code and...nothing
happens. Realize this is because simply defining a function does not run it/ You have
to actually call the function to do that.

So we will. If we want to run the simulation with the default parameters, we do:

runsim()

If we want to set some of the parameters to different values, we can:

runsim(mean_infectious_duration=10, transmissibility=.9)

Any parameter we don’t specify will use its default value.

So far, there’s nothing going on here we couldn’t do before. But now’s where the
magic comes. We're going to define a range of values for one of the parameters, and call
the function for every value in that range. We’'ll collect the results as they come back
and store them in a vector. And then we’ll plot the parameter values versus that vector.
Here’s the code:

...all the previous code, including the runsim() function...

contact_factors = np.arange(0,10,.01)
frac_infecteds = np.empty(len(contact_factors))
for i in range(len(contact_factors)):
frac_infecteds[i] = runsim(contact_factor=contact_factors([i])

plt.plot(contact_factors,frac_infecteds,color="blue",
label="Fraction ever infected")

plt.xlabel("contact factor ((contacts/day)/person)")

plt.legend()

plt.show()




—— Fraction ever infected

0.8 A

0.6 1

0.4 A

0.2 A

0.0 A

0 2 4 6 8 10
contact factor ((contacts/day)/person)

The “tipping point” we mentioned last time simply leaps off the page here. As
long as our society is social distancing enough that each person has only 2 or 3 contacts
per day, we've prevented an epidemic. But just look at what happens when we get to 4
contacts per day. The explosion is breathtaking — and a stern warning that this model
is not remotely linear.

Performance considerations

Recognize that we have a loop-within-a-loop here, even though it doesn’t look like it. The
“for i in range(len(contact _factors))” loop is used to run through the sequence
of different contact_factors, calling run_sim() for each one. The run_sim() function,
of course, has its own loop inside of it — the same loop we’ve been writing all semester.

Nested loops like this can be costly, time-wise, depending on the parameter settings.
But as I said, you may be surprised how much you can do before it actually mat-
ters. I produced the above plot, which triggered 1000 different simulations (since there
were 1000 different contact_factors) each of which looped through 1600 different time
points. It took only a couple seconds to complete on my laptop.



