Name:	
DATA 470 — Fall 2025	
Quiz #2 (Sep. 2, 2025)	

- 1. Give three different linear combinations of the following vectors: [3 2], [1 1]. Sure, how about these:
 - [3 2] (one copy of the first plus zero of the second)
 - [-18 18] (zero copies of the first plus -18 of the second)
 [7 5] (two copies of the first plus one of the second)
- 2. What is $\begin{bmatrix} 4 & 0 & 1 & 1 & 0 & 19 \end{bmatrix} \cdot \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 0 \end{bmatrix}$, or is that operation not even possible?

It's possible. The answer is 11. (Important: the answer is a scalar, not a vector!)

- 3. Are these two vectors orthogonal? Why or why not? $\begin{bmatrix} 5 & 2 \end{bmatrix}$ and $\begin{bmatrix} -2 & -5 \end{bmatrix}$ No. Their dot product is $5 \cdot -2 + 2 \cdot -5 = -20 \neq 0$. So they are not at right angles to each other.
- 4. Are these two vectors orthogonal? Why or why not? $\begin{bmatrix} 5 & -2 \end{bmatrix}$ and $\begin{bmatrix} -2 & -5 \end{bmatrix}$ Yes. Their dot product is $5 \cdot -2 + -2 \cdot -5 = 0$. So they are at right angles to each other.
- 5. Normalize this vector (using the Euclidean (ℓ^2) norm): $\begin{bmatrix} 2 & 1 & 2 \end{bmatrix}$ First, calculate the norm: $\sqrt{2^2+1^2+2^2}=\sqrt{9}=3$. Then, divide each entry to the norm to get: $\begin{bmatrix} \frac{2}{3} & \frac{1}{3} & \frac{2}{3} \end{bmatrix}$.
- 6. Is the vector you gave in your answer to question 5 normalized? (Sure hope so!) Verify that it is.

The norm is
$$\sqrt{\frac{2}{3}^2 + \frac{1}{3}^2 + \frac{2}{3}^2} = \sqrt{\frac{4}{9} + \frac{1}{9} + \frac{4}{9}} = \sqrt{1} = 1.\checkmark$$

7. Are these vectors linearly independent? Why or why not? $\begin{bmatrix} 3 & -2 \end{bmatrix}$ and $\begin{bmatrix} 6 & -4 \end{bmatrix}$ No way. One is a multiple of the other! (Two of the first vector in the set gives the second set. So they point in exactly the same direction.)