
Stephen Davies, Ph.D.
Version 1.1.0

Up Linear Algebra
A Quick Steep Climb

A Quick Steep Climb

Up Linear Algebra

version 1.1.0

Stephen Davies, Ph.D.
Computer Science Department
University of Mary Washington

1

Copyright © 2021 Stephen Davies.

University of Mary Washington
Department of Computer Science
James Farmer Hall
1301 College Avenue
Fredericksburg, VA 22401

Permission is granted to copy, distribute, transmit and adapt this
work under a Creative Commons Attribution-ShareAlike 4.0 Inter-
national License:

http://creativecommons.org/licenses/by-sa/4.0/

The accompanying materials at www.allthemath.org are also un-
der this license.

If you are interested in distributing a commercial version of this
work, please contact the author at stephen@umw.edu.

The LATEXsource for this book is available from: https://github.
com/rockladyeagles/quick-steep-climb.

Cover art copyright © 2015 Elizabeth M. Davies. Images courtesy
pinterest.com/laerpearce and serpmedia.org (p. 212), https:
//commons.wikimedia.org/wiki/User:Roger_McLassus_1951 and
pxhere.com (p. 213), https://commons.wikimedia.org/wiki/User:
Andrey_Korzun (p. 229), and https://unsplash.com/@sjcbrn (p. 242).

http://creativecommons.org/licenses/by-sa/4.0/
www.allthemath.org
https://github.com/rockladyeagles/quick-steep-climb
https://github.com/rockladyeagles/quick-steep-climb
pinterest.com/laerpearce
serpmedia.org
https://commons.wikimedia.org/wiki/User:Roger_McLassus_1951
https://commons.wikimedia.org/wiki/User:Roger_McLassus_1951
pxhere.com
https://commons.wikimedia.org/wiki/User:Andrey_Korzun
https://commons.wikimedia.org/wiki/User:Andrey_Korzun
https://unsplash.com/@sjcbrn

Contents at a glance

Contents at a glance i

Acknowledgements iii

1 Stretching our legs 1

2 Vectors 11

3 Linear independence 53

4 Matrices 83

5 Linear transformations 113

6 Matrix multiplication 143

7 Applications 177

8 Eigenanalysis 211

9 Eigenapplications 233

Also be sure to check out the forever-free-and-open-source instructional
videos that accompany this series, at www.allthemath.org!

i

www.allthemath.org

Acknowledgements

A hearty thanks to Karen Anewalt, Crystal Burson, Prafulla Giri,
Tayyar Hussain, Jennifer Magee, Veena Ravishankar, Jacob Shtab-
noy, and a decade’s worth of awesome UMW Computer Science
students for their many suggestions and corrections to make this
text better!

iii

Chapter 1

Stretching our legs

We’ve got a steep climb up ahead of us. What exactly are we up
against? And what will we see from the summit that will be worth
all the effort to get there?

As we did in the opening chapter of A Cool, Brisk Walk, let’s take
the two words of our subject – “Linear Algebra” – one at a time,
and talk about what they mean. And just like we did for “Discrete
Mathematics,” we’ll consider the words in reverse order.

1.1 “Algebra”

When most people hear the word “algebra,” they flash back to
middle school, to that subject where they first learned to work
with letters (like x) instead of just numbers (like 5) in a math
class. They remember the quadratic formula, collecting like terms,
factoring expressions, and so on.

That middle school class is indeed related to the subject of our
book, but more distantly than you might imagine. Properly speak-
ing, that middle school subject is a proper noun: “Algebra” with
a capital ‘A.’ It’s actually a special case of the common noun
that mathematicians deal with: an “algebra” with a lower-case ‘a.’
Okay. So what’s “an algebra,” then?

1

2 CHAPTER 1. STRETCHING OUR LEGS

An algebra is any system of mathematical objects together with
operations that can be used to combine them. The middle school
Algebra is an example: the “objects” are numbers (or letters that
stand for numbers) and the operations are things like addition,
multiplication, powers, roots, and the like. We can take numbers
(or stand-ins) like:

5, x, 3, y, q, 17, 14, z, 9

and combine them to build up a complex expression like:

(5+x)3
y

− q ⋅ 17
√
(14 + x)z + 9 + y

.

It looks kinda gross, but I think you’ll agree that if you knew what
numbers each letter stood for, you could laboriously crank out the
answer with a calculator.

Another example was the algebra of sets we learned about in Cool,
Brisk Walk chapter 2. We could take the sets A,B,N, and Q and
combine them with set operations to get:

((A ∩ N) ∪B) ×A − (Q ∪B).

Or, from chapter 8 of Cool, Brisk Walk, we could combine the
logical propositions P,Q,R, and S to get a compound proposition
like:

(¬P ∨Q ∧ ¬(R⊕ P)) ⇔ (¬S ⇒ P).

Any system of mathematical objects and operations like this is an
“algebra.” The subject of this book is linear algebra in which
the “mathematical objects,” instead of being numbers or sets or
propositions, are vectors and matrices.

Closure

Key to the notion of an algebra, by the way, is the notion of clo-
sure. Closure means that when we combine two or more of the

1.2. “LINEAR” 3

mathematical objects in question, we get back another object of
the same type. For instance, whether or not you can simplify 227

45
in

your head, you do know that when you divide 227 by 45 you will get
a number. Similarly, if you take the union of two sets D ∪M , you
will get a set. And if you take the exclusive-or of two propositions
L⊕A, you will get a proposition.

This is important because without this guarantee, we couldn’t build
up complex expressions and be certain they would mean anything.
Take the expression 12+ 227

45
. Even without a calculator, you know

these operations can in principle be done, because whatever exact
value 227

45
turns out to be, it’s guaranteed to be a number, and

therefore it can be meaningfully added to 12. If, when dividing
one number by another, the result might wind up being a set (or
a proposition, or a porcupine), then the whole expression would
become meaningless: you can’t add a number to a porcupine.

In this book we’ll combine vectors and matrices in a myriad of
different ways, and we will always get vectors and matrices back.
That’s why they constitute “an algebra.”

1.2 “Linear”

The word linear is related to the word line: this is because a func-
tion that is linear looks like a line when it’s plotted.

1
Suppose I

make $11.75/hour at my part-time job, and I want to figure out my
take-home pay for last week’s work. Obviously, my paycheck (be-
fore taxes and what-not) will be 11.75 times the number of hours I

1
Now there’s one confusing detail I want to clear up right away. You’ll

recall that in high school, you learned that the equation for a straight line was
“y = mx + b”. Would it surprise you if I told you that this is not considered
a linear function, according to the worldview of this book? Yep. :\ Sorry for
the surprise. That high school thing is actually called an affine function rather
than a linear function. The reason is the b, also called the y-intercept. If b is
anything other than zero, then neither of the two “linear expectations” that
we’ll see on p. 5 will be true. For example, if f(x) = 3x + 7, then f(2) (which
is 13) won’t be 2 ⋅ f(1) (which is 20), as our linearity definition requires. For
us in this book, the only functions considered “linear” are those lines that pass
through the origin, and thus have a y-intercept of 0.

4 CHAPTER 1. STRETCHING OUR LEGS

work. The left side of Figure 1.1 shows my hours vs. my pay, which
is, not surprisingly, a line.

Figure 1.1: Linear and non-linear functions.

By contrast, suppose I wanted to predict how tall a typical Amer-
ican human female would be based on her age. While it’s true
that for most age ranges the two variables increase together (just
as more hours-worked implies more take-home pay, so does more
years-on-earth implies more inches-off-the-ground), the plot is no
longer a straight line (see the right side of Figure 1.1).

It’s worth lingering for a moment on what linear means and how
it colors our assumptions about what to expect. Imagine this con-
versation:

you: Hey boss, I know I’m normally only scheduled to work
for 12 hours a week, and I get 120 bucks for that. But
I need to start saving up for a plane ticket to see my
grandparents, so I’d like to work 15 hours next week.
That okay?

boss: Sure, you can do 15 next week. That’ll make your
take-home pay an even $5,000 for the week.

you: [Jaw drops open] Whoa, five grand?! Heck, in that case,
push me up to 20 – I can make some headway on my
fall tuition!

boss: Twenty hours it is – you’ll earn a total of 75¢ for that.

you: D’oh!!

1.2. “LINEAR” 5

The above dialogue is absurd. But exactly why is it absurd? An-
swer: because we expect weekly-pay-vs.-hours-worked to be linear,
and the values given in the dialogue violate our linear assumptions.

The following scene, by contrast, isn’t absurd:

you: It’s now been 12 months since I bought it, and my
Blackberry stock is currently worth $120. Dear Crystal
Ball, how much will it be worth three months from now
(at the 15-month point)?

crystal ball: Blackberry will skyrocket in the public’s imag-
ination three months from now, so at the 15-month
mark your stock will be valued at $5,000.

you: Woo-hoo! And how about at the 20-month mark?

crystal ball: Unfortunately for shareholders, Blackberry
Inc. will make some bad business decisions and crash.
The stock will be nearly worthless – just 75¢.

you: Yikes – glad I asked! Please sell it in three months,
okay?

This scenario doesn’t seem out of the question because we have no
expectations about stock prices being linear in time.

So what exactly are those linear expectations? If you work it out,
they come down to two:

If a function f(x) is linear, then:

• f(a ⋅ x) is always simply a ⋅ f(x).
• f(x + y) is always simply f(x) + f(y).

Take the first one. Let’s say Wawa is selling a King Size Kit Kat bar
for $1.50. How much would four bars cost? The answer’s got to be
$6.00. It would be weird to be anything else. In this example, x is

6 CHAPTER 1. STRETCHING OUR LEGS

the number of Kit Kat bars, and f(x) is the total cost. f(x) = 1.5x,
and predictably, f(4 ⋅ 1) = 4 ⋅ f(1) = 4 ⋅ 1.5 = 6.

For the second rule, let’s say we bought two Kit Kat bars today and
three more tomorrow. How much for the total? If the universe is
working normally, buying two today and three tomorrow would be
the same price as buying five altogether. And it’s true: f(2+ 3) =
f(2) + f(3) = 3 + 4.5 = 7.5 = f(5). It would be weird to work any
other way.

When we have non-linear functions, we don’t expect these things to
be true. If my nine-year old daughter is 4 feet tall, I don’t expect her
to be 8 feet tall when she turns eighteen. f(a ⋅x) ≠ a ⋅f(x). And if
my Blackberry stock is worth $5,000 after sixteen months and $100
after the company’s disastrous seventeenth, we don’t count on it
being worth $5,100 after 33 months. f(x + y) ≠ f(x) + f(y).
For the rest of this entire book, the two assumptions above will
always be true. It may seem limiting, but as we’ve seen, there are
lots of cases where it simply doesn’t make any sense for our function
not to be linear.

1.3 This book contains only elephants

The great mathematician and computational scientist Stanis law
Ulam once quipped that dividing functions into linear and non-
linear is like dividing zoology into “elephant” and “non-elephant.”
In a way it’s true, because there are certainly far more functions
that don’t obey the above two properties than there are those that
do. By the same token, though, there are far more pay schemes we
could invent than just “a regular hourly rate.” But hourly rates
come up very, very often, and when they do, there’s a lot of amaz-
ingly useful things we can do with them. Join us on our hike and
you’ll see.

1.3. THIS BOOK CONTAINS ONLY ELEPHANTS 7

3 Appendix: Python

Each chapter of this book comes equipped with an appendix show-
ing how to carry out the various linear algebra calculations in a
programming language called Python. Here’s the first one!

Most readers will have done at least a little bit of computer pro-
gramming before making it to this book. If you haven’t, don’t
worry about it. We’re not really going to be programming per se,
but rather using the Python language as a glorified calculator.

Python is of course a fully-functional, feature-rich programming
language that can be used for just about any program you want
to write, whether that’s a PC or smartphone app, a data analysis
program, or a dynamic website. It’s a great and very readable
language, and I highly recommend adding it to your quiver as you
assimilate various high-tech tools.

Installing and navigating Python

For this book, all you’ll need to do is download a Python IDE
2

and the “package” (bundle of software) called “numpy.” NumPy
3

stands for “numerical Python,” and has the various cogs and gears
to create vectors and matrices, the mainstays of this book. The
easiest way I know of to do this is to download the Anaconda
Python distribution from www.anaconda.com, and then start the
Spyder application that automatically comes with it.

Whether you use Spyder or a different IDE (Eclipse, IDLE, and
PyCharm are some other popular ones), the main thing to focus on
– and the only thing I’ll describe in this book – is the Python code
itself, which you’ll type in an editor window that sorta resembles
Microsoft Word or Google Docs.

2
IDE stands for “Integrated Development Environment” and just means “a

point-and-click interface that lets you write programs, edit them, run them, and
debug (find and remove errors) them.”

3
NumPy can be pronounced either “NUM-PIE” or “NUM-pee.” I’ve heard

both.

www.anaconda.com

8 CHAPTER 1. STRETCHING OUR LEGS

After you type in some code and want to try running it, you’ll
execute whatever the “run/execute” operation is in your IDE (in
Spyder it’s a little green “run” arrow). The output of the code will
then appear in some kind of console window (normally another
pane on the screen; in Spyder it’s on the lower-right by default).
Just think of this like a calculator: you first type in something like
“258 × 312” and then when you press the equals sign (“=”) the
answer 80496 appears.

That’s more or less all we’ll be doing in this book. The code you
write in the editor window will be like the “258 × 312” part (ex-
cept it will involve vectors and matrices), and the 80496 is what
Python will print to the console window. Our “programs” won’t
even really deserve the name.

From now on, whenever I give example Python code in this book,
I’ll write it in a box like this:

Our first code example!

from numpy import *

founding = 1776

usa_age = 2021 - founding

print("Our country is {} years old!".format(usa_age))

That box means “this stuff goes in the editor window.”

When I write the corresponding output (i.e., what gets printed to
the console when you run the code) I’ll write it like this:

Our country is 245 years old!

That vertical bar means “this stuff is the printed result of executing
that code.”

First steps

And actually, before we end this first appendix, let’s talk briefly
about the code in that very first box and what it means.

1.3. THIS BOOK CONTAINS ONLY ELEPHANTS 9

First off, you’ll see that the first line of that code snippet begins
with a hashtag (“#”). This tells Python to ignore that line entirely.
It doesn’t contain Python code, after all, but English text, which
Python can’t understand. This is called a comment. Comments
are used quite often as “notes to oneself,” to organize a program,
or to narrate non-obvious sections of code.

Another use of the hashtag (perhaps even more common) is to
temporarily “comment out” lines of code that you don’t want to
run for the time being. Instead of outright deleting things you want
Python to ignore for the moment, it’s convenient to stick hashtags
on the far-left of such lines, since you can easily remove the hashtags
whenever you want to get Python to recognize those lines again.

Moving on, the very first (non-commented) line of code you’ll put
in every Python program is this one:

from numpy import *

which just means “I’d like to use the NumPy package, please.”
4

The next two lines of code create variables, which are named con-
tainers that hold values. In this case, the values in question are
simply integers, although later in the book we’ll be using variables
to store vectors and matrices and other goodies.

To create a new variable (or change the current value of an existing
variable), you simply give the variable a name (with no spaces or
funky characters) and use the equals sign to assign that variable
a value, as in “founding = 1776”. Unlike in math, a program
variable’s value can change throughout the program any time the
code assigns it a new value.

4
You may see other ways of importing NumPy, particularly this one:

import numpy as np

This is actually slightly better practice, but it also means that any time
you’d want to use NumPy stuff – like the array() function we’ll talk about in
Chapter 2 – you’d have to prefix it with “np.” It’s slightly more convenient to
avoid that for our Python-as-quick-calculator approach.

10 CHAPTER 1. STRETCHING OUR LEGS

The following line is only slightly more complicated: it performs
a subtraction operation to calculate a value for the usa age vari-
able.

5
Some of the symbols used for common mathematical opera-

tions are obvious, and some are not:

+ – addition
- – subtraction
* – multiplication
/ – division
% – modulus (“remainder when dividing by”)

** – exponentiation (“to the power of”)
sqrt(value) – square root

Finally, the last line of that code (with print()) is used for dis-
playing output to the console. Inside the parentheses, you put a
quoted piece of text that you want to display. You put a pair of
back-to-back curly braces (“{}”) to create a placeholder for a vari-
able’s value to be inserted.

6
Then, following the final quotation

mark, you put “.format()” (notice the leading dot) and inside its
parens you list the variables (in order and separated by commas if
there’s more than one) that you want Python to substitute in the
placeholders. Make sure you get the syntax right, character-for-
character, because like most programming things it’s unforgiving.

Code in a Python program executes line-by-line, top-to-bottom. So
after the NumPy library is imported, and the founding variable is
given the value 1776, the next line subtracts 1776 from 2021 and
sets usa age to 245. The print statement then sticks that value
in for the placeholder in its message, and outputs the complete
message to the screen: “Our country is 245 years old!”

That’s it! After you’ve typed this example program into Spyder’s
(or your IDE’s) editor, and run it to see the output shown above in
the console, I hereby declare you Python-ready for the rest of the
book.

5
Underscores are commonly used in variable names to split up multiple

words. Underscores are not considered “funky.”
6
There are other ways, too, of combining text and numbers in a message

without using curly-brace placeholders and the .format() function.

Chapter 2

Vectors

As I stated on p. 1, every “algebra” is comprised of a set of math-
ematical objects which you can combine with various operations.
In linear algebra, those building blocks are vectors and matrices
(singular: matrix). Buried within them are many mysteries. We’ll
cover them in considerable detail in this chapter and the next.

2.1 Vector vs. scalar quantities

The first thing we should do is perhaps distinguish between a vector
quantity and a scalar quantity, which probably had the spotlight
in most of your previous math classes. A scalar value is simply a
single number, like 5, or -3.2, or π, or even 9 + 2i if you’re into
imaginary numbers. The word scalar is related to the word scale,
as in a “scale of measure.” Think of stepping on a scale to weigh
yourself in the morning: your scale gives you back a single number
(which you may or may not like; I won’t judge).

We’ll call scalars one-dimensional values. That might seem odd,
since we haven’t really talked about “dimensions,” yet. But think
of the plain-old number line you learned about back in elemen-
tary school. Zero’s drawn in the middle, positive numbers to the
right and negative numbers to the left, and the whole thing extends

11

12 CHAPTER 2. VECTORS

infinitely in just one direction
1
.

Examples are so ubiquitous they’re hardly worth mentioning. A
person’s weight in the morning is a scalar. A company’s stock price
on a given day is a scalar. So is the net movement (up or down)
of a stock’s price from one day to the next. So is a respondent’s
answer to the survey question “on a 1-to-10 scale, how much do
you enjoy tuna fish?” You can think of countless others.

We of course often use variables to represent scalar quantities, and
in this book we’ll put a variable in italics (like “x” or “price”) to
signify that its underlying value is a scalar quantity.

A vector: a multi-dimensional quantity

Now a vector quantity is kind of the same thing, except that it
represents more than one value. Suppose we wanted to represent
not just a stock’s price on a given day, but an entire year’s worth of
prices on consecutive days. Then, we would need a vector quantity.
Instead of a survey respondent’s answer to just one question, we
might want to store her entire set of answers to all twenty questions
on the survey. Instead of tracking just my weight, I might want to
record my weight, height, BMI (body-mass index), and pulse, all
at a given moment.

Vectors are multi-dimensional quantities. And they can’t be rep-
resented on a number line. Let’s say my weight is 210 lbs. and my
height is 6’2”, or 74 inches. (This is not theoretical.) I could of
course draw a number line and put a dot at 74 and another dot
at 210, but this wouldn’t fully represent the fact that my weight
was 210 and my height was 74. For one thing, the numbers are
on completely different scales. (There’s that word “scale” again.)
For another, it’s not clear which is which – is the right-most point
supposed to be my height, or my weight? Trying to squeeze a
two-dimensional quantity into a one-dimensional number line would

1
It might seem like “two directions,” since the number line goes both to the

left and to the right. But since left-ness is the exact opposite of right-ness, these
are considered “the same direction”; it’s just a matter of how far you go back
or forth you go along that one straight path.

2.1. VECTOR VS. SCALAR QUANTITIES 13

lose information. We need a representation scheme that can ac-
commodate the complexity of our quantity.

For a two-dimensional quantity like weight-and-height, the obvious
choice is the two-dimensional Cartesian plane. I’ve drawn the vec-
tor with my height and weight on the left side of Figure 2.1. You’ll
see that there’s an arrow from the origin to the point (210,74),
rather than just a circular dot at that point, as you might have ex-
pected. This is because sometimes, it turns out, we want to treat a
vector as “a net movement in a particular direction for a particular
distance.”

Figure 2.1: Left: a two-dimensional vector, depicted in a Carte-
sian plane. Right: several copies of the same vector, shown orig-
inating at various points. They’re considered “the same” vec-
tor because they all go in the same direction and have the same
length; the point they start at is irrelevant.

You can see this illustrated on the right-hand side figure, where I’ve
drawn several copies of the same vector. This may seem weird, but
in terms of pictures, here’s how you want to think of it: a vector
has a direction and a magnitude, but not a starting point.
The direction is the specific angle in which it points, and (for now)
we use the word “magnitude” to mean how long the vector is from
its tail to its tip. (As Arya Stark would say, the tip is the “pointy
end” with the arrowhead.) Curiously, there are alternative ways of
judging the length, or magnitude, of a vector, which we’ll revisit in
section 2.6.

In the case of Stephen’s biometric vector, its direction is east-by-
northeast-ish (about 19.4° counter-clockwise from the x-axis) and

14 CHAPTER 2. VECTORS

its magnitude is 222.6. But it doesn’t have any intrinsic “point
of origin”; it’s just an arrow pointing this-a-way and yea-far, no
matter where it might be anchored.

Interestingly, the word vector comes from a root meaning “to carry.”
You may have heard people describe mosquitoes as being “vectors”
for a particular disease – this means that they carry that disease.
By thinking of a vector as an arrow like in Figure 2.1, the “carry”
interpretation might start to make sense. A vector can represent a
transposition from one point to another. If I grew 74 inches taller
and gained 210 more pounds, my point on the Cartesian plane
would move in the direction and the distance of that arrow.

Don’t visualize this

Now that was all for two dimensions. What about vectors with
three, or five, or even twenty dimensions? Well, for the three-
dimensional case you can indeed draw a 3-d figure with three axes,
and plot three-dimensional points on it. It turns out that most
humans, though, are positively horrible at interpreting such plots.
And when you move beyond three dimensions, it’s utterly hopeless.
(A friend of mine in fourth grade claimed he could visualize four
dimensions in his head, but I didn’t believe him and still don’t.)

But importantly, that doesn’t mean we won’t ever deal with higher-
dimensional vectors. In fact, vectors with lots and lots of dimen-
sions will come up constantly for us in this book – believe it or not,
we’ll do an example where the vectors have 50,000 dimensions! :-O

Don’t worry; this won’t make your head explode. In fact, it’s a
lot easier than you might think to work with very high-dimensional
vectors. Consider the example I gave above about tracking a com-
pany’s stock price every day for a year. That’s just a list of 365
numbers, all in a row. How hard is that to imagine?

To work with vectors of more than three dimensions, you only have
to do one thing: give up trying to visualize them in a geometric
space. As I’ll describe in the next section, it only occasionally
makes sense to think about vectors geometrically anyway; much of

2.2. FIVE WAYS TO THINK ABOUT VECTORS 15

the time, we’ll simply think of them as quantities that have more
than one component, unlike their simple brethren the scalars.

Finally, the notation we’ll use for vector variables. Instead of
putting the variable name in italics, we’ll put it in bold-face with
an arrow on the top of it, like this: −→x . The individual compo-
nents of the vector will be listed in boxies (square-brackets) like

this: [−2 5.9 17 − 3]. So, if we define
−−−−−−−→
stephen as the vector

with my height and weight in it, we would write:

−−−−−−−→
stephen = [210 74].

2.2 Five ways to think about vectors

Figure 2.2: Five ways to think about a vector.

In the mathematical writings you’ll encounter, computer scientists
use the word “vector” in a variety of ways. They’re all ultimately

16 CHAPTER 2. VECTORS

compatible with each other, but they can seem disorientingly dif-
ferent at first. Really, it’s a tribute to how powerful the vector
concept is that people use them in so many ways for so many dif-
ferent things.

I’m going to suggest that there are five different ways to think about
a vector, and I’m going to arrange these ways on a continuum from
“concrete” to “abstract.” This spectrum is depicted in Figure 2.2.

Let’s take it from the bottom.

1. A sequence of two coordinates

This is the height-weight example, in which something like
−−−−−−−→
stephen

is an ordered pair that can easily be visualized on a two-dimensional
Cartesian plane. Because of this plotting aspect, I’ll often call the
two parts of the vector coordinates, but as we create vectors with
more pieces I’ll more often call them elements. These terms mean
the same thing – they both refer to the individual components of
the vector.

We will need a way to select one of the coordinates individually,
and for that we use an index number (sometimes abbreviated
to simply “index,” the plural of which is “indices.”) As you can
see in Figure 2.2, I’ve put two smaller numbers directly below the
two coordinates of the bottom vector, to indicate that we call them
“coordinate #0” and “coordinate #1.” We’ll also use the phrase
“index into the vector,” where “index” is a verb. If we take that
bottom-most vector, and index into it at coordinate 1, we get the
(scalar) value 93.

Notation-wise, if we have a two-dimensional vector called
−−−→
bob, we’ll

often write bob0 for the value of the first coordinate and bob1 for
the second.

As an aside, you might wonder why the coordinates are numbered
0 and 1 instead of 1 and 2. The answer has to do with the fact that
we’ll be using Python in this book. Every programming language
has a way of indexing into its vector-like objects, and Python, Java,

2.2. FIVE WAYS TO THINK ABOUT VECTORS 17

and C++ all begin indexing with the number 0. There are actually
some good reasons for this, which I won’t get into. It’s not uni-
versally embraced, however; languages like R and Julia start their
indexing at 1. Go figure.

Geometrically, we can compute a vector’s direction and magnitude
using trigonometry. Figure 2.3 shows a vector −→v = [9 21] picto-

rially. Its 0
th

coordinate (a.k.a. v0) is 9, measured on the x-axis,
and v1 is 21. Traditionally, a two-dimensional vector’s magnitude
is called r (for “radius,” I believe, although don’t think about that
too hard) and its direction is called θ (“theta”). The magnitude is
just the crow-flies distance from the vector’s tail to its tip (com-
puted using the Pythagorean Theorem) and the direction is the
arctangent of the rise-over-run. In equations:

r =

√
v20 + v21

θ = tan
−1 v1

v0

In this case, r works out to 22.8 and θ is 66.8°. Think about this,
too: if, instead of giving you the values of v0 and v1, I instead
gave you the values of r and θ, you’d still have all the information
about the vector, just in a different form. We sometimes call r and
θ the polar coordinates of a vector, and v0 and v1 the Carte-
sian coordinates. The polar coordinates are usually written as
“22.8∡66.8°,” which is the same vector as [9 21], just written in
a different way.

Anyway, I put this way of thinking about vectors at the extreme
“concrete” end of the spectrum, because it’s so nuts-and-bolts and
easy to visualize. As we ascend up the hierarchy, things will get
less and less visualizable.

2. A sequence of more than two coordinates

As I mentioned earlier in this chapter, having more than two co-
ordinates in a vector isn’t really all that weird...you simply have
to give up any hope of visualizing it geometrically. But it’s easy
enough to do: a list of four numbers – 89, 93, 70, and 133 – is

18 CHAPTER 2. VECTORS

Figure 2.3: The direction (θ) and magnitude (r) of the vector
−→v = [9 21]. The direction θ is the angle that −→v makes counter-
clockwise with the x-axis, and the magnitude is the length of the
line.

the most natural thing in the world. One could imagine finding the
sum of the elements, the maximum element, the number of negative
elements, or other more exotic things.

Again, our indexing starts at 0, and this time goes up to 3. Note
what this implies: if we have a vector with four elements, there
is no element #4! This is a common pitfall for newcomers to the
subject and to languages like Python. If I have a vector with n
coordinates, those coordinates are numbered 0 up to n− 1, but not
up to n.

Also note that the number of elements/coordinates is also the di-
mensionality (number of dimensions) of the vector. Simply put,
a vector that has nine elements in it is called “a 9-dimensional
vector.”

2.2. FIVE WAYS TO THINK ABOUT VECTORS 19

3. A collection with non-numeric indices

At this point of the hierarchy, I change my nomenclature from “se-
quence” to “collection.” That’s because here, we don’t number the
elements of our vector anymore but instead name them. Thus there
isn’t any meaningful order to the elements anymore – instead of “IQ
#0,” “IQ #1,” and so forth, we have “Jezebel’s IQ,” “Filbert’s IQ,”
and the like. Nothing super weird here, but things may be starting
to look less and less math-y to you.

I’ll sometimes call the names of the elements labels.

4. A collection with non-numeric elements

And heck, if the indices don’t have to be numbers, why would the
elements need to be? And indeed we will often have cause to work
with vectors like the one in step 4 of the hierarchy (Figure 2.2,
p. 15), in which there’s not a number in sight. This example holds
the favorite colors for each of our four friends, which are of course
non-numeric.

5. Just a “thing”

Finally, you won’t see this usage of vectors until you get to some
more advanced math, but I’d be doing you a disservice if I didn’t
point it out here. I remember the first time I read some research
in which the author was going on and on about “vectors,” and I
was dreadfully confused because none of his “vectors” seemed to
have any elements in them! I was like, “what do you mean vectors,
dude? Did your word processor auto-correct a different word?”

This computer scientist was treating “vectors” as whole objects, not
even considering what their elements were (or whether they even
had any elements). He was working with an abstract notion called
a vector space which we’ll touch on next chapter; for now I’ll just
tell you that it’s closely related to the notion of an algebra that we
discussed in Chapter 1. He was taking advantage of some of the
elegant results presented later in this book, which are guaranteed to

20 CHAPTER 2. VECTORS

hold for whatever mathematical objects you care to define, as long
as you obey certain ground rules – whether those objects have any
“elements” to them or not. I mention this mostly to anchor your
future self in solid ground the first time you inevitably come across
the use of “vector” as a very un-list-like thing. You’ll remember
reading this, say to yourself “ah yes – Stephen warned me once
that the extreme abstract end of the continuum works like this,”
and proceed with confidence. I won’t say anything more about it
in this book.

2.3 And a vector is also a function

Oh, and yet another way to think of vectors: as functions. We’ll
talk about vectors as inputs to functions later in this book. But
it’s worth recognizing at this point that a vector itself essentially is
a function.

You’ll remember from Chapter 3 of Cool, Brisk Walk that a func-
tion is a mapping from a set of inputs to a set of outputs. Each
member of the input set (a.k.a. the “domain”) is assigned a mem-
ber of the output set (“codomain”) as its value. (No member of the
domain can be assigned to more than one member of the codomain,
but the reverse is not a constraint: multiple members of the domain
can be assigned to the same member of the codomain.)

Now consider this vector:

−→x = [45 -12 9 45 0]
0 1 2 3 4

It’s a sequence of numbered elements, sure. But couldn’t it just as
easily be interpreted as a function from index numbers to values?
(See Figure 2.4.)

In function syntax, −→x (0) = 45, −→x (1) = −12, −→x (3) = 45, and so
on. It makes even more sense with a non-numeric vector like the
“favorite color” example (Fig. 2.2), where

−−−−−−−−→
faveColor(Biff) = blue

2.4. VECTOR OPERATIONS 21

Figure 2.4: The vector −→x , interpreted as a function.

and
−−−−−−−−→
faveColor(Betty Lou) = purple. Instead of index numbers,

the function’s domain is comprised of the vector’s labels.

I remember having a real “ah-ha!” moment the day I first real-
ized that vectors (called “arrays” or “lists” in some programming
languages) were really the same as key/value-pair-based associa-
tive arrays (also called “dictionaries” or “hash tables”) with an
index number as the key. Later, I had another “ah-ha!” and real-
ized that both were equivalent to functions as well, if you viewed
the keys/indices as the function’s domain and the elements as the
codomain. Wow. Sometimes it seems like the universe is really all
just one thing.

2.4 Vector operations

We’re going to be combining scalars/vectors to yield other scalars/
vectors like literally all the time. The following three operations
must be mastered until you can do them in your sleep.

Operation #1: Scalar-vector multiplication

What do you think you’d get if you multiplied a scalar like 2 by a
vector like [3 0 4]? As with all mathematics, we can define this

22 CHAPTER 2. VECTORS

operation to be anything we want. A reasonable guess would be to
take the scalar number of copies of the vector, like so:

2 ⋅ [3 0 4] = [3 0 4 3 0 4]? NOPE

But we’re not doing to define it that way. Instead, we’ll multiply the
scalar by each of the vector’s elements individually, to get another
vector with the same number of elements:

2 ⋅ [3 0 4] = [6 0 8]

This turns out to be more useful. So in general, a scalar a times a
vector −→v will be:

Scalar-vector multiplication:

a−→v = a[v0 v1 . . . vn−1] = [a ⋅ v0 a ⋅ v1 . . . a ⋅ vn−1],

where n is the number of elements in the vector.

Interestingly, there’s no such thing (in common use) as “scalar-
vector addition.” In other words, if someone tried to do this:

2 + [3 0 4] = ??

we’re simply going to say “no can do.”

By the way, some programming languages (including Python) do
give the programmer a convenient shorthand by allowing them to
type 2+ [3 0 4] and get the value [5 2 6]. This isn’t consid-
ered a bona fide mathematical operation, though; just a notational
convenience.

Operation #2: Vector addition

Adding two vectors together, though, is a perfectly acceptable en-
terprise, provided that the vectors have the same number of ele-
ments. The way we do it is to add each pair of elements together

2.4. VECTOR OPERATIONS 23

and produce another vector of the same number of dimensions. In
other words, adding [2 9] to [4 − 2] gives us:

[2 9] + [4 − 2] = [6 7],

and in general:

Vector addition:

−→x + −→y = [x0 x1 . . . xn−1] + [y0 y1 . . . yn−1]
= [x0 + y0 x1 + y1 . . . xn−1 + yn−1],

where n is the number of elements in each vector.

An important issue arises in level 3 of our Figure 2.2 hierarchy
(p. 15). How do we add two vectors that aren’t indexed by number?
Answer: we add the elements from each vector that correspond to
the same label. And yes, the vectors must have exactly the same
labels in order to be legitimately added in this way; otherwise, we
call the whole thing off. So:

[3 5 8] + [1 -6 4] =
peacock green plum peacock green plum

[4 -1 12],
peacock green plum

and

[2 1 4] + [3 3 0] =
scarlet mustard green scarlet white plum

“no can do.”

You can probably tell that vector addition is commutative, mean-
ing that whether we add −→x + −→y or −→y + −→x , we get the same answer.
It’s also true that vector addition, combined with scalar-vector mul-
tiplication, is distributive. This means:

24 CHAPTER 2. VECTORS

a(−→x + −→y) = a−→x + a−→y

and

(a + b)−→x = a−→x + b−→x

for any scalars a and b and vectors −→x and −→y . This is a useful fact
to know, which we’ll sometimes rely on.

By the way, you might wonder whether vector subtraction is a
thing, and it is: in fact it turns out to just use scalar multiplication
by −1. So:

−→x − −→y =
−→x + (−1−→y) =

[x0 − y0 x1 − y1 . . . xn−1 − yn−1].

For example, [5 2 7] − [1 4 7] is just [4 − 2 0].

Operation #3: Vector multiplication (dot product)

Our third and final vector operation is the least intuitive of the
three; at least, it doesn’t work the way I expected it to when I first
learned it. It’s most commonly called the dot product.

2

The first thing you have to wrap your head around is the fact that
two vectors multiplied together give you a scalar. Yeah, no cap: if
you multiply an 18-dimensional vector by another 18-dimensional
vector, you get back a single lonely number.

Operationally, what happens is that you multiply the corresponding
elements of the two vectors together, and then add the result. So:

2
There is at least one other type of vector multiplication in common use,

which we won’t need in this book. It’s called the cross product, and is desig-
nated by a × instead of a ⋅. Interestingly, although the dot product is defined
for vectors of any number of dimensions, the cross product is only defined for
vectors of exactly three dimensions. (Not 2. Not 4. Only exactly 3.) Another
curious fact is that the cross product between two vectors gives you a vector
back, not a scalar like the dot product does.

2.4. VECTOR OPERATIONS 25

[7 8] ⋅ [5 1] = 7 ⋅ 5 + 8 ⋅ 1 = 43

As with vector addition, we disallow taking the dot product of two
vectors with differing numbers of elements. Also, in the case of
vectors with labels instead of index numbers, we insist that the
vectors have identical labels in order to meaningfully dot-product
them.

Vector multiplication (dot product):

−→x ⋅ −→y = [x0 x1 . . . xn−1] ⋅ [y0 y1 . . . yn−1]
= x0 ⋅ y0 + x1 ⋅ y1 + ⋅ ⋅ ⋅ + xn−1 ⋅ yn−1,

where n is the number of elements in each vector.

It should be obvious to you that the dot product operation is com-
mutative: −→x ⋅ −→y always gives the same result as −→y ⋅ −→x .

Why?

Okay, now to address the elephant in the living room: why would
mathematicians define vector multiplication in this way? What’s
the matter with just multiplying corresponding elements and yield-
ing a vector answer, like we did with vector addition?

The answer is that the dot product as defined above is incredibly
useful, much more so than pairwise-multiplication will turn out to
be. In fact, it’s possibly the single most important calculation in
linear algebra: all kinds of applications and more advanced compu-
tations use it as a building block.

To see this, consider the following question. What needs to be true
about two vectors in order for them to have a large dot product?

Your first inclination might be to answer “the individual vector
entries need to be large.” This is sort of true...but only sort of.
Consider the following two vectors:

26 CHAPTER 2. VECTORS

−→a = [95 0 381]
−→
b = [0 1056 0]

Thar’s som’ mighty big entries in them vectors. Surely multiplying
them together would give a large result, right? No:

[95 0 381] ⋅ [0 1056 0] =
95 ⋅ 0 + 0 ⋅ 1056 + 381 ⋅ 0 = 0.

We get zilch. By contrast, these two wimpy-looking vectors:

−→c = [1 2 5]
−→
d = [0 2 7]

do give a fairly hefty result:

[1 2 5] ⋅ [0 2 7] =
1 ⋅ 0 + 2 ⋅ 2 + 5 ⋅ 7 = 39.

What’s going on here?

If you stare at the above calculations, you’ll hit on a deep truth
which is worth pondering at length. And that is that in order for
the dot product to be large, the vectors must not only have large
entries, but be large in the same places.

The reason that −→a and
−→
b had such a stunningly low dot product is

that although they had large entries, they were completely out of

sync with each other. −→a had high values precisely where
−→
b had low

ones, and vice versa. On the other hand, even though the individual

2.4. VECTOR OPERATIONS 27

elements of −→c and
−→
d were pretty small, they fit together nicely: for

example, −→c ’s largest entry and
−→
d ’s largest entry were in the same

place (element #2), which led to a kind of synergy.

Consider how the dot product would change if we altered
−→
d to be

[7 2 0] instead of [0 2 7]:

[1 2 5] ⋅ [7 2 0] =
1 ⋅ 7 + 2 ⋅ 2 + 5 ⋅ 0 = 11.

Dang, we dropped from 39 all the way to 11 just by reordering the
entries.

This ability to judge roughly “how aligned” two vectors are comes
up all the time. Consider a dating website. Let’s say that Jezebel,
a heterosexual female, signs up for a dating service and answers the
questions on a compatibility survey. She’s asked, “on a scale of 1
to 10, how much do you like action movies? Outdoor hikes? Can-
dlelight dinners? Reading mystery novels?” Suppose her answers
are the following:

−−−−−−→
jezebel = [5 2 10 2]

action hiking candlelight mystery

Now there are three eligible heterosexual bachelors on this site:
Biff, Filbert, and Wendell. They also took the survey, and came up
with these responses:

−−→
biff = [10 10 1 1]

action hiking candlelight mystery

−−−−−→
filbert = [6 2 8 4]

action hiking candlelight mystery

−−−−−−→
wendell = [1 3 3 10]

action hiking candlelight mystery

28 CHAPTER 2. VECTORS

The central question that matchmaker.com must ask is: which of
these three young gentlemen should be recommended to Jezebel?

The answer lies in the dot product. Just by eyeballing the survey
results, you can probably tell that Filbert is Jezebel’s best match:
he has high values in roughly the same place that she does. If we
compute the dot product of Jezebel with each of the three guys, we
see that the math bears that out:

−−−−−−→
jezebel ⋅

−−→
biff = 5 ⋅ 10 + 2 ⋅ 10 + 10 ⋅ 1 + 2 ⋅ 1 = 82

−−−−−−→
jezebel ⋅

−−−−−→
filbert = 5 ⋅ 6 + 2 ⋅ 2 + 10 ⋅ 8 + 2 ⋅ 4 = 122

−−−−−−→
jezebel ⋅

−−−−−−→
wendell = 5 ⋅ 1 + 2 ⋅ 3 + 10 ⋅ 3 + 2 ⋅ 10 = 61

Since Filbert has the highest dot product with Jezebel, Filbert’s
vector is in some sense “more closely aligned” with hers, reflecting
their similar interests. So our website will show Filbert’s pic and
profile to Jezebel.

It might occur to you that someone could “beat the system” here
by answering 10 on all their survey questions. After all, increasing
the individual entries in a vector can’t hurt its dot product with
another vector; the worst it could do is not help matters, if the
second vector has a zero there. So let’s say the insidious Mr. Right
(?) creates an account on the system, and answers:

−−−−−−→
mrright = [10 10 10 10]

action hiking candlelight mystery

Pairing him with Jezebel yields:

−−−−−−→
jezebel ⋅

−−−−−−→
mrright = 5 ⋅ 10 + 2 ⋅ 10 + 10 ⋅ 10 + 2 ⋅ 10 = 190

2.4. VECTOR OPERATIONS 29

which blows away the competition. Mr. Right can have any girl he
wants, whether or not he and she are truly compatible. There’s a
way to fix this, which we’ll see later in this chapter (section 2.7,
p. 43). For now, just grasp the main point that two vectors having
large entries in the same places tends to magnify their dot product.

Geometric interpretation

Now let’s build some geometric intuition about the dot product.

Consider the two vectors −→a and
−→
b in Figure 2.5. −→a is the vector

[2 0] and
−→
b is [0 3]. What is their dot product? 2 ⋅ 0+ 0 ⋅ 3 =

a big fat zero.

Figure 2.5: Two vectors whose dot product is 0.

Okay, same exercise, but now in Figure 2.6. Now we have the

vectors −→a = [3 3] and
−→
b = [−2 2]. What is their dot product?

Once more, zero: 3 ⋅ −2 + 3 ⋅ 2 = 0.

One more chorus. Figure 2.7 shows the vectors −→a = [1 − 2] and
−→
b = [−4 − 2]. What is their dot product? Yet again, exactly
zero: 1 ⋅ −4 + −2 ⋅ −2 = 0.

30 CHAPTER 2. VECTORS

Figure 2.6: Another two vectors whose dot product is 0.

Figure 2.7: Yet another two vectors whose dot product is 0.

Three pairs of vectors, all of which have zero dot products. Now
what’s common to all three examples? Answer: the vectors are
perpendicular to each other. This is easier to see when we plot each
pair on the same graph, as in Figure 2.8.

Whenever you have two vectors at exactly right angles to each
other, their dot product will be at a minimum; namely, zero. Our
linear algebra term for this, annoyingly, is not “perpendicular” (a
word you already know) but orthogonal. When two vectors are
orthogonal, they’re “as unaligned as possible.”

Think of it this way. Pick any of the three pairs of vectors in Fig-

ure 2.8, and pretend that your goal is to go in the
−→
b direction. You

want to get “as b-ward as possible.” But suppose your only option

2.5. THE VECTOR OPERATIONS IN ACTION 31

Figure 2.8: The three pairs of vectors plotted together. The fact
that they are orthogonal to each other is what makes their dot
products zero.

was to go in the direction of −→a . Would you make any meaningful
progress towards your goal? The answer is no: −→a is exactly the
direction that doesn’t let you move anywhere you want to go. On
the left-most figure, for example, if your goal was to get from the
origin due north to the point (0, 15), you can’t make any progress
whatsoever if you’re allowed only to travel along the x-axis. And
that’s true for all three of those pairs.

To get a non-zero dot product, the two vectors at least have to
point somewhat in the same direction. Take the two in Figure 2.9,

where −→a = [3 − 3] and
−→
b = [2 − 4]. These vectors are

clearly not orthogonal, and hence their dot product is non-zero:
3 ⋅ 2 + −3 ⋅ −4 = 18.

In general, the more the arrows point in the same direction, the
higher the dot product, holding everything else equal. The more
they diverge to right angles, the more the dot product drops to
zero. I’ll have more to say about this in Section 2.6 when we look
at an alternate way to compute the dot product geometrically.

2.5 The vector operations in action

This book is chock full of examples of using vectors in the real
world. Let me give one now which illustrates the eminent usefulness
of these three vector operations.

32 CHAPTER 2. VECTORS

Figure 2.9: Two non-orthogonal vectors, whose dot product is
18.

Let’s say we’ve been tasked with baking goodies for a bake sale.
There are three recipes we’re planning on making in bulk: chocolate
chippers (my personal fave), brownies, and fudge. Upon consulting
our recipe book, we write down an ingredient list for each:

−−−−−−−→
chippers = [2 1 1 1 3]

butter sugar chips flour eggs

−−−−−−−−→
brownies = [1 1 4 2 2]

butter sugar chips flour eggs

−−−−→
fudge = [2 2 4 0 0].

butter sugar chips flour eggs

This shows, for each of our five ingredients, how many “units” of

2.5. THE VECTOR OPERATIONS IN ACTION 33

each one is required for one recipe’s worth.
3

Chocolate chip cookies
evidently require two sticks of butter, one cup of sugar, one package
of Ghirardelli chocolate chips, etc.

Additionally, we define these two vectors:

−−−−−−−−→wegmans = [1.59 2.79 3.49 1.67 .4]
butter sugar chips flour eggs

−−−−→
satfat = [56 0 24 1 1.6]

butter sugar chips flour eggs

The first shows how much each of these ingredients is currently
selling for at Wegmans. For the health-conscious, the second shows
how many grams of saturated fat is present in each unit of the
various ingredients. (*shudder*)

Now, let’s consider some common questions we might need to an-
swer:

1. “If we want to bake five batches of chocolate chippers for our
bake sale, what’s on our shopping list?”

The answer is a simple vector operation:

−−−−−−−−−−−→
shoppinglist = 5

−−−−−−−→
chippers

= [10 5 5 5 15]
butter sugar chips flour eggs

Scalar-vector multiplication gives us exactly what we want:
multiply the number of recipes by each ingredient’s per-recipe
quantity.

3
Warning: do not attempt to use these ingredient lists to actually make real

goodies! I have left many things out for simplicity. These would taste ratchet
if you made them. Consult a real recipe book.

34 CHAPTER 2. VECTORS

2. “We’ve decided on six recipes of brownies and fudge, plus a
dozen batches of chocolate chippers. What’s on our shopping
list?”

Putting vector addition into the mix (see what I did there?)
gives us our elegant answer:

−−−−−−−−−−−→
shoppinglist = 6

−−−−−−−−→
brownies + 6

−−−−→
fudge + 12

−−−−−−−→
chippers

= [42 30 60 24 48]
butter sugar chips flour eggs

3. “My recipe tells me there are 16 brownies in a batch. How
much saturated fat is in each brownie?”

Here’s where the dot product comes in handy. We have a

vector (
−−−−−−−−→
brownies) that gives us the amount of each ingredi-

ent, and another (
−−−−→
satfat) that gives us per-unit fat content.

The dot product is just what we need: multiply each ingre-
dient amount by its fat content, and add up the results. It’s
a snap! All we then need to do is find the per-serving total
by taking only a sixteenth of a batch, which is scalar-vector
multiplication again. Putting it all together:

fatPerBrownie =
1

16
(−−−−−−−−→brownies ⋅

−−−−→
satfat)

=
1

16
(1 ⋅ 56 + 1 ⋅ 0 + 4 ⋅ 24 + 2 ⋅ 1 + 2 ⋅ 1.6)

= 9.825 grams.

Ouch. Better sneak just one of those.

4. Finally, “how much is this all going to cost me at Wegmans?”

We already computed the grand shopping list in question 2,
above. To get the cost of this list, we again simply use the
dot product:

2.6. MORE ABOUT MAGNITUDE 35

totalCost =
−−−−−−−−−−−→
shoppinglist ⋅ −−−−−−−−→wegmans

= 42 ⋅ 1.59 + 30 ⋅ 2.79 + 60 ⋅ 3.49 + 24 ⋅ 1.67 + 48 ⋅ .4

= $419.16.

Wowza: I sure hope we sell all these!

Hopefully this gives you a feel for why the three operations – and
especially the dot product – are eminently useful. They turn out
to be exactly what we want to do with vectors much of the time,
which is why they were invented. Get to know them intimately.

2.6 More about magnitude

Flip for a moment back to Figure 2.3 on p. 18. You’ll recall that
we defined the “magnitude” of the −→v vector as r: the crow-flies
distance from its tail to its tip, as computed by the Pythagorean

Theorem. In that case, we computed r =

√
v20 + v21 = 22.8 for −→v ’s

magnitude.

Now like all of mathematics, we can define things however we want.
It turns out that this crow-flies distance thing – also called the
Euclidean distance after Euclid, the ancient Greek geometer – is
only one possible way to define the “length” or “magnitude” of a
vector. This section includes several others which prove useful in
various settings.

Oh, and before we get started, here’s yet another piece of verbiage.
The preferred mathematical term for the sort of generalized mag-
nitude measurement presented below is the “norm” of a vector.
We’ll define several different norms, each of which offers a differ-
ent take on measuring a vector’s “size” or “bigness.” No matter
how we define it, the norm of a vector is always a scalar. We use
double-pipe signs to represent it, like this: ∥−→v∥.

36 CHAPTER 2. VECTORS

The Euclidean (“ℓ
2
”) norm

The most common norm is the Euclidean norm, which is just
what we covered on p. 18. The Pythagorean Theorem is your friend.

The Euclidean norm is used for many, many things, one of which is
a second, equally legitimate way to compute and to think about the
dot product between two vectors. First, recall the cosine operation
from trigonometry. The cosine of a 0° angle is 1, the cosine of a 90°
angle is zero, and in between those two extremes the cosine varies
smoothly from 1 down to 0.

Now suppose we have a couple of two-dimensional vectors −→a and
−→
b . We’ll use the same ones from the example on p. 32, shown here
in Figure 2.10. To refresh your memory, the vector −→a is [3 − 3]
and

−→
b is [2 − 4].

Figure 2.10: An alternate way to compute the dot product of two
vectors, using the angle between them in the calculation.

We’ve learned that one way to compute the dot product between
−→a and

−→
b is to multiply their corresponding entries:

−→a ⋅
−→
b = 3 ⋅ 2 + (−3) ⋅ (−4) = 18.

2.6. MORE ABOUT MAGNITUDE 37

Here’s another way. We can multiply the two norms together, and
then multiply by the cosine of the angle between them. You can
really see why it’s called the dot “product” when you think of it
this way. Multiplying vectors is just multiplying their lengths...but
there’s a catch. We also multiply by the cosine of their angle,
so that the more they diverge from each other, the lower the dot
product.

In this example, we compute the angle between them (called θ in
the figure):

angle of −→a = tan
−1 −3

3
= −45°

angle of
−→
b = tan

−1 −4

2
= −63.43°

θ = angle between −→a and
−→
b = −45° − (−63.43°) = 18.43°

Now we can compute the dot product our new way:

−→a ⋅
−→
b = ∥−→a∥ ⋅ ∥−→b∥ ⋅ cos θ =

√
32 + (−3)2 ⋅

√
22 + (−4)2 ⋅ cos 18.43° =

4.243 ⋅ 4.472 ⋅ .948 = 18.

Yay! Same answer. I’ve found this a super useful way to visualize
the dot product, even though it’s often more convenient to calculate
it the original way. A long vector times a long vector will give a
large answer...provided those long vectors are kinda sort pointing in
the same direction. If they’re not – and most especially, if they’re
at right angles to each other, a la the Figure 2.8 examples (p. 31) –
then the dot product can be miniscule even if the vectors themselves
are long.

Okay, enough about the dot product. Back to the Euclidean norm
itself. So far we’ve been assuming two dimensions. But impor-
tantly, the Euclidean norm applies equally well in any number of

38 CHAPTER 2. VECTORS

dimensions. Suppose we had a five-dimensional vector, like this
one:

−→
f = [3 − 4 5 17 0].

The Pythagorean Theorem – which in high school you may have
only learned in a two-dimensional setting – still works just fine:

∥−→f ∥ =

√
32 + (−4)2 + 52 + 172 + 02 = 18.412.

Note: you still square the entries and take the square root of the
sum. (You don’t take the fifth power of the entries and the fifth
root of the sum, like I expected when I first learned this.)

The result is (*deep breath*): “the length of the straight line from
the origin to the point (3,−4, 5, 17, 0) in five-dimensional space.”
You can’t visualize it, so don’t try. Just believe. No matter how
many entries a vector has, you can compute its crow-flies length
this way.

Now for weird but ultimately consistent reasons, this Euclidean
norm is also called the “ℓ

2
norm”

4
of the vector. And we will

sometimes write the 2 in as a subscript to the double-pipe, like
this:

∥−→f ∥2 = 18.412.

I know it seems strange, but just go with it for now. And remem-
ber this, too: if we don’t have any subscript after the ∥⋅∥ signs,
the default is 2. In other words, unless explicitly stated, the “nor-
mal” meaning of norm is the ℓ

2
norm, a.k.a. Euclidean distance,

computed by the Pythagorean Theorem.

4
Pronounced “ell two,” not “ell squared.”

2.6. MORE ABOUT MAGNITUDE 39

The Manhattan (“ℓ
1
”) norm

Imagine yourself in downtown Manhattan, New York City. You’re
a software developer on an upper floor of the sleek new building at
the corner of 33rd Street and 8th Avenue. It’s just about time for
lunch, and you and your fellow developers are discussing where to
go – the Thai place on 25th St. and 10th Ave.? The new Hungarian
restaurant that opened up on 44th St. and 6th Ave.? Or will it be
just the greasy subway shop four blocks uptown today?

One of the factors in your decision is the distance: you can’t take
forever for lunch because you have a team meeting at 1:30pm. So
you need to work out how long it will take to walk (or take a
taxicab) to each of these places.

Now one (stupid) approach would be to use find the latitude and
longitude of both your office and each of the restaurants, and com-
pute the Euclidean distance. I say “stupid” because this is really
only useful if you have a helicopter. (We can dream.) In my world,
you can’t fly over buildings; you have to walk around them. There’s
no point in computing the crow-flies distance if you’re not a crow.

So how do we determine the distance? Simple: it’s just the num-
ber of blocks you have to walk. Consider the Thai place. To get
from 35th Street to 24th, we have to walk five blocks. To get from
8th Avenue to 10th, we have to walk two. Therefore, the walk-
ing distance between these two restaurants is “ten blocks.” Note
that it doesn’t matter whether we walk the blocks west first and
then south, or south first and then west, or zig-zag back and forth
between streets and avenues: as long as we travel one of the short-
est routes through the buildings (which means never going east or
north), it’ll be ten blocks.

For reasons which should now be obvious, this way to measure dis-
tance is called the Manhattan norm (or taxicab norm). You
can measure the Manhattan distance between two points by sim-
ply adding the absolute value of the pairwise differences between
elements. That’s easier to do than to say. For our office-to-Thai-
restaurant journey:

40 CHAPTER 2. VECTORS

distManhattan = ∣33 − 25∣ + ∣8 − 10∣ = 8 + 2 = 10 blocks

The Euclidean distance, of course, is somewhat less:

distEuclidean =

√
(33 − 25)2 + (8 − 10)2 = 8.246 blocks

which is why helicopters can be useful.

When speaking of the norm of a vector, we always start at the
origin and travel out from there. The Manhattan norm of a vector
−→v , which is written ∥−→v∥1, is thus:

∥−→v∥1 = ∣v0∣ + ∣v1∣ +⋯+ ∣vn−1∣,

where n is the vector’s number of dimensions. For example, let’s

compute the Manhattan norm of the 5-d vector
−→
f we previously

used (with value [3 − 4 5 17 0], you’ll recall):

∥−→f ∥1 = ∣3∣ + ∣ − 4∣ + ∣5∣ + ∣17∣ + ∣0∣ = 29.

Quite a bit higher than the Euclidean norm of 18.412, as expected.

By the way, just as the Euclidean norm was called the ℓ
2

norm,
the Manhattan norm is called the ℓ

1
(“ell one”) norm. You might

take a moment to mull over why, and then see if you’re right when
I unveil the explanation in the next section.

This “ℓ
#
” business

Okay. Here’s how the Euclidean, Manhattan, and all the other
norms we haven’t yet discussed are related.

First, I’m going to write the formula for the Manhattan norm in
a slightly different way. You’ll probably wonder why I would com-
plicate the expression, but suspend your disbelief for a moment.
Instead of this:

2.6. MORE ABOUT MAGNITUDE 41

∥−→v∥1 = ∣v0∣ + ∣v1∣ +⋯+ ∣vn−1∣,

I’m going to write it this way:

∥−→v∥1 =
1
√
∣v0∣1 + ∣v1∣1 +⋯+ ∣vn−1∣1.

Wut? Yeah. First, convince yourself that I haven’t actually changed
anything. Remember that any number “to the first power” is just
the number itself. And notice that I’m not taking the square root
here, but “the first root.” If you didn’t know this, “the first root”
of a number is also just the number itself.

Bottom line is that these two formulas for the Manhattan norm are
identical.

All right, but why do this? Here’s why. Check out these two
expressions, back to back:

∥−→v∥1 =
1
√
∣v0∣1 + ∣v1∣1 +⋯+ ∣vn−1∣1 (Manhattan norm)

∥−→v∥2 =
2
√
∣v0∣2 + ∣v1∣2 +⋯+ ∣vn−1∣2 (Euclidean norm)

Aha. See where I’m going with this? I’ve slipped in absolute value
signs in the Euclidean norm elements – but that’s okay, since if you
square a negative number you get a positive result anyway. And
I put a “2” above the root sign, to be explicit that it’s the square
root. Now the formulas are identical except for “1” vs. “2.”

And now I’m going to tell you that we can use any number, not
just 1 or 2. The others don’t have special names, but they’re legit
nonetheless:

42 CHAPTER 2. VECTORS

∥−→v∥1 =
1
√
∣v0∣1 + ∣v1∣1 +⋯+ ∣vn−1∣1 (Manhattan norm)

∥−→v∥2 =
2
√
∣v0∣2 + ∣v1∣2 +⋯+ ∣vn−1∣2 (Euclidean norm)

∥−→v∥3 =
3
√
∣v0∣3 + ∣v1∣3 +⋯+ ∣vn−1∣3 (ℓ

3
norm)

∥−→v∥4 =
4
√
∣v0∣4 + ∣v1∣4 +⋯+ ∣vn−1∣4 (ℓ

4
norm)

∥−→v∥5 =
5
√
∣v0∣5 + ∣v1∣5 +⋯+ ∣vn−1∣5 (ℓ

5
norm)

⋮

∥−→v∥∞ =
∞
√
∣v0∣∞ + ∣v1∣∞ +⋯+ ∣vn−1∣∞ (ℓ

∞
norm)

That’s right, we can even have an “infinity norm.” So what do all
these options do?

ℓ
3
and higher norms

Let’s go back to our friend
−→
f whose value is [3 − 4 5 17 0].

We’ve already computed the first two norms; let’s keep going and
see what happens:

∥−→f ∥1 =
1
√
∣3∣1 + ∣ − 4∣1 + ∣5∣1 + ∣17∣1 + ∣0∣1 = 29

∥−→f ∥2 =
2
√
∣3∣2 + ∣ − 4∣2 + ∣5∣2 + ∣17∣2 + ∣0∣2 = 18.412

∥−→f ∥3 =
3
√
∣3∣3 + ∣ − 4∣3 + ∣5∣3 + ∣17∣3 + ∣0∣3 = 17.246

∥−→f ∥4 =
4
√
∣3∣4 + ∣ − 4∣4 + ∣5∣4 + ∣17∣4 + ∣0∣4 = 17.049

∥−→f ∥5 =
5
√
∣3∣5 + ∣ − 4∣5 + ∣5∣5 + ∣17∣5 + ∣0∣5 = 17.010

⋮

∥−→f ∥∞ =
∞
√
∣3∣∞ + ∣ − 4∣∞ + ∣5∣∞ + ∣17∣∞ + ∣0∣∞ = 17.

It’s interesting: the numbers get smaller and smaller as we increase
the # in “ℓ

#
”, and they finally converge on the highest individual

2.7. NORMALIZING 43

element of the vector. Cool!
−→
f ’s highest entry was 17, and lo and

behold that’s what the ℓ
∞

norm gives us.

The method to the madness is this: the higher the norm we take
of a vector, the more that only the single largest element matters.
The lower the norm we take, the more that all the elements equally
matter. Think about the Manhattan norm: we simply added up
the (absolute value of the) elements. Every element had a chance to
shine. Higher and higher norms squeeze the life out of everything
except the single highest value.

The ℓ
0
norm

Lastly, and mostly for fun, I’ll throw a “ℓ
0
” norm in. What does the

“zero norm” do? It’s defined to be the number of non-zero elements

in the vector. So for our friend
−→
f , we say that ∥−→f ∥0 = 4. This is

at the other extreme from the infinity norm: now not only do all
the elements count, but they count equally. I don’t care if you’re
17 or 3; as long as you’re not zero you count towards my ℓ

0
norm.

2.7 Normalizing

Finally, let me mention the concept of “normalizing” a vector. To
normalize a vector means to whack it down to size: make its length
be exactly 1. We do this when we only care about a vector’s direc-
tion, not its magnitude, and when the magnitude might actually
get in the way.

First I’ll tell you how to do this, and then give you an idea of why
we’d want to. The how part is easy: you just divide the vector
by its norm. (We can choose whichever norm is appropriate, often
Euclidean.) Just as “subtracting two vectors” meant “multiply the
second vector by −1 and add them,” so “dividing a vector by a
scalar” means “multiply the vector by 1-over-the-scalar.”

For example, if we normalize our vector
−→
b = [2 − 4] from the

last section, we get:

44 CHAPTER 2. VECTORS

−→
b

∥−→b∥
=

[2 − 4]
∥[2 − 4]∥ =

[2 − 4]√
22 + (−4)2

=
[2 − 4]

4.472
= [.447 − .894].

This is a vector that’s in the same direction as
−→
b , but of magnitude

1. We can verify this:

angle = tan
−1 −.894

.447
= −63.43°,

magnitude =

√
.4472 + (−.894)2 = 1.

Okay, now why would we want to normalize a vector? Isn’t throw-
ing away the magnitude tantamount to losing important informa-
tion? Well, it depends. Let’s return to our matchmaker dating
site (p. 27). You’ll recall that the odious Mr. Right was trying to
game the system by answering 10 to all the survey questions. “Ac-
tion movies? I love ’em! Hiking! Love it! Candlelight dinners?
Love ’em!...” He figured he could be every woman’s dream match
because he’d have the maximum dot product with all of them.

But if we normalize each person’s vector before taking the dot prod-
uct, we put everybody on the same playing field. Effectively, each
person has the same amount of points to “spend” on the various
survey questions, and giving a high answer to one question means
you’re essentially going to have to give a low answer to others.

Consider Filbert, whose answers were:

−−−−−→
filbert = [6 2 8 4]

action hiking candlelight mystery

His norm was
√

62 + 22 + 82 + 42 = 10.95, so when we normalize
him, we get:

−−−−−→
filbert

∥−−−−−→filbert∥
= [.548 .183 .730 .365]

action hiking candlelight mystery

2.7. NORMALIZING 45

Biff’s norm was
√

102 + 102 + 12 + 12 = 14.21, so when we normalize
him, we get:

−−→
biff

∥−−→biff∥
= [.704 .704 .070 .070]

action hiking candlelight mystery

As for Mr. Right, he has the largest norm:
√

102 + 102 + 102 + 102 =
20. So no matter how much he tries to fool the ladies with his huge
answers, his normalized version is simply:

−−−−−−−→
mrright

∥−−−−−−−→mrright∥
= [.5 .5 .5 .5]

action hiking candlelight mystery

See how that works? Your survey responses now become relative
to your other survey responses. Answering 10 to everything is the
same as answering 5 to everything, or even 0 to everything: you’re
effectively saying “I like all these activities equally.” The only way
to truly say “I really do love candlelight dinners” is to rank candle-
light dinners higher than other activities which you admit you like
less.

Using normalized versions of the vectors, let’s see how each of our
eligible bachelors pairs up with Jezebel:

−−−−−−→
jezebel ⋅

−−→
biff = .434 ⋅ .704 + .173 ⋅ .704 + .867 ⋅ .070 + .173 ⋅ .070 = .5

−−−−−−→
jezebel ⋅

−−−−−→
filbert = .434 ⋅ .548 + .173 ⋅ .183 + .867 ⋅ .730 + .173 ⋅ .365 = .966

−−−−−−→
jezebel ⋅

−−−−−−−→
wendell = .434 ⋅ .092 + .173 ⋅ .275 + .867 ⋅ .275 + .173 ⋅ .917 = .485

−−−−−−→
jezebel ⋅

−−−−−−−→
mrright = .434 ⋅ .500 + .173 ⋅ .500 + .867 ⋅ .500 + .173 ⋅ .500 = .824

Filbert wins, and Mr. Right is defeated: normalization revealed
that Filbert is truly more compatible with Jezebel than he is.

Let’s bring this chapter to a close, and wish Filbert and Jezebel a
very romantic evening together. :)

46 CHAPTER 2. VECTORS

3 Appendix: Python

In this Python appendix, we’ll focus mostly on how to create vec-
tors in Python, and how to perform operations on them. For this,
we’ll use the ndarray type from the NumPy library. Creating an
ndarray (or just “array” for short)

5
has the effect of introducing

a named variable whose value is a whole sequence of numbers, not
just a single number as with a scalar variable. In Python, each
element of an array has a consecutive index number, and as I men-
tioned on p. 16, these indices start at 0 instead of at 1.

Creating vectors (arrays)

In our first example, we use the array() NumPy function to create
a brief history of local temperatures

6
:

temps = array([42,48,47,51,32])

(This line of code, and all others, must come after the standard
“from numpy import *” preamble mentioned on p. 9, of course.)

Notice very carefully that the above line of code has a pair of “box-
ies” (square brackets) inside the pair of parentheses. It won’t work
without both pairs, in the correct nesting order. Anyway, after
running that code we now have a new array that goes by the name
temps. We can use the print() function to see all its values:

print(temps)

5
An “array” is basically another name for a list of items. Python also has a

simpler type – called a list – that could be used as a primitive, makeshift sort
of vector. NumPy arrays are the better choice for data-centric applications,
though, and have many convenient features over plain-Jane lists. By the way,
the first two letters of ndarray stand for “n-dimensional.”

6
I’m writing this chapter in the wintertime, by the way, which may explain

my frosty Fredericksburg.

2.7. NORMALIZING 47

[42 48 47 51 32]

It will also be useful sometimes to create a vector of all zeros. (This
is helpful when we have an array of different cumulative counts.)
The zeros() function can be used here:

nada = zeros(6)

print(nada)

[0. 0. 0. 0. 0. 0.]

(The trailing decimal points, by the way, indicate that these entries
are stored as floating-point numbers (“decimal numbers”) instead
of integers. This won’t be super important for us.)

It’s also common to create a vector with a sequence of consecutive
entries. For this, we have the arange() function

7
which can be

given one, two, or three numbers inside the parens:

a = arange(7)

b = arange(5,12)

c = arange(5,50,5)

print(a)

print(b)

print(c)

[0 1 2 3 4 5 6]

[5 6 7 8 9 10 11]

[5 10 15 20 25 30 35 40 45]

7
Be careful – this is not the English word arrange which has two r’s in it!

Instead, it’s an amalgamation of the phrase “array range.”

48 CHAPTER 2. VECTORS

As you can see, the first version yields a vector of the appropriate
length whose entries start at 0; the second version goes from a
specific starting point up to (but not including) a specific end point;
and the third version goes from a starting point to (but again,
not including) an ending point by a particular step size. The fact
that 12 is not included in the vector produced by arange(5,12)

is another minor but weird thing you have to get used to. (Maybe
you should make a list of these.)

There will be cases where we want to get vectors full of random
numbers. NumPy gives us many, many ways to do this, most of
which are outside the scope of this book. I’ll just mention one,
which is to get a vector of random numbers between 0 and 1:

r = random.rand(4)

print(r)

[0.64039213 0.2164199 0.48690418 0.72351423]

The “4” specifies how long the vector should be.

Finally, a very common way to create a vector is to load its contents
from a data file. Suppose there were a file on your computer called
somedata.txt which had a long list of numbers, one number per
line. You could import the whole thing into a NumPy array called
my data like this:

my_data = loadtxt("somedata.txt")

The file must be in “plain-text” format (i.e., not a Word document
or a PDF file or any other such formatted thing). Often, but not
always, such files have a “.txt” extension to indicate that.

2.7. NORMALIZING 49

Working with vectors (arrays)

To retrieve individual elements from a vector, we can specify num-
bered indices inside a pair of boxies after the array name:

print(temps)

print(temps[0])

print(temps[4])

[42 48 47 51 32]

42

32

Heads up! In a five-element array, since element #0 is the first one,
element #4 is the last one.

We can ask an array how long it is by appending .size to its name:

print(temps.size)

5

We can also get a slice of a vector by specifying a range of indices.
It works like this:

print(temps[1:4])

[48 47 51]

The “1:4” inside the boxies means “I’d like all elements numbered 1
(inclusive) through 4 (exclusive).” This is a total of three elements:
the ones at index numbers 1, 2, and 3. (Again, 4 itself is not
included, and yes that’s annoying.)

50 CHAPTER 2. VECTORS

To round a vector’s elements to the nearest integer, or to simply
drop the part after the decimal point, we can use the functions
round ()

8
or trunc(), respectively:

weights = array([145.6, 212.9, 156.4])

print(weights)

print(round_(weights))

print(trunc(weights))

[145.6 212.9 156.4]

[146. 213. 156.]

[145. 212. 156.]

We can also add up the elements in a vector, find the smallest and
largest, and find the index of the smallest and of the largest:

print(weights.sum())

print(weights.min())

print(weights.max())

print(weights.argmin())

print(weights.argmax())

514.9

145.6

212.9

0

1

The value printed by “.argmin()” is the index of the smallest value
in the vector, which in this case is element #0 (whose value is
145.6). The value printed by “.argmax()” is 1, since element #1
(whose value is 212.9) is the highest.

8
Careful: don’t forget the trailing underscore!

2.7. NORMALIZING 51

And finally, our actual linear algebra operations. To perform scalar-
vector multiplication, just use the splat (“*”) symbol:

weights_kg = (1/2.2) * weights

print(weights_kg)

[66.18181818 96.77272727 71.09090909]

And to perform vector addition, just use the plus (“+”) symbol:

holiday_gains = array([8.5, 10, 11])

print(weights + holiday_gains)

[154.1 222.9 167.4]

(Oof. Too much milk chocolate fudge.)

You could’ve guessed how to do those two operations without me
even telling you. The only slightly weird-looking one is the dot
product. It requires typing “.dot()” (which I always pronounce
“dot-dot”):

abc = array([5,3,0,2])

def = array([0,1,9,6])

print(abc.dot(def))

15

52 CHAPTER 2. VECTORS

And lastly, norms. To compute a vector’s Euclidean norm, we use
the linalg.norm() function with the vector in the parens:

print(linalg.norm(abc))

6.164414002968976

If you’re feeling paranoid, we can compute it by hand using the
Pythagorean theorem to confirm this is the correct answer:

print(sqrt(abc[0]**2 + abc[1]**2 + abc[2]**2 + abc[3]**2))

6.164414002968976

If you want any norm other than the Euclidean, you can specify
the “order” of the norm as a second number in the parens:

print(linalg.norm(abc,0))

print(linalg.norm(abc,1))

print(linalg.norm(abc,2))

print(linalg.norm(abc,3))

print(linalg.norm(abc,4))

print(linalg.norm(abc,Inf))

3.0

10.0

6.164414002968976

5.428835233189813

5.183633637236413

5.0

This prints for us the ℓ
0
, ℓ

1
, ℓ

2
, ℓ

3
, ℓ

4
, and ℓ

∞
norms of our abc

vector. In particular, the ℓ
0

is the number of non-zero entries, the
ℓ
1

is the sum of the entries, the ℓ
∞

is the maximum entry, and of
course the ℓ

2
norm is the same as the Euclidean norm.

Chapter 3

Linear independence

One of the deepest and most central concepts in linear algebra – in
fact, if I were to make a top ten ranking, this one might just make
#1 – is that of linear independence. It’s not about mechanical
computations, but conceptual truths. Learn this chapter well.

3.1 The Domino Game

I’ve thought long and hard about the best way to teach the material
in this chapter, and I’ve come up with a game. I call it “the Domino
Game.” Here are the rules:

1. You are given one or more yellow
1
“starter dominoes.”

2. The object of the game is to build the white “goal
domino” from these starter dominoes.

3. You can “use” any number of each starter domino (even
a fraction, even negative), and add them together (left
sides add together, and right sides add together).

4. You cannot use only one side of a domino.
5. You cannot turn a domino around so the left side and

right sides flip.

53

54 CHAPTER 3. LINEAR INDEPENDENCE

Example. Suppose your starter dominoes are:

and your goal domino is:

A solution would be “one and one.” This means that you’ll take
one copy of the first starter domino, and one copy of the second,
and add them together.

Solution: 1 & 1
1 & 1 =

Stare carefully at that until you master how it works; the rest of
this chapter will be a complete waste of time if this operation is
not fully grasped. Adding domino 5–1 to 2–3 means adding the left
sides together, and separately adding the right sides together, to
produce a new domino 7–4 (since 5 + 2 = 7 and 1 + 3 = 4).

Actually do this

All right, let’s test your skillz. I want you to actually work out the
answers to the following Domino Game puzzles on your own. There
are six of them, so it might take you a while (perhaps as long as 6
minutes). But it’s vital to cement your understanding of how this
works...and to set up the crucial punchline later on in this chapter.

1
Light gray, actually, since I made this book black&white to keep costs down.

3.1. THE DOMINO GAME 55

Answers to each puzzle are given at the end of the chapter. Maybe
your answers will not be the same as mine...or maybe they will?
That itself is actually a very important question we’ll consider in a
few minutes.

Enough preamble. Go!

1. Starter dominoes:

Goal domino:

(Hint: it’s okay to take zero of one of the dominoes; i.e., to completely

ignore it.)

2. Starter dominoes:

Goal domino:

(Hint: you may, if you wish, take “a negative number” of one of the

dominoes. In other words, you can multiply the entire domino by a

negative number and then add it to your multiples of the other one.)

3. Starter dominoes:

Goal domino:

(Hint: you can even take a fraction of a domino, provided you take the

same fraction of both left and right sides. This means that just as you

can multiply an entire domino by a positive or negative number, or zero,

you can also multiply it by non-integers.)

56 CHAPTER 3. LINEAR INDEPENDENCE

4. Starter dominoes:

Goal domino:

(Hint: sometimes you have to go pretty far afield to get a solution,

meaning a large number of one domino and a large negative number of

the other.)

5. Starter dominoes:

Goal domino:

(Hint: the goal domino can have a zero on it, just like the starter domi-

noes did. But it’s really no different; you just have to think creatively

about how to get the numbers to add up to zero on that side.)

6. Starter dominoes:

Goal domino:

(Hint: and yeah, the goal domino might even be completely zero. That’s

really not any different either, and in fact the solution will probably just

jump right off the page at you.)

Questions for curious minds

I presume you have tried, and hopefully succeeded at most of these
puzzles by trial and error. Even if you didn’t, I hope you’ve looked
at and understood the solutions I gave at the end of the chapter
(p. 81).

3.2. THE DOMINO GAME, REDUX 57

It’s well worth taking a moment after all that fiddling around to
consider some interesting questions:

1. Were your solutions that same as mine in each case? If so,
do you think that was just coincidence? If not, how many
different solutions do you think are possible?

2. Is it always possible to solve a puzzle like this, no matter
what the goal domino is? Or are only a small number of goal
dominoes actually possible to produce?

3. Is it always possible to solve a puzzle like this, no matter
what the starter dominoes are? Or is it only in a few cleverly
crafted scenarios where the numbers happen to work out just
right?

These matters turn out to be at the heart of the subject of linear
algebra. We’ll shed light on all of them as we move forward.

3.2 The Domino Game, Redux

I’m now going to give you one more domino puzzle, which is going
to seem at first just like the others. But it turns out that hidden
inside is a mystery, a paradox, a conundrum that will shake our
foundations in chapters to come. Here it is:

Starter dominoes:

Goal domino:

Our starter dominoes are blue
2

instead of yellow this time, for
reasons I’ll explain below. Other than that, it’s the same kind of

2
Dark gray, actually, since I made this book black&white to keep costs down.

58 CHAPTER 3. LINEAR INDEPENDENCE

problem. Go ahead – try it!

I’ll mail you $5 if you can figure it out and send me a solution.

Actually, I’ll make it $5,000.

Don’t get too frustrated before you realize the simple truth: it’s
not possible.

The key point: why blue dominoes don’t work

You don’t have to be too clever to recognize that this whole Domino
Game thing is really math in disguise. And if you haven’t seen the
connection yet, let me just point out the following so you can do a
face palm:

• Dominoes are just two-dimensional vectors.
• “Taking some number of the left (or right) domino” is just

scalar-vector multiplication.
• Adding together your copies-of-the-left-domino and your copies-

of-the-right-domino is just vector addition.

The central theme of the game is figuring out “which vectors you
can make from which other vectors.” The result of “making” a new
domino is called a linear combination:

You get a linear combination of vectors when you multiply each
of them by a scalar and add them up (to yield another vector).

Any vector you can obtain this way is a linear combination of the
vectors you used. The scalars definitely don’t have to all be the
same. Also, each scalar can be zero or even negative.

A critical question will turn out to be: what is the complete set
of vectors that are possible to get as linear combinations of some
“starter vectors?” And to answer that, I’m going to give you a
whole new perspective on dominoes.

3.2. THE DOMINO GAME, REDUX 59

Dominoes are vectors

Several of our puzzles involved the yellow starter dominoes 1–2 and
4–4. As I indicated, dominoes are really vectors in disguise. So I
have plotted these two “dominoes” in Figure 3.1.

Figure 3.1: Plotting the dominoes and as vectors.

Also on the diagram are two dashed lines, each going off to infinity
in both directions. Consider first the steepest of the two lines. It’s
pointing in exactly the same direction as the [1 2] vector. It
represents all the points you can get to by multiplying that vector
by a scalar. Take a moment and digest that thought completely.
You’ll see that some of the points that dashed line goes through
are (2, 4), (4, 8), (0, 0), (−1

2
,−1), and (−4,−8). Those points are

the tips of the vectors you would get if you multiplied [1 2] by
2, 4, 0, −1

2
, and −4, respectively. Similar comments apply to the

dashed line that extends the [4 4] vector.

60 CHAPTER 3. LINEAR INDEPENDENCE

Now consider the process of trying to reach a goal domino like ,
also known as [6 8]. What we’re effectively asking is: is there
any linear combination of [1 2] and [4 4] that will reach the
point [6 8]? The setting for this problem is on the left-hand side
of Figure 3.2.

Figure 3.2: Can we reach the point (the⋆ at point [6 8])
using only multiples of the vectors and ? Yes!

By fiddling around with these numbers Domino-Game-style, you’ll
hit on the solution of “two and one”: two dominoes plus
one domino gives you a domino. That can be pictured
visually on the right-hand side Figure 3.2. Starting at the origin,
and moving two times in the direction of the [1 2] vector, we get
to the point [2 4]. From there, moving once in the direction of
the [4 4] vector lands us exactly on the point [6 8]. Voilà!

That was fun – let’s try some more. What about the point [3 2].
Can we reach it by using only multiples of [1 2] and [4 4]?
At first glance, it doesn’t seem so; after all, the point (3, 2) is
outside the “windshield wiper” angle between the two dashed lines.
But it turns out we can, if we go against the grain. Moving “−1
times in the [1 2] direction” takes us to the point [−1 − 2].
From there, we do almost a complete 180°. Heading back northeast
once in the [4 4] direction lands us on [3 2] as desired. Bingo!
(See Figure 3.3.)

And how about [0 4]? This time it’s the domino that we use

3.2. THE DOMINO GAME, REDUX 61

Figure 3.3: Can we reach the point [3 2] using only [1 2]
and [4 4]? Yes!

“backwards.” Going four times in the [1 2] direction followed
by −1 in the [4 4] direction gives us the solution “4 & −1,” as
depicted in Figure 3.4.

Figure 3.4: Can we reach the point [0 4] using only [1 2]
and [4 4]? Yes!

At this point, you’ll probably guess what I’m going to say next. Yes
indeed, any point in the entire x, y plane can be reached through
some combination of the [1 2] and [4 4] vectors. And that
gives us the answer to one of our questions from p. 57 (question
#2): surprisingly, yes we can always find a solution to the Domino
Game puzzle, no matter what the goal domino is. Amazing!

62 CHAPTER 3. LINEAR INDEPENDENCE

Most of my students are as surprised by that result as I was back in
the day. When I first give them Domino puzzles, they figure, “okay,
Stephen has specially concocted a case where it just happens to
work out that I can combine the two yellow dominoes into a white
one somehow. I’ll work his special puzzle and come up with the slick
answer.” Little do they realize that any white domino whatsoever
is solvable; I didn’t have to come up with anything special at all.

Now the second lesson of these vector pictures may be harder to
see. It’s the answer to question #1 from p. 57. Not only can every
Domino problem be solved, but it can be solved in only one way.

If you did it right, your answers to the six puzzles on pp. 55-56 were
exactly the same as mine on p. 81. Perhaps that struck you as a
coincidence at first: “gee, it’s sure funny that I always keep hitting
on the exact same solution that Stephen did!” But if you stare at
Figure 3.2 and friends, you might see the reason. Starting from the
origin, and striking out in the first vector’s direction, you only have
one choice if you want to get to the right place. In Figure 3.2’s case,
you must stop at [2 4]. If you stop earlier, or later, then you’re
destined to miss the mark: going in the [4 4] direction from
anywhere else you might stop won’t land you at exactly [6 8].

But...

So every point is reachable, and is reachable in only one way. But
that’s only if you have yellow starter dominoes. If you’ve got blue
ones, it’s a totally different story.

Figure 3.5 shows the hopeless situation. The telltale sign of misery
is that there’s only one dashed line. The and vectors
point in exactly the same direction, so no matter how hard we try,
there’s no getting off that one line. In the middle of a promising
two-dimensional landscape, we’re stuck in a one-dimensional sub-
world.

3.3. LINEAR INDEPENDENCE IN TWO DIMENSIONS 63

Figure 3.5: Can we reach the points [6 8], [0 4], [4 1],
[−6 − 4], [−3 − 3]...or virtually anything else using only
[2 3] and [4 6]? No.

3.3 Linear independence in two dimensions

The yellow and vectors are called linearly independent.
By contrast, the blue and vectors are linearly depen-
dent. Figure 3.6 (p. 65) sums up some extremely important facts
about these two cases in one handy table. Let me explain each item
in turn.

• Yellow dominoes are linearly independent. This means
they point in different directions, so that each one gives you
a “fresh” degree of freedom to travel in.

• You can’t get one yellow domino from the other. A
corollary of the “different directions” thing is that if you tried
to get to the tip of the first yellow domino using only the
second, you couldn’t do it. Look back at Figure 3.1 (p. 59)
if you don’t believe me. From the origin, can you get to the

64 CHAPTER 3. LINEAR INDEPENDENCE

point [1 2] going only in the [4 4] direction? No. But if
you look up at Figure 3.5 you’ll see that you can do it with
our blue dominoes. Can you get to [2 3] using only the
[4 6] vector? Sure, just take half of it.

Another way to think of it is that if you have blue dominoes,
one of them is superfluous. Say you have [2 3], and I come
along trying to sell you [4 6] as well. Why bother? You can
already go in that direction! Heck, you can produce [4 6]
yourself just by doubling the domino you already have.

• Yellow dominoes are the common case. Suppose I picked
two dominoes out of a bag and put them in front of you. Are
they more likely to be yellow, or blue? A moment’s consid-
eration will tell you the answer is yellow. The only way the
dominoes can be blue is if they point in exactly the same
direction. The odds of that are fantastically small.

Think of it this way. Let’s say the first domino out of the bag
is [1 3]. And let’s say the left half of the second domino is
4, so that the second domino is [4 ?]. Think about what
would have to happen for the pair of dominoes to be blue.
That question mark would have to be exactly 12. Only 12.
Absolutely any other number for the question mark would
give you yellow dominoes.

• With yellow dominoes, you can get any white domino.
This is perhaps the most important point. The yellow domi-
noes have enough coverage that any point in the entire plane
is reachable using them. The sorry blue dominoes, on the
other hand, are inbred; you can’t get anywhere on the plane
except the points along their shared, lonely line.

• With yellow dominoes, each solution is unique. This
may or may not have been obvious to you from the diagrams,
but I promise it’s so. You can reach each point in only one
way. By contrast, everything the blue dominoes can reach –
which admittedly, ain’t much – can be reached in multiple
ways (including the origin; see the next point).

• Yellow dominoes can’t get to the origin, except “triv-
ially.” One last point is that with yellow dominoes, the only

3.4. LINEAR INDEPENDENCE IN MORE DIMENSIONS 65

way to get to the origin is to take zero of the first domino and
zero of the second. (This is called a trivial solution.) That’s
because once you set out in the first domino’s direction, us-
ing the second one has to take you in a different direction,
and hence not back to where you came. With blue dominoes,
you can do this in many different ways: take six [2 3]’s
minus three [4 6]’s, or −1 [2 3]’s and half a [4 6],
etc. I guess that’s some small recompense for having to stay
on that one line: blue dominoes truly own that line and can
tread it to their heart’s content. This seemingly obscure fact
will actually play a surprising role later on.

By the way, a student once asked me, “what if you get one yellow
domino and one blue? What happens then?” Perhaps you’ll see the
answer immediately as one of my other students did. The answer
is that can’t happen. No domino is, by itself, intrinsically yellow or
blue: it’s only yellow or blue with respect to another one. It’s the
pair of dominoes that are yellow if they point in different directions,
or blue if they point in the same direction.

Yellow dominoes Blue dominos

linearly independent linearly dependent
can’t get any yellow from others can get each blue from others
“common” “rare”
can make any white domino can make only a few
each goal reachable in one way each goal reachable many ways
can only get “trivially” can get in many ways

Figure 3.6: Important domino facts.

3.4 Linear independence in more dimensions

Now I wish things could stay that easy but they just can’t. When
we move to three dimensions (and beyond) things become more
subtle, even besides being harder to visualize.

66 CHAPTER 3. LINEAR INDEPENDENCE

First let’s look at an easy case. Suppose you have the three “triomi-
noes” [1 2 3], [−4 0 1], and [2 4 6]. You can probably eyeball
those and see that they are not linearly independent, because the
first and third dominoes are multiples of each other. (Multiply
[1 2 3] by 2 and you get [2 4 6].) And if you can get one vector
from one of the others, that’s the death knell for our yellow hopes
and dreams: These vectors are unavoidably blue.

In three dimensions, blue triominoes mean that we can’t get to
every point in three-dimensional space just by using those vectors.
That’s hard to visualize, but if you can picture the following, you’ll
get the idea. Recall that in 2-d, blue vectors sat on the same
dashed line. You couldn’t get to the rest of the plane. In 3-d, blue
vectors all sit on the same plane. You can get anywhere on that
two-dimensional surface, but not anywhere else in the vastness of
three-dimensional space.

Perhaps this is easier to see if I change the example. Suppose my
three triominoes are [4 2 0], [2 3 0], and [6 5 0]. Now you
can add multiples of these three vectors together all day, but you’ll
never get a third entry other than zero. I can’t get to a point like
[4 3 7], because how would I ever get a 7 in the third slot? All
the vectors I have to work with have a zero there!

In picture terms, if we consider the coordinates to be x, y, and
z, where the z axis goes “in” and “out” of the page, those three
vectors let us reach only the points on the flat page. All the points
in space that are in front of the page, or behind the page, are out
of reach.

I promise you the same basic thing is true for [1 2 3], [−4 0 1],
[2 4 6] example. It’s only harder to see in your mind’s eye be-
cause in this case, the plane we’re trapped on isn’t flat. It’s angled
through space, slicing slant-wise through the origin. But it’s still
true that the vast majority of 3-d points can’t be reached. The
problem here, just like with blue dominoes, is that one of the vec-
tors in the list (the third one) doesn’t give us any power we didn’t
already have with one of the others (the first one).

Now so far, this seems just the same as the two-dimensional case,

3.4. LINEAR INDEPENDENCE IN MORE DIMENSIONS 67

except that we have three entries per vector to work with. But
unfortunately, even if none of the three vectors is a multiple of any
of the other, that’s not enough to guarantee linear independence.
Three vectors which are “pairwise independent” from each other –
meaning −→v1 is not a multiple of −→v2, nor −→v2 of −→v3, nor −→v3 of −→v1 – can
still be a linearly dependent set.

How? If one is a linear combination of the other two. Consider
these three vectors:

−→v1 = [2 0 −3]
−→v2 = [−1 4 4]
−→v3 = [3 4 −2]

Those look pretty linearly independent to me. But they’re not. If
you take twice the first vector plus the second vector, you get the
third vector:

2−→v1 + 1−→v2 = [4 0 − 6] + [−1 4 4] = [3 4 − 2] = −→v3

As before, then, the third vector didn’t give us any additional power.
If we wanted to move in the [3 4 − 2] direction, we could do so
using only vectors −→v1 and −→v2 in the right quantities. The offer of that
−→v3 vector leaves us with an awkward pause and saying as politely
as possible “no, thanks.”

Now finally, we’re ready for our supreme definition of linear inde-
pendence, no matter how many dimensions. Here goes:

A set of vectors is linearly independent only if none of them
can be made from a linear combination of the others.

If you’re given a set of vectors, and you can find a superfluous one
in the bunch, remove it so you whittle the set down to size. When
you get to the point where none of the remaining vectors can be

68 CHAPTER 3. LINEAR INDEPENDENCE

deleted without losing the ability to reach some points, then you
know you have a linearly independent set.

3.5 Foundational definitions

We close this heady chapter by defining a few more crucial terms
that we’ll make use of again and again.

A “vector space” is a world of n dimensions in which n-
dimensional vectors live. (like the x-y plane, or the 3-d space.)

I hinted at this term back on p. 19, and mentioned that it’s some-
times used in a very abstract way. The above definition, believe it
or not, is a pretty brass-tacks definition, since we’re defining it in
terms of dimensions and coordinates. Just think of a “vector space”
as “the place where vectors (of a particular length) live” and you
won’t be too far off.

The set of all linear combinations of a set of vectors is called
the span of that set.

This is precisely the question of “where can I get using these starter
dominoes?” that we asked in the Domino Game. I can combine
starter vectors with each other in numerous ways to get other vec-
tors. If I kept doing that and doing that infinitely, what is my
entire set of possible vacation spots? Answer: the span.

To be concrete:

• The span of { , } is the whole x-y plane.

• The span of { , }, on the other hand, is merely the
line through the origin with slope 3

2
(“rise over run”).

• The span of { [2 3 1], [0 − 9 0], [0 1 1] } is the whole
three-dimensional x-y-z space, since that set is linearly

3.5. FOUNDATIONAL DEFINITIONS 69

independent. (You can believe me or not, but it is. We’ll
figure out how to verify that later on.)

• The span of { [2 0 − 3], [−1 4 4], [3 4 − 2] } is not the
whole x-y-z space, since as we learned above, that set is not
linearly independent. Its span is merely a 2-d plane slicing
through the origin of three-dimensional space.

A basis for a vector space is a linearly independent set of vec-
tors that spans the space.

Note that two-part definition. Your vectors have to (1) be indepen-
dent of one another, and (2) span the entire space. Only then do
they constitute a basis.

Important fact: if you have a basis, then every vector in the entire
vector space can be expressed as a linear combination of the basis
vectors in exactly one way.

For example, we saw that { [1 2], [4 4] } was a basis for the
x-y plane. Therefore, every point on the x-y plane can be formed
by a unique linear combination of those vectors:

[6 8] = 2 [1 2] + 1 [4 4]
[0 4] = 4 [1 2] − 1 [4 4]

[4 − 4] = −8 [1 2] + 3 [4 4]
etc.

We’ll look at this in a new and deep way later on, but you can begin
to grasp it now: using a basis kind of gives us a new coordinate
system in which to express a vector. For example, as shown above,
the vector [4 −4] can be expressed as –8 of the [1 2] vector plus
3 of the [4 4] vector. That means that its coordinates are kinda
sorta “(−8, 3)” in this basis rather than “(4,−4)” in the original
basis. Dude, that’s mind-blowing.

70 CHAPTER 3. LINEAR INDEPENDENCE

The “standard basis” is a basis whose vectors have norm 1
and which point in each axis direction.

In other words:

• In two dimensions, the standard basis is the vectors [1 0]
and [0 1].

• In three dimensions, it’s the vectors [1 0 0], [0 1 0],
and [0 0 1].

• In four dimensions, it’s the vectors [1 0 0 0], [0 1 0 0],
[0 0 1 0], and [0 0 0 1].

• Etc.

Note that in the standard basis, we have:

[6 8] = 6 [1 0] + 8 [0 1]
[0 4] = 0 [1 0] + 4 [0 1]

[4 − 4] = 4 [1 0] − 4 [0 1]
etc.

Thus in some ways, the standard basis is sort of the “natural”
coordinate system. (Hang on to your hats in Chapter 8, though,
when we consider a different “natural” one.)

Fact: all possible bases for a vector space have the same number
of vectors in them. Why? Well, you can’t span the space with any
fewer. And you can’t be linearly independent if you have any more.
So no matter what basis you tell me you have for the x-y plane, I
know it’d better have exactly two vectors in it or you’re a liar. If
you tell me you have a basis for x-y-z space, it’d better have three
vectors in it: no more, and no fewer.

Last one, which you might already be able to guess:

The dimension of a vector space is the number of elements in
a basis for it.

3.6. CHANGING BASES 71

We’ve talked about the dimension of a vector before, but not of a
vector space. The dimension of a vector space is how many vectors
are required to get everywhere in it. And that in turn is simply
the dimension of the vectors that live in it. It’s no accident that
for three-dimensional space, a basis has three vectors with three
elements each.

3.6 Changing bases

If each basis is merely a new coordinate system in which to express
vectors, we ought to be able to change between bases at will. And
in fact we can. Let’s see how.

Changing to the standard basis

Ron has a two-dimensional vector called −→r . I’ll tell you that its
coordinates are 3 and −1, BUT before you try to visualize it, there’s
a catch: these coordinates are not expressed in the standard basis,
but in the “domino basis” we’ve used several times in this chapter:

/ .

This is the first time I’ve used the phrase “expressed as coordinates
in a certain basis,” because up until now, we’ve always been implic-
itly assuming the standard basis. If I said a vector had components
“7” and “4,” it has gone without saying that I meant “7 units in
the [1 0] direction, and 4 units in the [0 1] direction.” Viewed
in this way, a vector with coordinates 7 and 4 is really a linear
combination of the two (standard) basis vectors:

7 ⋅ [1
0
] + 4 ⋅ [0

1
] = [7

4
] .

Sometimes we need to be explicit about which basis is being used
to express a vector’s components. To do that, we’ll put a sub-
script on our vector notation, labeled with the basis it uses. We’ll
use the symbol “Bs” to mean the standard basis; Bs thus equals

72 CHAPTER 3. LINEAR INDEPENDENCE

{[1 0], [0 1]}. So we would write down this example vector as
follows:

[7
4
]
Bs

.

Now Ron, on the other hand, insists on using the domino basis
/ . We’ll call it “Bd” (d for “dominoes.”) Thus Bd =

{[1 2], [4 4]}, and we write Ron’s vector like this:

−→r = [3
−1

]
Bd

.

Our question is one of translation: what are Ron’s coordinates in
the standard basis?

If you think about it, that’s a pretty easy question to answer. When
Ron says his coordinates are “3” and “−1,” he merely means “I’ve
got three ’s and negative one ’s.” Computing his standard-
basis coordinates is just a matter of taking that linear combination:

−→r = 3 ⋅ [1
2
] + (−1) ⋅ [4

4
] = [−1

2
]
Bs

.

This is called a change of basis operation. It’s important to
understand that Ron’s vector itself did not change: only the coor-
dinate system in which we expressed it. In other words, these two
vector representations are exactly equal:

[3
−1

]
Bd

= [−1
2
]
Bs

.

You can see in Figure 3.7 that whether we say “three [1
2
]’s and

negative one [4
4
],” or “negative one [1

0
]’s and two [0

1
]’s,” we get the

same vector −→r .

3.6. CHANGING BASES 73

Figure 3.7: In either the domino basis (dashed lines) or the stan-
dard basis (thin solid lines), Ron’s vector (thick solid line) is the
same.

Changing from the standard basis

By the way, what if we want to go the other way? Suppose Hermione

has a vector
−→
h which, expressed as coordinates in the standard

basis, is [5 2]. Again, this means that her vector is a linear
combination of the two standard basis vectors:

−→
h = 5 ⋅ [1

0
] + 2 ⋅ [0

1
] = [5

2
]
Bs

.

But what are her coordinates in the domino basis?

I’m going to need to put you off on this all the way to p. 165, since
it will involve a few concepts we haven’t covered yet. I promise
we’ll return to Hermione, though!

74 CHAPTER 3. LINEAR INDEPENDENCE

3 Appendix: Python

There’s not much Python content specifically devoted to linear in-
dependence, so let me take this brief appendix just to outline the
syntax for functions, loops, and basic plotting, which we’ll use later.

Python functions

As most of you already know, a key idea in computer programming
is modularity. This means the breaking up of a large program
into smaller, cohesive chunks that are each focused on doing one
specific thing well. In most programming languages (Python in-
cluded) these are called “functions,” which is somewhat related
to our use of mathematical functions in A Cool Brisk Walk in that
they map inputs to outputs.

Here’s how they work in Python. To create a function, you use this
syntax:

def functionName(argument1, argument2, ...):

... statements ...

return output

The word “def” is literal: it means you’re def ining a function.
The words “functionName, argument1, and statements” are not
literal: they are placeholders for the name of your function, the
names of the inputs it accepts, and the code that comprises the
function. “Argument” is the nutty word that programmers use for
“an input given to a function”; each one has a name, and these are
separated by commas inside a pair of parens, followed by a colon.

Important: all the Python code that comprises the body of the
function must be indented one tab to the right. Python is almost
the only language that delineates its structure through indentation,
and this can cause students hangups if they’re not on their guard.
The indented code actually in the function can be any Python code

3.6. CHANGING BASES 75

at all. At one (or more
3
) places in the code, a “return statement”

will indicate a value that is given as the function’s output.

Here’s a very short example of a function we might write:

def average(my_vector):

return my_vector.sum() / my_vector.size

We learned in the last appendix how to sum up the values in an
array, and also how to obtain the number of elements it contains.
This function combines these two operations and takes the arith-
metic mean, or average, of the results.

To actually make use of this function, we “call” it by typing its
name, parens, and an input value, then either printing the output
or capturing it in another variable. Here goes:

weights = np.array([145.6, 212.9, 156.4])

avg_weight = average(weights)

print("The avg weight is {} pounds.".format(avg_weight))

The avg weight is 171.63333333333333 pounds.

Notice carefully that although the average() function named its
argument “my vector,” when we called the function we specified a
different name (“weights”). This is a happy healthy thing, and you
should get used to it. All you have to remember is that whatever is
given as an input to the function, the function will itself temporarily
name it with its own name for use in calculation.

In the case of two or more arguments, the order in which they are
listed is what keeps everything in sync between the function and the

3
You might wonder why a function would have more than one return state-

ment, since a return stops the function and gives an output. We’ll see an
example of multiple returns on p. 109.

76 CHAPTER 3. LINEAR INDEPENDENCE

code that calls it. Here’s an example which uses both scalar-vector
multiplication and vector addition:

def next_years_salary(salaries, increases, cost_of_living_raise):

new_salaries = salaries + increases

return new_salaries + (cost_of_living_raise * new_salaries)

eng = np.array([86000, 91000, 86000])

eng_bumps = np.array([2000, 3000, 4000])

eng = next_years_salary(eng, eng_bumps, .02)

print("Next year's engineering salaries are: {}.".format(eng))

Next year's engineering salaries are: [89760. 95880. 91800.].

In this case, the function itself named its arguments salaries,
increases, and cost of living raise. When we called it, how-
ever, we gave it different names for the first two arguments, and
didn’t even have a name for the third one! (We just specified the
literal value .02 as the third input.)

Python loops

Another programming technique we’ll use is that of a loop, specif-
ically a for loop. These work very much the same as for loops do
in any other language. They are used when the programmer wants
a certain block of code to be repeated multiple times, possibly with
minor changes each time. Importantly, for loops are used when the
programmer knows at the outset how many times the loop needs
to execute. (When she doesn’t know this, she should use a while
loop instead, which we won’t cover in this book.)

One bit of lingo: each time the block of statements is executed is
called an iteration. You’ll may hear people say that a chunk of
code “iterates” or “works iteratively”; by this they simply mean
it contains a loop.

In Python, the pattern we’ll use is as follows:

3.6. CHANGING BASES 77

for i in arange(n):

...statements...

Again, the indentation is key: the only way Python knows when
the to-be-repeated code block ends, and the code after the loop
resumes, is that the former is tabbed over whereas the latter is
flush-left.

The i that appears after for is called the loop variable: it is the
only thing about the block of statements that may vary between
iterations. And this is only because the statements themselves often
have a reference to i, as we’ll see in a moment.

Finally, you’ll recognize “arange” in the first line as our new friend
from p. 47. (Remember: only one ‘r’ !) That line of code says:
“run the following block of statements multiple times. In the first
iteration, set the i variable to the value 0. The second time, set it
to 1. Continue all the way up to n-1.”

As an example, let’s write our own function to compute a vector’s
Euclidean norm (even though NumPy gives us this out-of-the-box):

def euclidean_norm(x):

total = 0

for i in arange(x.size):

total = total + x[i]**2

return sqrt(total)

Notice how the loop variable (i) is being used as an index to the
x array, so that a different element is selected each time for squar-
ing and adding to the running total. In the call to arange(), we
used x.size, so that we would run the loop exactly once for each
element. Let’s take it for a spin:

78 CHAPTER 3. LINEAR INDEPENDENCE

abc = array([5,3,0,2])

print(euclidean_norm(abc))

6.164414002968976

This does match our result from p. 52 exactly.

Python plotting

Finally, let’s just learn a few simple plotting commands so we can
reproduce the kinds of figures that are in this book. Python has
a plethora of different plotting libraries, all of which have different
features and pros and cons. Just to keep things super simple, we’ll
use the pylab library which requires a minimum of fuss.

First, you import it with your other imported things by typing
“import pylab” at the top of your program.

Then, to plot a single point, you can use the pylab.plot() func-
tion. It takes three arguments: an x and a y coordinate, and then
a character indicating the “shape” of the plotted point, for which
we’ll use ’o’ to get a circle. (There are boatloads of other options.)

It’s also useful to be able to set the overall ranges of your plot (in
both x and y directions) so you can zoom in or out as desired. For
this, we call pylab.xlim(min,max) to set the x-axis range, and
similarly for the y-axis range.

Finally, in your Python environment you may need pylab.show()

to get it to actually render the plot in a window.

Let’s put this all together. We’ll first write a function linearCombo

that will compute a linear combination of two dominos.

3.6. CHANGING BASES 79

def linearCombo(n1,n2):

domino1 = array([1,2])

domino2 = array([4,4])

return n1 * domino1 + n2 * domino2

This uses our yellow dominos from this chapter. Now we’ll call this
function by generating a hundred random linear combinations of
these dominos, and plotting each. Here’s the code:

for i in range(100):

n1 = (random.rand(1) * 4) - 2

n2 = (random.rand(1) * 4) - 2

randomCombo = linearCombo(n1,n2)

pylab.plot(randomCombo[0],randomCombo[1],'o')

pylab.xlim(-10,10)

pylab.ylim(-10,10)

pylab.show()

If you stare at the “n1” line inside the loop, you’ll realize that it’s
generating a random number between -2 and 2. (random.rand(1),
you’ll recall, gives us a random number between 0 and 1. By mul-
tiplying that number by 4 and subtracting 2, we’ve spread its pos-
sible values over the desired range. We do the same for n2. So the
function is basically plotting “a random linear combination of the
yellow dominos” a hundred times.

The result is on the left side of Figure 3.8. You’ll see the bulk of the
dots fall on a southwest-ish-to-northeast-ish line. That’s because
both of our dominoes (and) do point in that general
direction. But if we got really lucky (?) with our random number
draws, we could conceivably get any point on the plane, even a
really northwest or a really southeast one.

With the blue dominoes, as you’ve hopefully learned this chap-
ter, that’s not possible. If you change the first two lines of the
linearCombo() function to this:

80 CHAPTER 3. LINEAR INDEPENDENCE

Figure 3.8: A hundred random linear combinations of the yellow
dominos (left) and the blue dominos (right).

...

domino1 = array([2,3])

domino2 = array([4,6])

...

and re-run the code, you get the right side of Figure 3.8, in which
every single point, no matter the random numbers, is exactly on
the line (which is precisely the same line as the line, of
course), giving a very warped view of our supposedly two-dimensional
universe. Alas, that’s life with blue dominoes.

3.6. CHANGING BASES 81

Answers to Domino Game puzzles from pp. 55-56

1. Solution: 0 & 2

0 & 2 =

2. Solution: –1 & 3

−1 & 3 =

3. Solution: 1
2
& 1

1
2

& 1 =

4. Solution: -5 & 3

−5 & 3 =

5. Solution: 4 & –1

4 & −1 =

6. Solution: 0 & 0

0 & 0 =

Chapter 4

Matrices

It’s now time for the granddaddy of all linear algebra entities: the
matrix. When we’ve finished this part of our climb, you’ll actually
be able to see the summit we’ll eventually reach.

By the way, the plural of matrix is matrices (pronounced MAY-
trih-sees), kind of like the plural of index is indices. But don’t
forget the singular is still “matrix !” Don’t let me (or anyone else)
catch you uttering the non-word “matrice” – you’ll sound like a
dweeb and drive me up a wall.

4.1 Row and column vectors

Up to now, a vector has simply been a vector. I haven’t made a big
deal about how you write it on the page. We’ve been free to write
a vector −→x with the three elements 6, 2, and 9 in either of these
ways:

−→x = [6 2 9] ...or... −→x =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

6
2
9

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
Or heck, you could even write it diagonally if you want. This
flexibility is because all that really matters is the function view
of a vector that we discussed in section 2.3. All that ultimately
matters is that you associate the correct index number with the

83

84 CHAPTER 4. MATRICES

correct element. However I might draw −→x on paper, if I asked
you for the value of “element #0,” you’d say 6, and if I asked for
“element #2,” you’d say 9. The way it looks has been immaterial
up until now.

That will still be true sometimes. But beginning with this chapter,
it’s going to sometimes turn out to matter whether or not we think
of a vector as a row vector (the left-hand-side version of −→x , above)
or a column vector (the right-hand-side). Memorize these terms:
they matter, and you’ll have to have them on the tip of your neural
cortex. A row goes horizontally, side-to-side; and a column goes
vertically, up-to-down.

I’ll try to always be very careful to emphasize the row vs. column
nature of a vector in those cases where it turns out to matter.

By the way, one surprising thing (at least, it was to me) is that
the “default” is for an unspecified vector to be treated as a column
vector, not a row. Column vectors take up more room on the page,
and aren’t as natural when you’re writing on paper, which I guess
is why it surprised me. At any rate, whenever a vector is under
discussion, try to visualize it as an up-and-down column of entries,
unless the accompanying text explicitly says otherwise.

4.2 The matrix

At last, the matrix. This will seem underwhelming at first, but boy
does it pack a wallop.

A matrix is simply a two-dimensional rectangular grid of entries,
kind of like a spreadsheet. We’ll use capital letters to designate
them, with no special arrow-like or other adornment. Here’s our
first example:

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

5 −7 3 9
18 4 1 1
3 −3 π 4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

4.2. THE MATRIX 85

Matrices are always rectangular, but not always square. The A
matrix is called a “3× 4” (three-by-four) matrix, since it has three
rows and four columns. We say that 3×4 are the matrix’s dimen-
sions. Again, it’s important to master all this terminology. When
giving the dimensions of a matrix, you always list the number of
rows first, and then the number of columns.

To specify an individual element, we need two indices instead of
just one as we did for a vector. We’ll use Python-style number-
ing (starting with 0) and write the row and column as a two-part
comma-separated subscript:

A0,0 = 5

A1,0 = 18

A0,3 = 9

A2,2 = π

Just practice first moving down to the correct row, then moving
over to the correct column, and you’ll be fine.

Labels

As with vectors, we won’t always use index numbers to designate
rows and columns: sometimes we’ll use labels. Check out this ma-
trix W (for “weather”):

D.C.
Fredericksburg

Richmond

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

81 86 78 74 77
83 86 79 79 82
82 86 84 87 87

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
Mon Tue Wed Thu Fri

Here we’re using city names for the row labels, and days of the week
as the column labels. It’s still easy peasy to interpret – how hot
did it get in the nation’s capital on Tuesday? 86°, of course. Using
the same subscript notation as above, we could say:

86 CHAPTER 4. MATRICES

WD.C.,Mon = 81

WFredericksburg,Wed = 79

WFredericksburg,Thu = 79

WRichmond,Thu = 87

⋮

and so forth. D.C. and Fred had a bit of a cool-down midweek,
thank God, while Richmond was all the while cooking in the upper
80’s.

4.3 A matrix is also a function

Remember back in section 2.3 (p. 20) when I explained that a vec-
tor, viewed in a sufficiently weird way, was actually a function? The
same thing is true for matrices, just by adding one more input to
the function.

Put another way, let’s consider the row labels (or numbers, if we
want to be boring) as the set C (for “cities”). And let’s consider the
column labels as the set D (for “days-of-the-week”). Then, you can
see that a matrix is precisely maps a pair of a city and a day to a
high temperature. (The high temperatures are in the set R, which
are the real numbers.) In symbols, W is defined as this function:

W ∶ C ×D → R

Recall that function syntax. W is the name of the function. The
part before the arrow is the domain of the function: the set which
its inputs are drawn from. Since it’s the Cartesian product of two
sets (cities and days) this domain is really all the ordered pairs of
cities-and-days, like (D.C., Thurs) and (Richmond, Monday). The
function takes any ordered pair like that and gives you a number
telling you how hot that city was on that day. It’s a snap when
seen this way.

4.4. MATRIX OPERATIONS 87

4.4 Matrix operations

Just as section 2.4 listed the permissible actions we could perform
on vectors (and scalars), so this section lists the operations we can
perform on matrices (and vectors, and scalars). There’s one other
big one which I’ll save for entire separate chapter, but there are
still four useful ones we’ll cover here.

Operation #1: scalar-matrix multiplication

This one’s a piece of cake. Recall that multiplying a scalar by a
vector amounted to multiplying the scalar by each of its elements,
producing a vector of the same dimension. Same here: we get a
matrix of the same dimension by multiplying individually:

4 ⋅ [3 2 9
1 −1 0

] = [12 8 36
4 −4 0

] .

Sometimes we’ll put a dot between the two, as above, though we’ll
often omit that and just write the scalar and matrix side-by-side.
Either way, it means scalar-matrix multiplication.

Operation #2: matrix addition

Also a piece of cake, and just what you’d expect:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

4 1
1 −2
3 18

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 2
5 2
−10 −10

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

5 3
6 0
−7 8

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The only hard part is not going cross-eyed as you zigzag your eye-
balls across the page to match up entries.

As with vector addition, you simply can’t add two matrices at all if
they don’t have the same dimensions. Also just like vectors, we can
subtract one matrix from another just by adding the first matrix to
“−1 times the second matrix.”

88 CHAPTER 4. MATRICES

Operation #3: transpose

Now here’s kind of a strange one that’s more structural than arith-
metical. It’s called the transpose operator. Unlike the previous
ones, this is a unary operator which means it acts on only one
operand (input) instead of two. (When we did scalar-matrix mul-
tiplication, we needed two things to act on: a scalar and a matrix.
With matrix addition, we needed two matrices. But here, we only
need one “thing” that we do the transpose to.)

The symbol for this is a superscript “⊺” written just after the ma-
trix. Its purpose is to interchange the rows and the columns. The
rows of the original matrix become the columns (in the same order)
of the transposed matrix, and vice versa. So,

If A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

4 1
1 −2
3 18

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, then A

⊺
= [4 1 3

1 −2 18
] .

As you can see, if we start with an m × n matrix, transposing it
gives us an n ×m matrix. Fat-and-wide becomes tall-and-skinny,
and vice versa. And in symbols,

Ai,j = A
⊺
j,i

for all the rows i and columns j of the A matrix. Note how the
i and j swapped places in the subscript. The element at row 7,
column 19 of A is the same as the one at row 19, column 7 of A

⊺
.

You can probably also tell that if we transpose a column vector, we
get a row vector, and vice versa. As I mentioned, there are times
that we’ll treat a vector as just a sequence of elements, and won’t
care about its “shape.” Other times, though (including the next
operation) we’ll really be treating it as a sort of degenerate matrix
with only one row or one column. At those times, it makes sense
to say things like:

If −→x =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

9
2
4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, then −→x

⊺
= [9 2 4] .

4.4. MATRIX OPERATIONS 89

When speaking, by the way, you pronounce −→x ⊺ as “x-transpose”
and A

⊺
as “A-transpose.”

Operation #4: matrix-vector multiplication

Okay, heads-up. Here’s the toughie.

What do you think it would mean to multiply a matrix by a vector?
You might think of several plausible ways to define such an opera-
tion, but I doubt you’ll think of the one that’s actually in use. It’s
weird for a number of reasons, one of which is that the thing you
get back often isn’t the same dimensions as either of the operands!

Let me just do one and see if you can reverse engineer how I got
the answer. Here goes:

[2 2 7
1 4 0

] ⋅
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
−1
4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
= [28

−3
] .

Can you figure out why in the world that would be the answer?

Surprise number one is the type of thing we got back. We mul-
tiplied a 2 × 3 matrix by a three-dimensional column vector and
this produced...a two-dimensional column vector. Ooookay. Sur-
prise number two are the contents of that vector. 28 and −3, what
the...?

Things will get considerably clearer if you remember the dot product
operator from section 2.4 (p. 24). What we did here was separately
compute each row of the matrix dot-product-ed with the vector. A
dot product, you’ll recall, gives us a single scalar as an answer. So,
since [2 2 7] ⋅ [1 − 1 4] is 28, and [1 4 0] ⋅ [1 − 1 4] is
−3, our result is a vector containing those two results.

This can really trip you up later if you don’t master it now, so
take a minute and master the above calculation. Make sure you
understand how the rows of the matrix are each dot-product-ed
with the column vector to produce an answer. And since there are

90 CHAPTER 4. MATRICES

two such dot products, there are two such answers, and the result
is a column vector with two entries.

The rules for when matrix-vector multiplication are possible are:

1. The vector must be a column vector, or at least treated as
such for purposes of performing the operation.

2. The number of columns (not rows) in the matrix must be
the same as the dimension of (the number of entries in) the
vector. If these do not match, the game is over.

If these two check out, then the operation is permissible, and the
result is a column vector whose dimension (number of entries) is
the same as the number of rows (not columns) in the matrix.

For example:

• A wide 5 × 17 matrix times a 17-dimensional column vector
is legal, and gives a 5-dimensional vector result.

• A tall 17 × 5 matrix times a 5-dimensional column vector is
legal, and gives an 17-dimensional vector result.

• A wide 5× 17 matrix times a 5-dimensional column vector is
illegal.

• A wide 5 × 17 matrix times any row vector is illegal.

Sometimes it helps to stretch your neck out a bit before attempting
matrix-vector multiplication. That’s because you have to visualize
a (potentially long) row of numbers being paired up, one-by-one,
with a (potentially tall) column of numbers. It’s not too hard once
you get used to it, but it can be surprisingly difficult at first to
move across the page with your left eyeball at the same time you’re
moving down the page with your right eyeball. Like all things,
practice.

Two ways to think about matrix-vector multiplication

Now there are two different ways to think about the matrix-vector
product. Each one is useful in certain situations, so it’s very im-
portant to master both interpretations. Here they are:

4.4. MATRIX OPERATIONS 91

Two different ways to think about A ⋅ −→x :

1. All of the dot products between the rows of A with −→x .
2. A linear combination of A’s columns. (−→x ’s elements are

the coefficients of the linear combination.)

The first interpretation is what we’ve learned operationally so far.
To compute A ⋅ −→x , we take each of A’s rows, in turn, and dot-
product them with the vector, producing a new vector of answers.

When does it make sense to think of it this way? Think back to
Jezebel and friends (p. 27). Let’s say we have Jezebel’s (normalized)

survey answers in a vector
−→
j :

−→
j = [.434 .173 .867 .173].

action hiking candle mystery

Now suppose we have all the eligible Men’s (normalized) survey
answers in a matrix M , like so:

biff
filbert

wendell

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

.704 .704 .070 .070

.548 .183 .730 .365

.092 .275 .275 .917

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
action hiking candle mystery

A very reasonable way to store these entries, I think you’ll agree.
Each row represent one man’s (normalized) survey responses, where
each column is one of the questions.

Now we can compute Jezebel’s compatibility with every guy under
the sun in one fell swoop! All we need to do is transpose her vector
into a column vector, and perform matrix-vector multiplication:

M ⋅
−→
j
⊺
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

.704 .704 .070 .070

.548 .183 .730 .365

.092 .275 .275 .917

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
⋅

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

.434

.173

.867

.173

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

.500

.966

.484

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

92 CHAPTER 4. MATRICES

Boom! The elements of our answer represent Jezebel’s compatibil-
ity with Biff, Filbert, and Wendell, respectively. That’s because
the first element of our answer was the dot product of the first row

of M (Biff’s row) with
−→
j . Ditto for the other two.

As you can see, this is really nothing more than automating and
repeating our individual dot product calculations, since that’s what
the matrix-vector product is, according to interpretation 1. Instead
of just multiplying Jezebel’s vector times Biff’s, we can multiply
it times a thousand different guys all at once, to get a thousand
different compatibilities. In the end, we see that Filbert and Jezebel
are paired together as expected, which means all is right with the
world.

The other way to think about the matrix-vector product is as a
linear combination of the matrix’s columns. The bake sale example
from p. 31 is a case where it makes sense to think about it this
way. Let’s make a “Recipes matrix” R in which each column is one
recipe, and each row corresponds to an ingredient. The entries tell
us the quantity of that ingredient required for one batch of each of
the recipes:

butter
sugar
chips
flour
eggs

marshmallow
rice krispies

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 1 2 2
1 1 2 0
1 4 4 0
1 2 0 0
3 2 0 0
0 0 0 5
0 0 0 2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
chippers brownies fudge rice krispies

When we do our bake sale planning, we decide we want to bake the
following number of batches for our first day of the sale:

−→
b = [5 5 2 6].

chippers brownies fudge rice krispies

4.4. MATRIX OPERATIONS 93

How do we compute our complete shopping list? Simple: transpose
−→
b and do matrix-vector multiplication:

R ⋅
−→
b
⊺
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 1 2 2
1 1 2 0
1 4 4 0
1 2 0 0
3 2 0 0
0 0 0 5
0 0 0 2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⋅

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

5
5
2
6

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

31
14
33
15
25
30
12

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

We’ll clean out Publix by purchasing 31 sticks of butter, 14 cups of
sugar, 33 bags of chocolate chips, and so on.

Now why do I say that the second interpretation from p. 91 is the
right one here? Because we’re treating the columns as meaningful
entities. The left-most column is “how much stuff to buy for each
chocolate chip cookie batch.” The second column is “how much
stuff to buy for each brownie batch.” And so forth. So what we’re
really doing in this calculation is saying “we want 5 chipper recipes,
so 5 times the first column; and also 5 brownie recipes, so 5 times
the second column; 2 batches of fudge, so twice the third column;
plus 6 times the last column for our 6 trays of Rice Krispie treats.”
Mathematically, we’re doing this:

5

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2
1
1
1
3
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ 5

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1
4
2
2
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ 2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2
2
4
0
0
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ 6

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2
0
0
0
0
5
2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

31
14
33
15
25
30
12

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

which is exactly a linear combination of the recipes. The coefficient
of each vector – the scalar in each scalar-vector multiplication – is

the corresponding element of our
−→
b vector, telling us how much of

each recipe to make.

94 CHAPTER 4. MATRICES

A couple additional thoughts before we leave this section. First, I
don’t know about you, but I think it’s actually quite remarkable
that these two different definitions of matrix-vector multiplication
turn out to give the same answer. In #1, we’re taking the dot
product of each of the matrix’s rows with the entire vector. In #2,
we’re working with the columns of the matrix, not the rows, and
we’re not doing any dot products at all; we’re treating the vector
as a sequence of coefficients and doing scalar-vector multiplication
with them. These seem like totally different – perhaps even oppo-
site, or competing – operations, yet they always work out to the
same result.

Finally, I’ll just say that if you think it’s annoying to take the
transpose of the vector and write it up-and-down, I feel your pain.
It does seem much more sensible (and less prone to error) to just
leave the row vector as a row vector, because then it lines up visually
with the rows of the matrix that we’re taking its dot product with
anyway. It’s hard enough to keep all the numbers straight without
having to constantly shift between horizontal and vertical vision as
you’re calculating! Anyway, I guess I’ve just learned to accept this
over the years, since it’s universal to define the operation this way.
My advice is to grumble to yourself a while and then try to do the
same.

4.5 Change-of-basis matrices (to standard)

Remember back to last chapter (specifically, p. 71) when we dis-
cussed how a vector can be expressed as coordinates in any basis,
not merely in the standard basis. We had our Ron vector −→r that
could be expressed in either the standard basis Bs or equivalently
in the “domino basis” Bd:

−→r = [3
−1

]
Bd

= [−1
2
]
Bs

.

(Our domino basis, you’ll recall, had the dominoes and
in it, so Bd = {[1 2], [4 4]}.)

4.6. “SPECIAL” MATRICES 95

We can translate between the two bases using matrix-vector mul-
tiplication. To go from domino to standard, we merely put the
dominoes into the columns of a matrix:

COBBd→Bs
= [1 4

2 4
]

because

−−→rBs
= [1 4

2 4
] ⋅ −−→rBd

= [1 4
2 4

] ⋅ [3
−1

]
Bd

= [−1
2
]
Bs

.

This COBBd→Bs
matrix is called the change-of-basis matrix from

the domino basis to the standard basis.

What if we want to go in the other direction? Remember, Hermione

had a vector
−→
h which, when expressed in the standard basis, was

[5
2
]. What are her coordinates in the domino basis?

Hate to still leave you hanging on Hermione, but for that, we’ll
need a new concept called the matrix inverse, which we won’t
get to until p. 157. Stay tuned.

4.6 “Special” matrices

Finally, there are some terms for “special” matrices that satisfy
certain properties, which will come up for us in important contexts.
We’ll start with the least restrictive definition and repeatedly add
further constraints to it for successively more restrictive ones.

Easiest of all, a square matrix is simply one that has the same
number of rows and columns. Any 4 × 4 matrix is square, and no
6× 7 matrix is square. Simple. And yes, in case you’re wondering,
we can have a 1 × 1 matrix, which is considered square.

96 CHAPTER 4. MATRICES

In order for a matrix to be symmetric, it has to be square.
1

Fur-
ther, in a symmetric matrix the rows and the columns are inter-
changeable. For example:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

9 7 2 8
7 −3 0 −1
2 0 5 4
8 −1 4 16

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

In this matrix, row #0 is [9 7 2 8], and column #0 is also
[9 7 2 8]. Similarly, row #1 and column #1 are the same, as
are row #2 and column #2, and row #3 and column #3.

Mathematically, a matrix M is symmetric only if:

∀i, j Mi,j = Mj,i.

In other words, you must be able to swap the row and column
numbers and get the same value. The entry at row 5 column 8
must be the same as the one at row 8 column 5, etc. If that’s not
true every time, it’s not a symmetric matrix.

It might help you understand the meaning of “symmetric” if you
mentally visualize a line from the upper-left entry to the lower-right
entry of the matrix:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

9 7 2 8
7 −3 0 −1
2 0 5 4
8 −1 4 16

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

These entries, by the way, where the row number equals the column
number, are called the main diagonal (or just the diagonal) of
the matrix. If a matrix is symmetric, you could imagine that line
being a mirror: and it perfectly reflects one side to the other. The
two 7’s are on matching, opposite sides of that line, as are the two

1
There are more advanced versions of some of the definitions in this section

that don’t require square-ness, but they won’t come up for us.

4.6. “SPECIAL” MATRICES 97

2’s, the two 0’s, the two 8’s, the two −1’s, and the two 4’s. Note
that the entries on the main diagonal can be anything at all – they
don’t affect the symmetric-ness (or not) of the matrix.

This property may seem obscure, but it will come up surprisingly
often.

By the way, you might have expected a “symmetric matrix” to be
one that was a mirror image of itself left-to-right-wise, or top-to-
bottom-wise. Nope. That doesn’t turn out to be a useful concept.
The definition above, however – reflection along the main diagonal
– turns out to be immensely useful.

Okay, next one. A matrix is said to be upper-triangular if all
entries below the main diagonal are zero. Example:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

9 7 2 8
0 −3 0 −1
0 0 5 4
0 0 0 16

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

This matrix is upper-triangular because I’ve zeroed-out everything
below the 9,−3, 5, 16 entries of the main diagonal. Note that it’s
perfectly fine to also have a 0 above – or even on – the diagonal.
The existence of such a zero doesn’t disqualify you from upper-
triangular-ness. The only requirement is that all entries below the
diagonal must be zero.

You can probably tell why the word “triangular” is used: the
possibly-nonzero entries are all arranged in a right triangle in the
upper-right half of the matrix. Occasionally it will also be useful to
talk about a lower-triangular matrix, which has zeroes in every
entry above the diagonal. And again, you have to be square for your
upper- or lower- triangular-ness to even be under consideration.

Also common is the notion of a diagonal matrix. Be careful: a “a
diagonal matrix” is different from “the diagonal of a matrix!” A
diagonal matrix is one where all entries not on the diagonal must
be zero. Example:

98 CHAPTER 4. MATRICES

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

9 0 0 0
0 −3 0 0
0 0 5 0
0 0 0 16

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Food for thought: a diagonal matrix is both upper-triangular and
lower-triangular.

Like I said, we’re getting more and more restrictive as we go. If
you’re planning on being a 6 × 6 diagonal matrix, there’s a whole
lot of your life already set in stone. The only choices you have are
what to put on your diagonal.

But we can get more restrictive still! Believe it or not, a very
common and interesting type of matrix will be a so-called identity
matrix. Get this: an identity matrix is a diagonal matrix with only
1’s on the diagonal. Talk about confining. Once you’ve decided on
your size, you have literally no choices. The one and only 4 × 4
identity matrix is this one:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

For every natural number n, there’s one and only one identity ma-
trix of that size. Sometimes we call that matrix In for short; in
other words, the matrix above is sometimes called I4.

In the next chapter (p. 157, to be exact), you’ll learn the excellent
reason that this kind of matrix is called an “identity” matrix. For
now, test yourself with these questions:

1. Are all square matrices symmetric?
2. Are all symmetric matrices square?
3. Are all symmetric matrices upper-triangular?
4. Are all upper-triangular matrices symmetric?
5. Are all diagonal matrices upper-triangular?

4.6. “SPECIAL” MATRICES 99

6. Are all upper-triangular matrices diagonal?
7. Are all diagonal matrices symmetric?
8. Are all diagonal matrices identity matrices?
9. Are all identity matrices upper-triangular?

10. Are all identity matrices diagonal?

The answers are at the end of the chapter (p. 112).

Rounding out our list, I’ll mention two more types of “special”
matrices that are a bit different from the previous ones. The first is
called a block diagonal matrix. A matrix is block diagonal if it
can be partitioned into rectangular chunks (called “blocks”) such
that each chunk on the diagonal is square, and all entries in the
non-diagonal chunks must be all zeros.

Whoa, that’s hard to visualize. Let’s look at some examples:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 2 0 0
4 4 0 0
0 0 9 7
0 0 2 6

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

This is a block diagonal matrix. Why? Because if we break it up
this way:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 2 0 0
4 4 0 0

0 0 9 7
0 0 2 6

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

we can see that it satisfies the conditions. The two blocks on the
diagonal (which are the 3–2–4–4 block and the 9–7–2–6 block) are
square (2 × 2), and all the entries in the off-diagonal blocks are
zeroes.

Sometimes it can take a little fiddling around to find the right
partition. Try this one:

100 CHAPTER 4. MATRICES

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 4 3 0
6 8 2 0
5 1 5 0
0 0 0 7

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Does that one look block diagonal to you? It is:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 4 3 0
6 8 2 0
5 1 5 0

0 0 0 7

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Notice that the blocks that are not on the diagonal don’t have to
be square. All that matters are the diagonal blocks, and here we
have a 3 × 3 and a 1 × 1, so we’re good.

Here’s one more for the road:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4 0 0 0 0 0 0
0 9 0 3 3 0 0
0 0 0 0 0 0 0
0 0 2 0 0 0 0
0 7 0 0 5 0 0
0 0 0 0 0 6 3
0 0 0 0 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Is this one, too, block diagonal? All the extra (and unnecessary)
zeroes might fool you, but if you partition it this way:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4 0 0 0 0 0 0

0 9 0 3 3 0 0
0 0 0 0 0 0 0
0 0 2 0 0 0 0
0 7 0 0 5 0 0

0 0 0 0 0 6 3
0 0 0 0 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

you can see that it is.

4.6. “SPECIAL” MATRICES 101

Finally finally, let me introduce the concept of an “orthogonal
matrix.” A matrix must meet two criteria in order to deserve the
title “orthogonal”:

1. Each of its columns must be orthogonal to each of the other
columns. (Recall from p. 30 that two vectors are orthogonal
if their dot product is zero.)

2. The (Euclidean) norm of each of its columns must be equal
to 1. (Recall that to compute the Euclidean norm of a vec-
tor, you just take the square-root-of-the-sum-of-its-elements-
squared, a.k.a. the Pythagorean Theorem. See p. 36.)

Okay, that seemed kind of random. But it actually has important
implications, which will come up later in the book. For now, let me
just show some examples of each:

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 1

−2 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

√
2
2

1
√
2
2

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, C =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

2
5

3
5

3
5
−2

5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, D =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0

0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Question: which of these matrices are orthogonal? Answers:

• A is not. It passes the first criterion, since [2
−2] ⋅ [

1
1] does

equal zero (check my math!) but the two columns don’t have
Euclidean length 1. (The norm of the left column for instance,

is
√

22 + (−2)2 = 2.828 . . .) Next!

• B is not. It passes the second criterion (the Euclidean norms
of both columns are 1 – double-check that) but not the first,

since the dot product of the two columns is
√
2
2

= .707 . . .
(Double-check that, too.) Next!

• Matrix C, on the other hand, is orthogonal. The dot product
of its two columns is zero:

2

5
⋅

3

5
+

3

5
⋅ (− 2

5
) =

6

25
−

6

25
= 0,

102 CHAPTER 4. MATRICES

and each column has norm 1:

(
√

2

5
)
2

+ (
√

3

5
)
2

= 1, and

(
√

3

5
)
2

+ (−
√

2

5
)
2

= 1.

Yay!

• And lastly, realize that the identity matrix D is also orthog-
onal! Both criteria are satisfied by inspection. This is true of
any identity matrix, you’ll realize as soon as you consider it.

I haven’t yet told you why orthogonal matrices are important, but
we’ll return to this in future chapters.

By the way, if I were King of the World, I wouldn’t have called these
“orthogonal matrices.” I would have called them “orthonormal
matrices.” That’s because two vectors which are both perpendicu-
lar to each other (with zero dot product, and therefore orthogonal)
and which also each have Euclidean norm 1 (and thus are “normal-
ized” in length) are called orthonormal vectors.

When I’m King, I’ll redefine these terms so that “orthogonal ma-
trix” means any matrix that satisfies criterion #1, above (but not
necessarily #2), and reserve the new term “orthonormal matrix” for
any matrix that satisfies both criteria. Until then, we’ll have to keep
using the misleading term “orthogonal matrix.” (Keep a watch on
your news feed for that Stephen-becomes-King-of-the-World thing
– I’m still working on it.)

4.6. “SPECIAL” MATRICES 103

3 Appendix: Python

With NumPy, a matrix is very similar to a vector. That’s because
they’re both ndarrays. They only vary in the number of dimen-
sions, but we have to be careful here because NumPy uses the
term “dimension” in a different way than we’ve been doing (say, on
p. 85). In our lingo, a matrix with three rows and four columns has
dimensions 3× 4. But NumPy would say that this matrix – and all
matrices – has dimension 2. Why 2? Because it has a left-to-right
dimension (rows) and an up-and-down dimension (columns).

For us, this won’t be too complicated, because we won’t be dealing
with objects of higher dimension (which are called tensors, by
the way) than 2. So all this really means for us is that a one-
dimensional ndarray is a vector, and a two-dimensional ndarray
is a matrix. And when we want to zero in on a particular element
of a matrix, we need two index numbers: one for the row and one
for the column.

Creating matrices (2-d arrays)

Creating a NumPy matrix is a snap – you just need to be prepared
to type a lot of boxies. Here’s a 3 × 2 matrix:

mat = array([[6,9],[4,5],[1,4]])

Notice the boxies-within-boxies: the very outermost pair is for the
entire array, where each inner pair specifies one row. In this way,
you see that a matrix is an array-of-arrays; or, if you prefer, a list
of rows. We can print them the same way we did vectors:

print(mat)

[[6 9]

[4 5]

[7 4]]

104 CHAPTER 4. MATRICES

The zeros() function works for matrices, but with a slightly dif-
ferent syntax: we specify the dimensions we’d like after the word
shape and a comma:

nada = zeros(shape=(4,7))

print(nada)

[[0. 0. 0. 0. 0. 0. 0.]

[0. 0. 0. 0. 0. 0. 0.]

[0. 0. 0. 0. 0. 0. 0.]

[0. 0. 0. 0. 0. 0. 0.]]

And we can do the random number thing, too, by passing the
random.rand() function dimension numbers:

crazy = random.rand(3,5)

print(crazy)

[[0.09121684 0.3084825 0.2529024 0.78089448 0.46138631]

[0.30003058 0.9275848 0.72649169 0.10995998 0.97565467]

[0.32876047 0.25447349 0.78955441 0.07921066 0.20986057]]

(As before, each number is between 0 and 1.)

Lastly, we can read a matrix from a file just like we did with a
vector. Most commonly, such files will use a comma as a delimiter
to separate entries on a line, so we’ll specify that in our function
call:

my_matrix = loadtxt("somematrixdata.txt", delimiter=",")

By the way, often files like these will have a .csv extension instead
of .txt; this stands for comma-separated values, for obvious
reasons.

4.6. “SPECIAL” MATRICES 105

Working with matrices (arrays)

indexshape@.shape

To learn the dimensions of a matrix, use .shape which gives a
vector of the dimensions:

print(mat)

print(mat.shape)

print("The matrix has {} rows.".format(mat.shape[0]))

print("The matrix has {} columns.".format(mat.shape[1]))

[[6 9]

[4 5]

[1 4]]

(3, 2)

The matrix has 3 rows.

The matrix has 2 columns.

We can give a matrix two index numbers (comma-separated) to
retrieve or change individual elements:

print(mat[0,1])

print(mat[2,0])

mat[1,1] = 19

print(mat)

2

7

[[3 2]

[4 19]

[7 4]]

Note that both rows and columns are indexed starting at 0.

We can get an entire row, or an entire column, by using a colon
(“:”) in place of one of the indices:

106 CHAPTER 4. MATRICES

print(mat[2,:])

print(mat[:,1])

[1 4]

[9 19 4]

Somewhat weirdly, getting exactly one column (as we did in the
second operation just now) gives us back the correct (column) vec-
tor, but instead of printing it out as a column, NumPy prints it as
a row. Trying to save screen space? Not sure.

Our slicing technique works the same as before (p. 49), on the rows
and/or the columns. Let’s create a slightly bigger matrix to show
it off:

bigger = array([[-9,-8,-7],[2,4,-6],[0,0,0],[1,9,6]])

print(bigger)

[[-9 -8 -7]

[2 4 -6]

[0 0 0]

[1 9 6]]

print(bigger[1,0:2])

[2 4]

print(bigger[0:3,1:3])

[[-8 -7]

[4 -6]

[0 0]]

4.6. “SPECIAL” MATRICES 107

print(bigger[0:3,2])

[-7 -6 0]

(Yeah, displays as row vector, it’s weird I agree.)

Finally, some linear algebra operations. We can take the transpose
of a matrix by appending .transpose():

print(bigger.transpose())

[[-9 2 0 1]

[-8 4 0 9]

[-7 -6 0 6]]

And matrix-vector multiplication also uses the .dot() syntax:

x = array([4,5,6])

print(bigger.dot(x))

[-118 -8 0 85]

Python branching

Finally, one more Python programming thing. Every programming
language has ways to branch, which means to control the flow of
the program so that the lines aren’t executed in strict sequential
order, depending on the situation. Python uses the “if statement”
for this, and again relies on indentation to know where the relevant
block of code ends. They are often used in conjunction with for

loops. Example:

108 CHAPTER 4. MATRICES

weights = np.array([145.6, 212.9, 126.4])

for i in arange(weights.size):

if weights[i] < 150:

print("You weigh {} lbs and might consider eating more."

.format(weights[i]))

print("Thanks for weighing in!")

You weigh 145.6 lbs and might consider eating more.

Thanks for weighing in!

Thanks for weighing in!

You weigh 126.4 lbs and might consider eating more.

Thanks for weighing in!

Each time the loop is executed, i has a different value, and hence
the next element of the weights vector is considered. Only if that
particular element satisfies the condition (less than 150) does the
indented code under the if get executed. Note that the “Thanks!”
message gets printed out regardless of the weight. Only lines in-
dented to the right of the if are what the if statement controls.

The “weights[i] < 150” part is called the if statement’s condi-
tion, and there is some wacky syntax you have to master to write
them correctly. Here it is:

Operator Meaning

> greater than

< less than

>= greater than or equal to

<= less than or equal to

!= not equal to

== equal to

and and

or or

not not

The last three of those are used when creating a compound con-
dition comprised of more than one test. For example:

4.6. “SPECIAL” MATRICES 109

if (sex[i] == "male" and weights[i] < 160 or

sex[i] == "female" and weights[i] < 140):

...

Here, the body of the if statement will only be executed for males
under 160 lbs and for females under 140 lbs.

Boolean variables in Python

The raw material that if statements work with is of the Boolean
type, not numbers, strings, or anything else. A Boolean variable,
named after 19th-century logician George Boole, holds either the
value True or False. (And these are capitalized in Python.)

It’s common for a function to return a Boolean when its purpose
is to check whether some condition holds. Let’s write a function
called is square() to determine whether a matrix is square. Here
goes:

indexshape@.shape

def is_square(m):

if m.shape[0] == m.shape[1]:

return True

else:

return False

Here we’ve added another feature to our if statement, namely an
else branch. I’m sure you can guess what it means, even if you’ve
never seen an if/else construction before: the code indented under
else gets executed only if the condition in the if statement is
False. So an if/else is simply an either/or.

You’ll remember I mentioned in the last chapter that some functions
have more than one return statement in them. Now you can see

110 CHAPTER 4. MATRICES

why that would be useful. A function finishes immediately as soon
as it encounters a return, and does not execute any code below it.
However, because of if statements, the path through a function
might zigzag over and past some return statements before reaching
others.

Anyway, you can see how this function works: it simply compares
the number of rows in the matrix with the number of columns, and
returns True if these are the same. That, after all, is the definition
of squareness.

Here’s another example:

def is_diagonal(m):

if m.shape[0] != m.shape[1]:

return False

for i in arange(m.shape[0]):

for j in arange(m.shape[1]):

if i != j and m[i,j] != 0:

return False

return True

That one packs a wallop. Can you figure out how it works?

First, we check to see if the matrix is square, since the way we’ve
defined diagonal matrices in this book, they must be square. If
that check fails, we immediately return our answer – False – and
unpause our Netflix video. If it is square, however, we have more
work to do.

The further work involves a nested for loop, since we need to
examine all elements of the matrix m: every row and every column.
I have the i loop variable going through the rows, and for each
row, the j loop goes through all the columns. (It’s important that
you see how each iteration of the outer (i) loop results in multiple
iterations of the inner (j) loop.)

Now for every element, I check two things. First, does its row num-
ber equal its column number? If these are equal, then that means

4.6. “SPECIAL” MATRICES 111

the element I’m examining is on the diagonal. Nothing special is
required in this case; a diagonal matrix is free to have anything it
wants on its diagonal. However, if i does not equal j, then I’m
examining an off-diagonal entry. If the matrix in question is truly
diagonal, all of those off-diagonal entries had better be 0. As soon
as I find an off-diagonal, non-zero entry, I immediately raise my red
flag and return from the function, again with a negative answer.

Only after I’ve gone through every entry, and confirmed that all of
the off-diagonal entries are zero, can I declare victory and return
True. Many students mess up on this part: they often put an else

branch on that if. This is fine syntactically, but wrong logically:
just because I find a single entry that satisfies my criteria does not
mean the entire matrix is therefore diagonal! No, I can only dare
to return True at the very, very end, after checking everything out.

Let’s see whether our functions work. First, we’ll create three ma-
trices of varying contents, and print them out:

m1 = array([[2,3,4],[5,6,7]])

m2 = array([[5,0,1],[0,3,0],[0,0,9]])

m3 = array([[16,0,0],[0,27,0],[0,0,5]])

print(m1)

print(m2)

print(m3)

[[2 3 4]

[5 6 7]]

[[5 0 1]

[0 3 0]

[0 0 9]]

[[16 0 0]

[0 27 0]

[0 0 5]]

Then, let’s call both functions on each of them, and see which ones
return True:

112 CHAPTER 4. MATRICES

if is_square(m1):

print("m1 is square!")

if is_diagonal(m1):

print("m1 is diagonal!")

if is_diagonal(m2):

print("m2 is diagonal!")

if is_square(m2):

print("m2 is square!")

if is_square(m3):

print("m3 is square!")

if is_diagonal(m3):

print("m3 is diagonal!")

m2 is square!

m3 is square!

m3 is diagonal!

We hereby declare victory.

Do you think you could write an is upper triangular() func-
tion in this vein? is identity()? is symmetric()? How about
is orthogonal() or is block diagonal()? Clearly, some of these
are way harder than others to write the code for, but all are indeed
possible with Python.

Answers to “special” matrix quiz from p. 98

1. No.
2. Yes.
3. No.
4. No.

5. Yes.
6. No.
7. Yes.
8. No.

9. Yes.
10. Yes.

Chapter 5

Linear transformations

A linear transformation is actually just another spin on matrix-
vector multiplication. It’s also yet another way to view a matrix as
a function. Back on p. 86, I made the point that instead of drawing
numbers in a grid, you could view a matrix itself as a function,
where the input is an ordered pair (row and column numbers) and
the output is the element at that entry. In this chapter, we explore
a deeper and richer interpretation of a matrix as a different sort of
function.

5.1 Transforming one vector into another

Recall how matrix-vector multiplication works. We’ll write it nota-
tionally as A ⋅ −→x =

−→y , where −→y is the result of the multiplication.
Now we could think about the operation like this:

• A is a “function” of sorts, which works on vectors to produce
other vectors.

• −→x is the input vector we give to that function.
• −→y is the function’s output (result).

We’re thinking of A as a long-lasting, reusable thing, whereas −→x
and −→y stand for the temporary inputs & outputs that we give to A
and compute on the fly. My mental image is of A as a machine, −→x
as the raw materials we might feed to the machine, and −→y as the

113

114 CHAPTER 5. LINEAR TRANSFORMATIONS

machine’s completed work.

One natural question is: “what is the domain, and the range, of
this A function?” That depends on A’s dimensions. Suppose it’s a
3 × 2 matrix:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 3
1 −4
0 5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
⋅ ? = ?

We know from the rules of matrix-vector multiplication (p. 90) that
the first question mark has to be a 2-dimensional column vector,
else the operation is impossible. And we know that the output will
be a 3-dimensional column vector. This means that the domain of
the A “function” is 2-d vectors and the codomain is 3-d vectors.
Most commonly, this is written as follows:

A ∶ R2
→ R3

.

Remember from A Cool, Brisk Walk that the R sign means “the
set of real numbers.” When we say “R2

” we’re saying “the set
of vectors with two real-numbered entries.” And R3

is the set of
three-dimensional real vectors, etc.

Put all together, the purpose of our A matrix is to map each two-
dimensional vector to a particular three-dimensional vector. For
instance, it maps the 2-d vector [2 1] to:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 3
1 −4
0 5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
⋅ [2

1
] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

7
−2
5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The particular vector it chooses seems kind of random so far, and
indeed this first example is just pulled from the air. Normally there
will be some “meaning” to the transformation.

By the way, a linear transformation is sometimes called a linear
map because it performs this “mapping” operation, like a function
does. The two terms (linear transformation and linear map) are
exact synonyms.

5.1. TRANSFORMING ONE VECTOR INTO ANOTHER 115

Meaningful examples

Before we go any further, let’s at least show that this is useful. I’m
going to create a machine (matrix) B (for “Body,” sort of) that
transforms certain 4-dimensional vectors into 2-dimensional ones.
Here it is:

B = [12 1 0 0
0 0 2.2 0

] .

The kind of input this matrix/function is intended to act on a vector

such as
−−−−−−−→
stephen, which is structured like this:

height: whole feet →

height: extra inches →

weight: kilograms →

shoe size →

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

6
2

95.5
13

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

This rather revealing vector contains some of my vital bodily stats.
I’m 6’2” tall, and hence don’t fit on airplanes; I weigh too much at
95.5 kg; and I wear an impossible-to-fit 13 shoe (13AAA, actually;
blame my mom’s side of the family).

Now what happens when we feed this to the B machine?

B ⋅
−−−−−−−→
stephen = [12 1 0 0

0 0 2.2 0
] ⋅

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

6
2

95.5
13

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= [74
210

]← height in inches

← weight in pounds

This matrix-vector multiplication produces a 2-element vector, since

B ∶ R4
→ R2

.

The first element is my height in total inches, and the second ele-
ment is my weight in pounds. B will produce a 2-dimensional vector
like this for every person whose 4-dimensional vector it’s multiplied
by. Interestingly, the shoe size of the input vector plays no role in

116 CHAPTER 5. LINEAR TRANSFORMATIONS

the value of the output vector, because there are zero elements at
both B0,3 and B1,3. And that’s okay.

By the way, you might think about expanding this example to cal-
culate something more complex like a BMI (body-mass index). Af-
ter all, BMI is a straightforward function of a person’s weight and
height

1
, as you might know:

BMI = 703 ×
weights (lbs)

height (in)2
.

However, it turns out this is impossible to do with a linear transfor-
mation. The reason is it’s not linear! The only operations that can
be included in a linear transformation are dot products, because
that’s what matrix-vector multiplication is. So for each element of
our output vector, we can (1) take the elements of the input vector,
(2) multiply each of them by any constant we like, and (3) add up
the results. The BMI formula, by contrast, requires us to divide
one of our inputs by another, and in fact requires us to square that
second input before dividing. These are both decidedly non-linear
operations that cannot be expressed with a matrix.

This may seem limiting, and in a way it is, but keep in mind two
things. First, there are lots and lots and lots of common operations
that are linear, and all of those come under our power in this book
on linear algebra. Second, when we do have linear operations, we
can take advantage of all kinds of computational simplifications
and analytical tricks, so concentrating on the linear case is most
definitely worth our time.

Here’s a second example. Suppose I have the following odd-looking
matrix S (for “stocks,” sort of):

1
(Mine’s about 27, which puts me in the “obese” range I’m sorry to say.)

5.2. LINEAR OPERATORS 117

S =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0
0 .69 0
0 111.1 0
0 .88 0
0 6.48 0
0 17.37 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

What does it do? Well, it’s designed for us to feed it vectors rep-
resenting Wall Street stocks, like so:

−−−−−−−−−→
mcdonalds =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1965
183.52

2606707

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

← year founded

← current share price

← trading volume

The result of multiplying S by this vector is to give us a convenient
list of the McDonald’s current stock price in various currencies:

S ⋅
−−−−−−−−−→
mcdonalds =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

183.52
126.93

20389.10
161.50
1189.21
3187.74

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

← ¦ (U.S. dollars)

← £ (British pounds sterling)

← ¥ (Japanese Yen)

← e (Euros)

← ¥ (Chinese Yuan)

← � (Mexican Pesos)

Again, the S matrix is simply ignoring the information we don’t
care about, and that’s okay. It’s still a function:

S ∶ R3
→ R6

.

5.2 Linear operators

So every matrix gives us a linear transformation, no matter its
shape. But if the matrix is square, we use a special name for the
linear transformation it carries out: a linear operator.

A matrix being square, of course, would imply that the input vec-
tors and the output vectors (or the domain and codomain, if you

118 CHAPTER 5. LINEAR TRANSFORMATIONS

prefer) are the same dimension: the function will map vectors in
R3

to other vectors in R3
, for instance, or from R81

to R81
.

Let’s restrict our attention for the moment to just two dimensions,
and see what effect certain 2 × 2 linear operator matrices have on
the vectors they act upon.

Figure 5.1: Three vectors, and their transformations under the

super boring linear operator [1 0
0 1

].

We’ll have three guinea pig vectors, which are: −→a = [3 4] (solid),
−→
b = [−6 2] (dotted), and −→c = [0 − 7] (dashed). They’re
plotted in the left half of Figure 5.1. First, we’ll try the identity
matrix, which you’ll remember in two dimensions is simply:

I2 = [1 0
0 1

]

Let’s multiply our three guinea pigs by this matrix to transform
them:

I2 ⋅
−→a = [1 0

0 1
] ⋅ [3

4
] = [3

4
] .

I2 ⋅
−→
b = [1 0

0 1
] ⋅ [−6

2
] = [−6

2
] .

5.2. LINEAR OPERATORS 119

I2 ⋅
−→c = [1 0

0 1
] ⋅ [0

−7
] = [0

−7
] .

The effect, you’ll agree, is underwhelming. Double-check my math,
and convince yourself that the function of the identity matrix is to
convert a vector into itself. This is why it’s called the “identity”
matrix, in fact. The “identity element” of addition is 0, which
means if you add anything to zero, you get your number back as
an answer. The identity element of multiplication is 1, of course.
And the identity matrix (in two dimensions) is the matrix [1 0

0 1
].

The right half of Figure 5.1 illustrates this boring fact: under the
identity matrix’s linear operator, all three vectors look exactly the
same after the transformation.

K, let’s shake things up a bit then. Let’s try this operator:

Sv=2 = [1 0
0 2

] .

I’ll reveal why I chose Sv=2 as the name of this matrix in a moment.
Notice that it is the same as I2 except for the 2 in the bottom-right
corner. What does it do when it maps vectors? Let’s give it a shot:

Sv=2 ⋅
−→a = [1 0

0 2
] ⋅ [3

4
] = [3

8
] ,

Sv=2 ⋅
−→
b = [1 0

0 2
] ⋅ [−6

2
] = [−6

4
] ,

Sv=2 ⋅
−→c = [1 0

0 2
] ⋅ [0

−7
] = [0

−14
] .

Can you see what it did in Figure 5.2? It stretched all the points
vertically by a factor of 2. In other words, every vector is now
pointing at a point twice as far from the x-axis. This is why I chose
the name Sv=2 – it stands for “Stretch vertically by a factor of 2.”

120 CHAPTER 5. LINEAR TRANSFORMATIONS

Figure 5.2: Three vectors, and their transformations under the

slightly more interesting linear operator [1 0
0 2

].

Playing on the same theme, we can try:

Sv= 1
2
,h=2 1

2
= [21

2
0

0 1
2

] .

Let’s see what this does to our vectors:

Sv= 1
2
,h=2 1

2
⋅ −→a = [21

2
0

0 1
2

] ⋅ [3
4
] = [71

2
2
] ,

Sv= 1
2
,h=2 1

2
⋅
−→
b = [21

2
0

0 1
2

] ⋅ [−6
2
] = [−15

1
] .

Sv= 1
2
,h=2 1

2
⋅ −→c = [21

2
0

0 1
2

] ⋅ [0
−7

] = [0
−3.5

] .

Figure 5.3 (p. 121) shows the results. Our vectors have been both
stretched and squished: stretched wide away horizontally from the
y-axis, and squished towards the x-axis. It’s like a hippo sat down
on the x-axis – and his evil twin hippo below him sat “up” on
the x-axis, so that their butts nearly met in the middle. All the
blades of grass on both sides of the axis were smooshed under the

5.2. LINEAR OPERATORS 121

Figure 5.3: The transformations under the linear operator

[2
1
2

0

0 1
2

], which is a bit like being simultaneously sat on by two

mirror-image hippos.

composite load. (Btw, if this visual image isn’t doing it for you, by
all means disregard it.)

Okay, now some other things than squishing and stretching. Let’s
investigate this smooth operator:

Fh = [−1 0
0 1

] .

Almost the same as the identity matrix, except for that minus sign.
What does it do?

Fh ⋅
−→a = [−1 0

0 1
] ⋅ [3

4
] = [−3

4
] ,

Fh ⋅
−→
b = [−1 0

0 1
] ⋅ [−6

2
] = [6

2
] .

Fh ⋅
−→c = [−1 0

0 1
] ⋅ [0

−7
] = [0

−7
] .

122 CHAPTER 5. LINEAR TRANSFORMATIONS

As you can see in Figure 5.4, the effect of this operator is to flip
the vectors horizontally through the y axis, like a mirror. A similar
effect can be seen in Figure 5.5, which shows the operator Fv =

[1 0
0 −1

] flipping the picture vertically, through the x axis.

Figure 5.4: The action of the linear operator [−1 0
0 1

], which flips

everything mirror-image-wise across the y-axis. To the −→c vector,
this had no effect.

Figure 5.5: The action of the linear operator [1 0
0 −1

], which flips

everything mirror-image-wise across the x-axis.

Okay, now my favorite ones. Check out this bad boy:

5.2. LINEAR OPERATORS 123

R+90° = [0 −1
1 0

] .

Can you guess why I named it the way I did? Check out its oper-
ation, and the resulting graph:

R+90° ⋅
−→a = [0 −1

1 0
] ⋅ [3

4
] = [−4

3
] ,

R+90° ⋅
−→
b = [0 −1

1 0
] ⋅ [−6

2
] = [−2

−6
] .

R+90° ⋅
−→c = [0 −1

1 0
] ⋅ [0

−7
] = [7

0
] .

It rotates the vectors 90° counter-clockwise. Neato!

Figure 5.6: The linear operator [0 −1
1 0

], which rotates them 90°

counter-clockwise.

As a matter of fact, we can create a linear operator to rotate vec-
tors any angle we want. Suppose we want to rotate them 63.4°
counter-clockwise (just to pick an angle at random). The formula
for computing the rotation matrix is:

124 CHAPTER 5. LINEAR TRANSFORMATIONS

Rθ = [cos θ − sin θ
sin θ cos θ

] ,

where θ is the angle we wish to rotate. We plug in θ = 63.4° to get:

R+63.4° = [.4478 −.8942
.8942 .4478

] .

Applying this linear operator to our three vectors, we get these
results and the picture in Figure 5.7.

R+63.4° ⋅
−→a = [.4478 −.8942

.8942 .4478
] ⋅ [3

4
] = [−2.2334

4.4738
] ,

R+63.4° ⋅
−→
b = [.4478 −.8942

.8942 .4478
] ⋅ [−6

2
] = [−4.4752

−4.4696
] .

R+63.4° ⋅
−→c = [.4478 −.8942

.8942 .4478
] ⋅ [0

−7
] = [6.2594

−3.1346
] .

Figure 5.7: The vectors under rotation by 63.4° CCW.

I think you get the idea. Linear operators are simple matrices that
can perform a variety of transformative effects on vectors. They’re
especially helpful (and easy to visualize) in graphics settings. Every

5.3. THE KERNEL 125

time your Mario Kart character turns slightly, and sees a different
angle of the race track, all of the scenery and opposing racers have
to be drawn in exactly the right places. This can involve shrinkage,
stretching, skewing, rotation, and a variety of other effects, all of
which boil down to linear algebra operations. The same could be
said for CGI movie effects.

Many people are surprised to learn that underneath the breath-
taking scenery and fist-clenching action sequences of movies and
games is a bunch of math. Watching Lt. Kara Thrace’s viper arc
towards the Cylon Resurrection ship seems like the least “mathy”
thing in the world: it’s all art and images and motion. But the rea-
son it looks cool (and “correct” to the viewer, who has seen many
objects move around in the world before) is that the linear algebra
operations that govern movement and perspective are calculated
properly. Truly, there’s nothing cool without math.

5.3 The kernel

One curious-sounding mathematical term is “kernel,” which is a
property of linear operators (and therefore, square matrices). An-
other word for a matrix’s kernel is its nullspace, which means the
same thing.

The kernel of a linear operator is simply this: the set of input
vectors that it maps to the zero vector. (A zero vector is just a
vector with all zeroes in it.) Recall that a linear operator acts on
vectors of a particular dimension to produce other vectors of the
same dimension. What’s under consideration here is: “what can
we feed in to this operator and get all zeroes?” That may not seem
like a very interesting question, but it turns out to be.

Let’s start with an example. On p. 121 we had this linear operator:

Fh = [−1 0
0 1

] ,

whose function, when we worked it out, was to flip vectors horizon-
tally through the y-axis. The vector [2 3] was transformed to

126 CHAPTER 5. LINEAR TRANSFORMATIONS

[−2 3]; the vector [−4 − 1] was mapped to [4 − 1]; and
the like. Each input was mapped to its mirror image.

Now consider the kernel question. What is the complete set of
vectors which, when subjected to the operation of Fh, would turn
into [0 0]? I think you’ll see in a moment’s thought that there is
only one such vector; namely, [0 0] itself. Only if you’re already
on the origin is your mirror image in the y-axis also going to be the
origin. Hence, the kernel of Fh is only the zero vector. Notationally,
we write:

kerFh = {[0
0
]}.

The word “ker” stands for kernel, of course, and since we defined
an operator’s kernel as the set of vectors that get mapped to the
zero vector, we put our one and only kernel vector in curly braces
to designate that.

Now do you remember way back on p. 64 when we spoke of the
“trivial solution” of a pair of dominoes? You might want to flip
back to that page and refresh your memory. The subject under
discussion was how to get to the origin via a linear transformation
of a set of dominoes. In Domino Game fashion, you could add any
multiple of the first domino to any multiple of the second, and in
this case the goal was to get the domino . The conclusion we
came to was that if the dominoes were yellow (i.e., if they were
linearly independent of one another) there was no way to get to the
origin except by, duh, taking zero of the first domino and zero of
the second.

You should immediately see the tie-in with the kernel concept.
Since every matrix-vector multiplication is a linear combination
of the matrix’s columns (interpretation #2 on p. 91), asking which
vectors get mapped to the zero vector is the same as asking which
linear combinations take you to the origin. And the fact of the mat-
ter is that if your matrix has linearly independent columns (yellow
dominoes) then there is only one such linear combination: zero of
the first, and zero of the second.

5.3. THE KERNEL 127

What about our rotation matrix?

R+90° = [0 −1
1 0

] .

Again, visualizing it geometrically tells you the answer. Every point
is rotated 90° counter-clockwise about the origin. So the only way
to land in the middle of the whirlpool is to start in the middle of the

whirlpool. Again, we have just the zero vector: kerR+90° = {[00]}.

What about our squishing/stretching matrices, like this one:

Sv= 1
2
,h=2 1

2
= [21

2
0

0 1
2

]?

Same thing. Every point will be (1) moved halfway closer to the x-
axis than it was, and (2) moved two-and-a-half times further from
the y-axis than it was. So the only way to land on the origin is to

start on the origin, and once again we have kerSv= 1
2
,h=2 1

2
= {[00]}.

You’re probably starting to wonder whether this is always the case.
Does any linear operator have a bigger kernel?

But the answer, as you may remember from p. 64, is yes: if our
columns are blue dominoes. Linearly dependent vectors makes it
so that there are many ways to get to the origin.

Let’s try a linear operator with blue domino columns, like this one:

B = [
1
2

1

−1 −2
] .

First, convince yourself that the columns are indeed linearly depen-
dent. If you took the left column, [1

2
− 1], and you multiplied

that column by 2, you would get [1 − 2], which is the right
column. So yes, they are.

The effect, shown in Figure 5.8, is rather jarring. This narrow-
minded matrix slapped all three vectors down in exactly the same

128 CHAPTER 5. LINEAR TRANSFORMATIONS

Figure 5.8: The vectors transformed by an operator B whose
columns are linearly dependent.

direction! This is because just as blue dominoes can only move you
on a certain line of the two-dimensional plane, so they can only map
input vectors to that line.

Now the “good news” (if you call it that) for blue dominoes is that
there is indeed more than one way to get to the origin by using them
– more than just the “trivial solution.” And this in turn means that
the kernel is larger than just the zero vector. Just check out all
these vectors that get mapped to the origin:

the vector [−21] ∶ [
1
2

1

−1 −2
] ⋅ [−2

1
] = [0

0
]✓

the vector [−42] ∶ [
1
2

1

−1 −2
] ⋅ [−4

2
] = [0

0
]✓

the vector [6
−3] ∶ [

1
2

1

−1 −2
] ⋅ [6

−3
] = [0

0
]✓

the vector [67

−33 1
2
] ∶ [

1
2

1

−1 −2
] ⋅ [67

−331
2

] = [0
0
]✓

the vector [−
1
9
1
18

] ∶ [
1
2

1

−1 −2
] ⋅ [−

1
9
1
18

] = [0
0
]✓

5.3. THE KERNEL 129

So at this point, we’ve discovered that the kernel of B has at least
these vectors in it:

kerB = {[−2
1
] , [−4

2
] , [6

−3
] , [67

−33 1
2

] , [−
1
9

1
18

] ,⋯}

Now the shrewd reader will notice something interesting about all
those vectors in the kernel. Can you spot the pattern?

It’s actually pretty simple. Whatever number you choose for the
first element of the vector, the second element has to be negative-
half-of that. The first example, [−2 1], has −2 in the first ele-
ment, and negative-half-of-that (which is 1) as its second element.
Similarly, 2 is negative-half-of −4, −3 is negative-half-of 6, and so
forth.

Now a subtle but important fact here is that our “choice process”
for finding vectors in kerB has one degree of freedom to it. We’re
free to choose whatever we like for one of the vector’s elements.
But then, if we want the vector to be in the kernel of B, we have
no flexibility in what we choose for the other. Our only choice is to
divide it by 2 and change its sign. Any other choice for that second

element won’t result in a vector that maps to [00].

We could express this in symbols by saying that you get one variable
– call it x – for your free choice, at which point you can declare this
vector to be in B’s kernel:

[x
−x

2

] .

If you’re a visual person, you can let x freely range from −∞ to ∞,
and plot this vector for all possible values of x plugged in. Your
plot would look like Figure 5.9: a one-dimensional straight line.

130 CHAPTER 5. LINEAR TRANSFORMATIONS

Figure 5.9: The kernel (nullspace) of B, plotted visually. Any
vector whose tip lies on that straight line will be in kerB, which
means we have a one-dimensional kernel.

5.4 Nullity

Okay, so with B, we had one degree of freedom in constructing a
vector in the kernel. Now with our other linear operators from this
chapter – like Fh, R63.4°, and friends – we actually had zero degrees
of freedom! There simply weren’t any free choices to make at all:

we had to say “uh, the only vector in the kernel is [00] itself. Nothin’

much we can do about that.”

With that prelude out of the way, it’s time for a new term. The
nullity of a linear operator (square matrix) is the dimension of
its kernel. The idea of “dimension” here is closely linked to the
concept of “degrees of freedom.” In Figure 5.9, you can see that all
the points in B’s kernel are lined up on a straight line. A line is a
one-dimensional shape: you can specify any point on it with just
one coordinate, telling you how far leftwards or rightwards you are.
Hence the dimension of B’s kernel – or its “nullity” – is 1.

A mere point, on the other hand, is a zero-dimensional shape:
there’s nothing to specify further about it – it’s just a point, man.
So what this means is that in a 2×2 matrix with linearly independent

5.5. RANK 131

columns – like Fh, or Sv= 1
2
,h=2 1

2
, or even the identity matrix I – the

nullity is 0. Only if the matrix has linearly dependent columns,
will its nullity will be greater than 0. In B’s case, it is 1. Sometimes
you’ll see the notation:

null B = 1

which means “the nullity of the B operator is 1, which in turn means
there’s one degree of freedom you get in constructing a vector that
will wind up in B’s kernel.”

5.5 Rank

This in turn is related to yet another new term: the rank of a
matrix. A square matrix’s rank is the number of linearly indepen-
dent columns it has. That’s a relatively simple idea. If I give you a
3 × 3 matrix, you know the rank can’t be possibly greater than 3,
because there are only three columns in it, period. The question,
then, is how many of those columns can be arrived at by linear
combinations of the others? If none of them can, then you have a
fully healthy yellow domino matrix with three fresh columns that
each point in totally different directions. It’s a rank 3 matrix. Since
it’s rank 3 and there are three total columns, it’s also sometimes
called a full-rank matrix.

On the other hand, if some of those columns are linearly dependent
on others, then we’re in a blue domino situation. Suppose you can
get the third column from a linear combination of the other two,
but that the first two are indeed independent with respect to each
other. Then, we have a rank 2 matrix: it’s “one card short of a
full deck,” as they say. Another term for a matrix whose rank is
less than its number of columns is a rank-deficient matrix, for
obvious reasons.

132 CHAPTER 5. LINEAR TRANSFORMATIONS

5.6 The Rank-Nullity Theorem

It turns out that the concepts of rank and nullity are intimately
bound up together, and in a very simple way; namely,

rank A + null A = number of columns of A,

for any square matrix A. This is called the rank-nullity theorem,
and you can take it to the bank.

Let’s think about what it means. If you just grab a random square
matrix off the shelf at Wal-Mart, it’s going to be full rank. For
example, if you grab a 3 × 3 matrix, you’d have to have awfully
bad luck for one of the columns to be an exact linear combination
of the two others. In this case, then, it’ll be a full-rank matrix;
or put another way, its rank will be 3. And as we’ve seen in the
above examples, the only vector it will map to the origin will be the
zero vector itself. That’s a zero-dimensional “space,” and hence the
nullity is 0. And so the formula holds: a rank of 3, plus a nullity
of 0, equals 3 columns in our matrix.

If we’re unlucky, and we get one column being linearly dependent
on the other two, then we have a rank-deficient matrix with blue
columns. Since only two of the columns are really “legit,” it’s a
rank 2 matrix. And from the previous analysis, we’ve seen that
such matrices have an entire line in their kernel, not just one point.
That one-dimensional line means that their nullity is 1. And again
for formula holds: a rank of 2, plus a nullity of 1, equals 3 columns
in our matrix.

It turns out some 3×3 matrices are even suckier than that. Suppose
we get one that has only one linearly independent column – each
of the other two are exact (possibly scaled) duplicates of the other
one! It’s not hard to create such a matrix; how about:

S =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 2 3
2 4 6
3 6 9

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(“S” stands for “sucky.”) We scratch our head looking at that guy:
sure, we’ve been given permission to go in direction [1 2 3], which

5.7. FUNCTION PROPERTIES 133

is great and all, but the other two columns just give us regurgitated
versions of that. There’s no additional power in being able to travel
in the [2 4 6] direction if you can already go in the [1 2 3]
direction, because they’re the same direction! And the same is true
of the last column as well.

In this case, it turns out to be a rank 1 matrix – only one indepen-
dent column. And you’ll find that its nullity is therefore 2. There’s
an entire two-dimensional plane (hanging out in three-dimensional
space) any point on which will be in S’s kernel. And again, the
rank-nullity theorem holds: a rank of 1 plus a nullity of 2 equals 3
columns in the matrix.

This deep relationship holds in any number of dimensions and even
in non-real-valued matrices. It’s a beautifully descriptive way to
capture exactly how much power a matrix has to perform linear
transformations.

5.7 Function properties and linear transformations

I’ll wrap up this chapter by drawing a connection between linear
transformations and the ordinary functions we learned about in A
Cool, Brisk Walk. Let’s review two properties from that book that
every function might, or might not, have:

1. injective (a.k.a. “one-to-one”): no two elements of the do-
main map to the same element of the codomain.

2. surjective (a.k.a. “onto”): every element of the codomain
has at least one element of the domain that maps to it.

For example, consider the function that maps Social Security Num-
bers (the domain) to the people they belong to (the codomain).
This is an injective function, because no two SSNs go with the
same person. It’s not surjective, though, because there are lots of
people in the world that don’t have SSNs.

By contrast, consider the function that maps college students to the
schools they’re enrolled in. This is surjective, since every college
has at least some students in it. But it’s not injective, because of

134 CHAPTER 5. LINEAR TRANSFORMATIONS

course many students go to the same college.

A function can have both properties, of course, in which case it’s
called bijective. In a twelve-horse race, we might map each horse
to its finishing place, which will be an integer from 1 to 12. This
function will be injective because no two horses will map to the
same number: you can’t have two winners, or two sixth-place fin-
ishers, for instance. It’s also surjective because every number will
be mapped to by some horse: we’re guaranteed to have a winner,
a runner-up, a twelfth-place finisher, and everything in between.

Now what does this all have to do with matrices? Well, if every
matrix can be looked at as a linear transformation – which is a func-
tion from input vectors to output vectors – we might well ask how
its injective-ness and surjective-ness relate to its matrix properties.

Consider first an easy case. Let’s say our matrix has more columns
than rows. It’s tall and skinny, like a 3 × 2. Whatever else may
be true, we know that the linear transformation corresponding to
such a matrix cannot possibly be surjective. That’s because its
input vectors are only 2-dimensional, while its output vectors are
3-dimensional. We can’t possibly have every single 3-dimensional
vector “spoken for” by some 2-dimensional vector: there aren’t
nearly enough of them. We can map [4 9] to [1 2 3] and
[6 3] to [4 5 6], etc....but we’re going to run out of 2-dimensional
vectors way before we run out of the 3-dimensional outputs we have
to map them to. (See Figure 5.10.)

Next think of the opposite case: a fat matrix, like a 2×3. Whatever
else might be true, we know it can’t possibly be injective. It’s the
mirror image of the previous example. If the outputs are only 2-
dimensional, then we can’t possibly have every single 3-dimensional
input mapped to its very own exclusive output. There just aren’t
enough of those outputs to go around; some will have to be shared
by many different inputs. (Figure 5.11.)

Okay, let’s imagine a square matrix then, like a 3×3. What can we
say about its injective-ness and surjective-ness? The answer turns
out to be that if it’s full-rank, its linear transformation will be
both injective and surjective (i.e., bijective). Every 3-dimensional

5.7. FUNCTION PROPERTIES 135

Figure 5.10: A 3 × 2 matrix can’t represent a surjective linear
transformation – there are far more elements in the codomain
than the domain.

input will get mapped to its very own 3-dimensional output, which
it exclusively “owns.” Furthermore, every possible 3-dimensional
output will be accounted for by exactly one input.

The implication is that the linear transformation is reversible, like
our horse-racing function was. If you ask me for the finishing place
of Sir Winston, and I tell you “third place,” you could then ask
me “which horse was in third place?” and I’d be sure to tell you
“Sir Winston.” This is possible because unlike SSNs and college
attendance, every input goes with its own output in perfect one-to-

Figure 5.11: A 2 × 3 matrix can’t represent an injective lin-
ear transformation – there aren’t nearly enough elements in the
codomain for each element of the domain to get its own.

136 CHAPTER 5. LINEAR TRANSFORMATIONS

one fashion.

In the same way, suppose you ask me what a full-rank matrix times
[4 6 − 2] is, and I answer “[9 4 1].” Then, you could ask me
“which vector maps to [9 4 1]?” and I’d be guaranteed to say
“[4 6 − 2], and only [4 6 − 2].” (See Figure 5.12.)

Figure 5.12: A non-singular 3× 3 matrix’s linear transformation.
It’s both injective and surjective: the domain and codomain are
the same size, and every element of the codomain has only one
incoming arrow. This includes the zero vector, which is mapped
to by only the zero vector.

Note that this is only true of full-rank matrices. If a matrix has
some blue dominoes among its columns, this whole guarantee breaks
down badly. For one thing, many output vectors won’t be reach-
able at all; if you ask me what vector maps to [9 4 1], I may
very well reply, “uh...nothing does.” And for another, those output
vectors that are reachable from some input will be reachable from
many inputs. (See Figure 5.13.)

You can also see this easily in terms of the kernel. A singular
matrix’s kernel will be larger than just the zero vector, which means
that more than one vector in the domain will be mapped to [0 0 0]
in the codomain. That outright kills any hope of injective-ness, of
course.

Such linear transformations – and matrices – are non-reversible,
and as we’ll see in the next chapter, they have no inverse matrix
at all. Stay tuned.

5.7. FUNCTION PROPERTIES 137

Figure 5.13: A singular 3× 3 matrix’s linear transformation. It’s
a hot mess. Many points in the codomain won’t be reachable at
all, and the few that are reachable (including the zero vector) will
be reachable from a myriad of different inputs.

138 CHAPTER 5. LINEAR TRANSFORMATIONS

3 Appendix: Python

In this appendix, we’ll write a function that will visually display
the behavior of a 2-dimensional linear operator, so we can get our
head around what each one does to the points it takes as input.

To this end, let’s learn a little bit more pylab plotting. One thing
we’d like to do is add an arrow to a plot, which starts at a particular
x-y coordinate and culminates at an arrowhead at another specific
particular x-y coordinate. The (clunky, IMO) command to do this
in pylab is this:

pylab.arrow(from xValue, from yValue,
to xValue - from xValue, to yValue - from yValue,
head width=.2, head length=.5)

There are six (count ’em) arguments, the first four of which are
coordinate-ish things and the last two of which are aesthetic trap-
pings (which you can change to suit your taste). The first four
numbers are, in order:

1. The x-coordinate of where the arrow starts.
2. The y-coordinate of where the arrow starts.
3. The length of the arrow in the x direction.
4. The length of the arrow in the y direction.

Because the third and fourth arguments are lengths, instead of
coordinates, you have to do some subtraction to compute the right
values for them. It’s not that big a deal, but I do occasionally
resent it.

The second thing to add to our plotting repertoire is the ability to
create horizontal and vertical lines, so we can display the axes on a
plot. This is simpler; you just call pylab.axhline(some y value)
or pylab.axvline(some x value) to draw a horizontal or vertical
line, respectively. If we do simply want to create a pair of axes,
then the “some x/y values” are both 0.

Put this all together, and we can use this code to create Figure 5.14:

5.7. FUNCTION PROPERTIES 139

import pylab

pylab.plot(-5,7,'o')

pylab.arrow(-5,7,8,-4,head_width=.2,head_length=.5)

pylab.axhline(0)

pylab.axvline(0)

pylab.xlim(-10,10)

pylab.ylim(-10,10)

pylab.show()

Figure 5.14: Drawing an arrow from point (-5,7) to point (3,3).

Okay. Now let’s write a function which will take a 2 × 2 matrix as
an argument, generate some random inputs, and plot an arrow (like
the one above) for each input showing which point it gets mapped
to. The complete code is in Figure 5.15.

The meat of this function is actually all on one line: output vector

= M.dot(input vector). That’s what takes each randomly-generated
input vector and performs matrix-vector multiplication on it to
yield the corresponding output. Everything else is random number
generation and window dressing.

Let’s take it for a spin with a few matrices:

140 CHAPTER 5. LINEAR TRANSFORMATIONS

def plot_operator(M):

for i in arange(100):

xval = random.rand() * 10 - 5

yval = random.rand() * 10 - 5

input_vector = array([xval, yval])

pylab.plot(xval, yval, 'o')

output_vector = M.dot(input_vector)

pylab.arrow(input_vector[0], input_vector[1],

output_vector[0] - input_vector[0],

output_vector[1] - input_vector[1],

head_width=.2, head_length=.3)

pylab.xlim(-5,5)

pylab.ylim(-5,5)

pylab.axhline(0)

pylab.axvline(0)

pylab.show()

Figure 5.15: The plot operator() function.

stretch = array([[2,0],[0,2]])

plot_operator(stretch)

flip_horiz_shrink_vert = array([[-1,0],[0,.8]])

plot_operator(flip_horiz_shrink_vert)

rotate_90_ccw = array([[0,1],[-1,0]])

plot_operator(rotate_90_cw)

rad_17 = 17 * pi / 180

rotate_17deg_ccw = array([[cos(rad_17),-sin(rad_17)],

[sin(rad_17),cos(rad_17)]])

plot_operator(rotate_17deg_ccw)

5.7. FUNCTION PROPERTIES 141

For that last one, we had to first convert 17°to radians (by multi-
plying by π

180
) and then plug that value into the sines and cosines

of the general rotation matrix on p. 123. The results of these four
operators are shown in the plots in Figure 5.16.

Figure 5.16: The operations of four matrices depicted
graphically on random input vectors: stretch (upper-
left), flip horiz shrink vert (upper-right), rotate 90deg ccw

(lower-left), and rotate 17deg cw (lower-right).

Chapter 6

Matrix multiplication

So far, we’ve multiplied scalars by vectors (p. 21), vectors by other
vectors (p. 24), scalars by matrices (p. 87), and even matrices by
vectors (p. 89). The only thing we haven’t done yet is multiply one
entire matrix by another. That mysterious operation is the subject
of this chapter.

Luckily, we’ve already set ourselves up for success. As it will turn
out, matrix-matrix multiplication is really just matrix-vector mul-
tiplication “in a loop”; i.e., repeated several times.

6.1 When it’s legal and what you get

But let’s not get ahead of ourselves. First, let’s outline the very
curious rules for (1) when two matrices can be multiplied at all
(often they can’t), and (2) if they can, what the dimensions of the
result are. These rules will surprise you at first (they certainly did
me).

Let’s say we have two matrices called A and B. Suppose that A is
an m × n matrix (m rows and n columns), and that B is a p × q
matrix. Visually, here’s what we’ve got:

143

144 CHAPTER 6. MATRIX MULTIPLICATION

m

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

nÌ ÒÒÐÒÒÎ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

▪ ▪ ⋯ ▪
▪ ▪ ⋯ ▪
⋮ ⋮ ⋯ ⋮
▪ ▪ ⋯ ▪

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

• p

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

qÌ ÒÒÐÒÒÎ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

▪ ▪ ⋯ ▪
▪ ▪ ⋯ ▪
⋮ ⋮ ⋯ ⋮
▪ ▪ ⋯ ▪

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= ?

Here are the rules:

1. n must be equal to p, or you can’t multiply the matrices
at all.

2. If n does equal p, then you’ll get an m × q matrix when
you multiply them.

Those rules are so strange and unexpected that it’s worth taking a
long moment to stare at both the matrices and the rules and try to
digest them.

Some concrete examples:

1. Can we multiply a 3 × 2 matrix by a 2 × 4? Yes, since n = 2
and p = 2. And our result will be a 3 × 4:

3

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

2Ì ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÐÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÎ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

▪ ▪
▪ ▪
▪ ▪

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
⋅ 2{

4Ì ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÐÒÒÎ
[▪ ▪ ▪ ▪
▪ ▪ ▪ ▪

] = 3

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

4Ì ÒÒÐÒÒÎ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

▪ ▪ ▪ ▪
▪ ▪ ▪ ▪
▪ ▪ ▪ ▪
▪ ▪ ▪ ▪

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

2. Can we multiply a 2 × 5 matrix by a 5 × 3? Yes, since n = 5
and p = 5. And we get a 2 × 3:

2{

5Ì ÒÒÒÐÒÒÎ
[▪ ▪ ▪ ▪ ▪
▪ ▪ ▪ ▪ ▪

] ⋅ 5

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

3Ì ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÐÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÎ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

▪ ▪ ▪
▪ ▪ ▪
▪ ▪ ▪
▪ ▪ ▪
▪ ▪ ▪

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 2{

3Ì ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÐÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÎ
[▪ ▪ ▪
▪ ▪ ▪

] .

6.2. WAY #1: LATHER, RINSE, REPEAT 145

3. Can we multiply a 4 × 3 matrix by another 4 × 3? No, since
n = 3 but p = 4. Sorry.

4

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

3Ì ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÐÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÎ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

▪ ▪ ▪
▪ ▪ ▪
▪ ▪ ▪
▪ ▪ ▪

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

• 4

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

3Ì ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÐÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÎ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

▪ ▪ ▪
▪ ▪ ▪
▪ ▪ ▪
▪ ▪ ▪

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= NOPE.

It’s sooo bizarre. Sometimes you multiply two biggish matrices
together and get a small one; sometimes you multiply narrow ones
and get a tall one; sometimes it seems like you’d get a valid answer
and yet there is none.

Anyway, now that we have the ground rules for what the resulting
matrix will be shaped like (if there even is one) let’s talk about
actually calculating the entries. I’m going to give you three different
ways to think about this, each of which sheds a different light on
the operation.

6.2 Way #1: Lather, rinse, repeat

The first way is to view the matrix multiplication A ⋅ B as re-
peated matrix-vector multiplication, where the matrix is A
and the vectors are the columns of B. The final answer is formed
by stitching together the results of the individual matrix-vector
multiplications.

Let’s see it in action. If you remember the procedure on p. 89, you
can confirm that if we perform this matrix-vector multiplication:

[2 1 5
0 3 −2

] ⋅
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
7

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

we’ll get the answer

146 CHAPTER 6. MATRIX MULTIPLICATION

[35
−14

] .

And if we do this:

[2 1 5
0 3 −2

] ⋅
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

9
99
999

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

we’ll get this:

[5112
−1701

] .

Finally, if we do this:

[2 1 5
0 3 −2

] ⋅
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−13
−13
−13

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

we’ll get this:

[−104
−13

] .

Notice what I did there. I took the same 2 × 3 matrix each time,
and multiplied it by some vector – a weird one, to help jog your
memory in a moment – to get an answer.

All right. Now let’s see what happens if I perform the following
matrix-matrix multiplication:

[2 1 5
0 3 −2

] ⋅
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 9 −13
0 99 −13
7 999 −13

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
= ?

6.3. WAY #2: ALL POSSIBLE DOT PRODUCTS 147

Examine the columns of the right-hand matrix: they should ring a
bell. Each column is one of the vectors that we just multiplied our
matrix by to get a columnar answer. The result of this operation
is achieved by simply putting all those columnar answers together:

[2 1 5
0 3 −2

] ⋅
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 9 −13
0 99 −13
7 999 −13

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
= [35 5112 −104

−14 −1701 −13
] .

See how that works? The result of the multiplication is just the
three individual matrix-vector products, all concatenated together

in an “answer matrix.” The left column of our answer is [35
−14],

which is exactly what we got when we multiplied that left-hand

matrix by James Bond. The right column of our answer is [−104−13],

which is what we got when we multiplied the matrix by triple −13’s.
And the middle column of the answer is the matrix times the stack
of nines. So you can see that matrix-matrix multiplication is really
just repeated matrix-vector multiplication.

This way of thinking about matrix multiplication might be the one
that resonates most strongly with you. (It did for me.)

6.3 Way #2: All possible dot products

On the other hand, maybe you’ll like this one better. Matrix-matrix
multiplication can also be viewed as all possible dot products
between the rows of A and the columns of B.

Flash back for a moment to A Cool, Brisk Walk chapter 6, and the
Fundamental Theorem of Counting. Answer this question: “You
have two choices of appetizer, and three choices of entrée. How
many different dinner combinations are possible?”

The answer is six, since each of the two appetizers can go with any
of the three entrées. So you could choose:

1. shrimp cocktail, filet mignon
2. shrimp cocktail, chicken pesto

148 CHAPTER 6. MATRIX MULTIPLICATION

3. shrimp cocktail, eggplant parmigiana
4. artichoke dip, filet mignon
5. artichoke dip, chicken pesto
6. artichoke dip, eggplant parmigiana

Now back to matrices. If I multiply these two matrices together:

[2 1 5
0 3 −2

] and

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 9 −13
0 99 −13
7 999 −13

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

how many possible dot products are there between rows of A and
columns of B?

The answer is six, since each of the two A rows can go with any of
the three B rows. The possibilities are:

1. [2 1 5] and [0 0 7]
2. [2 1 5] and [9 99 999]
3. [2 1 5] and [−13 − 13 − 13]
4. [0 3 − 2] and [0 0 7]
5. [0 3 − 2] and [9 99 999]
6. [0 3 − 2] and [−13 − 13 − 13]

(Note very carefully that we use the columns of B, not the rows!)

Very well. Let’s compute all those dot products then:

• [2 1 5] ⋅ [0 0 7] = 35
• [2 1 5] ⋅ [9 99 999] = 5112
• [2 1 5] ⋅ [−13 − 13 − 13] = −104
• [0 3 − 2] ⋅ [0 0 7] = −14
• [0 3 − 2] ⋅ [9 99 999] = −1701
• [0 3 − 2] ⋅ [−13 − 13 − 13] = −13

Those six dot products are precisely the entries in our answer ma-
trix:

[35 5112 −104
−14 −1701 −13

] .

6.4. WAY #3: SEVERAL LINEAR COMBINATIONS 149

The only thing you have to be careful of is which answer goes in
which place. The rule is:

The dot product of row i of A and column j of B goes in row
i, column j of the answer.

A sensible arrangement, I think you’ll agree. Multiplying row 0
with column 0 will give us the entry in row 0, column 0 of our
answer. Multiplying row 14 with column 9 will give us the entry in
row 14, column 9 of our answer. And so forth.

In terms of our current example, the reason that the number 5112
goes in the top middle of our answer (as opposed to the bottom
left, or anywhere else) is that 5112 is the dot product of the top
row of A ([2 1 5]) with the middle column of B ([9 99 999]).
Be sure to practice with this so you don’t get numbers out of place.

It might help to keep in mind possible applications here. Why
would we ever want to compute “all possible dot products?” Well,
think back to our matchmaker example. Let’s say we have 4 women
and 5 men, each of whom has completed a survey. Finding all the
compatibilities – i.e., predicting the dating success of all possible
pairings – is precisely computing the dot product of every gal with
every guy (assuming heterosexuality). That’s 20 possible dot prod-
ucts, which we can calculate with a single matrix multiplication.

6.4 Way #3: Several linear combinations

Our third and final way to think about matrix multiplication is in
terms of linear combinations. Remember (from p. 92) that every
matrix-vector multiplication A ⋅ −→x is essentially specifying some
linear combination of A’s columns. If we multiply A by the vector

[35], we’re saying “I’d like 3 copies of A’s first column, plus 5 copies

of its second column, please.”

Matrix multiplication is simply asking for several different linear
combinations. If we multiply a matrix A by this one:

150 CHAPTER 6. MATRIX MULTIPLICATION

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 9 −13
0 99 −13
7 999 −13

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

we’re requesting the following:

“Hello, I’d like to put in an order for three things.
First, I’d like 7 copies of A’s third column (ignore the
first two). Additionally, I’d like 9 copies of its first col-
umn, 99 copies of its second column, and 999 copies of
its third column, all added together. Finally, please give
me −13 copies of each of its columns, again added to-
gether. Thanks! You should have my credit card number
on file.”

To fulfill this order, we compute each of the three linear combi-
nations requested. Using the same A matrix we’ve been using

([2 1 5
0 3 −2]) this amounts to:

First combination: 7 [5
−2

] = [35
−14

]

Second combination: 9 [2
0
] + 99 [1

3
] + 999 [5

−2
] = [5112

−1701
]

Third combination: − 13 [2
0
] − 13 [1

3
] − 13 [5

−2
] = [−104

−13
]

Packaging up all those results again gives us:

[35 5112 −104
−14 −1701 −13

] .

Same answer no matter which of the three ways we think about it.

6.5. OUTER AND INNER PRODUCTS 151

6.5 Outer and inner products

All right. Now for some surprises.

Remember (p. 88) that we will sometimes want to treat a vector
as a sort of degenerate matrix: a matrix with only one row, or
only one column. And we will sometimes want to do this matrix
multiplication thing with two vectors, treating one of them as a
row vector and the other as a column vector. Which one is which
makes a tremendous difference.

As an illustration, I’m going to define vectors −→x and −→y this way:

−→x = [3 1 2] , −→y =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

5
4
−3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

So −→x is a row vector, and −→y is a column vector. Put another way,
−→x can be thought of as a 1 × 3 matrix, and −→y as a 3 × 1 matrix.

Now if we do treat these as matrices, then performing the operation
−→x ⋅ −→y gives us:

−→x ⋅ −→y = [3 1 2] ⋅
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

5
4
−3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 13.

It’s just the dot product, of course, calculated in the usual way.

Now suppose I swap the order, and compute −→y times −→x instead.
What would I get? The answer will surely surprise you:

−→y ⋅ −→x =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

5
4
−3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
⋅ [3 1 2] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

15 5 10
12 4 8
−9 −3 −6

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Hooooooo...wut?! −→x times −→y is the number 13, but −→y times −→x is
an entire grid full of numbers?

Yes it is. Here’s why.

152 CHAPTER 6. MATRIX MULTIPLICATION

Remember our rules from p. 144. First, we can only multiply two
matrices if n = p. And that’s true here whether we do −→x ⋅ −→y or
−→y ⋅ −→x . But the second rule tells us that the answer will be a m× q
matrix. If we put −→x on the left, then −→x ⋅ −→y will give us a 1 × 1
matrix. But if we put −→y on the left, then −→y ⋅−→x must give us a 3×3
matrix. Strange but true.

Btw, when we do the first thing – treat the vector on the left-
hand side of the multiplication as a row vector, and the other as a
column vector – it’s called the inner product of the two vectors.
The other way is called the outer product.

6.6 A ⋅ A⊺ vs. A
⊺ ⋅ A

Here’s another interesting consequence of our operation. As we’ve
seen, you certainly can’t multiply a matrix A by just “any old
thing,” since rule 1 on p. 144 says that n must equal p.

You can, however, always perform the operation A ⋅A⊺, no matter
what dimensions A is. That’s because if A is, say, 17× 28, then A

⊺

will be 28 × 17, and n = p (both are 28) as required. You’ll get a
17 × 17 matrix if you do that.

You also can always perform the operation A
⊺ ⋅ A. Again, if A is

17× 28, then A
⊺

will be 28× 17, and so again n = p (both are 17).
You’ll get a 28 × 28 matrix if you do that.

Here’s an example, smaller so it fits on the page. Let’s say A is

[2 20 3 −2 −4
−5 1 4 1 9

] .

The two operations give us:

A ⋅A
⊺
= [2 20 3 −2 −4

−5 1 4 1 9
] ⋅

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 −5
20 1
3 4
−2 1
−4 9

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= [433 −16
−16 124

] ,

6.6. A ⋅A⊺ VS. A
⊺ ⋅A 153

and

A
⊺
⋅A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 −5
20 1
3 4
−2 1
−4 9

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⋅ [2 20 3 −2 −4
−5 1 4 1 9

] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

29 35 −14 −9 −53
35 401 64 −39 −71
−14 64 25 −2 24
−9 −39 −2 5 17
−53 −71 24 17 97

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Two other intriguing facts are worth noting here, one of which you
may have noticed. If you run your eyeballs carefully over those two
results, you’ll see that both of them are symmetric matrices.
This is always true of a matrix times its transpose, and that turns
out to be important for some applications.

The other fact – certainly not ascertainable to my eyeballs, at least
– is that both of these matrices have only rank 2. That’s not sur-
prising about A ⋅ A⊺, since it’s just a 2 × 2 anyway. But it is very
surprising about A

⊺ ⋅A. That’s a 5×5 matrix with only two linearly
independent columns!

And this is always true. When you multiply a matrix by its trans-
pose, either way you do it, the rank will only be the lower of the
two dimensions.

The way I think of it is this. When you take a tall matrix (like our
5 × 2, above) and multiply it by a wide one (the 2 × 5), yes you’re
going to get a result with large dimensions. Sure. But in a way, you
only put “two columns’ worth” of information into the operation.
The result is a large 5×5, but that’s misleading, because there just
isn’t enough information present in those 25 entries to represent
five independent directions. The 5 × 5 result is brittle, containing
only two columns’ worth of information spread out over a large
landscape. It’s almost as if I wrote a fourteen-sentence paragraph
with only three sentences repeated again and again, with the words

154 CHAPTER 6. MATRIX MULTIPLICATION

rescrambled a bit each time. Sure, it looks like a long paragraph
at first glance, but try reading it and you’ll recognize how little
information it really contains.

6.7 Associative, but not commutative

The next surprising thing I’ll point out is that matrix multiplication
does not follow one of the laws of plain-Jane multiplication that
you’re used to counting on. Namely, matrix multiplication is not
commutative.

You’re so accustomed to this being true that it’s positively jarring.
Ever since Mrs. Jones taught you in second grade, you’ve safely
relied on the fact that:

115 ⋅ 272 = 272 ⋅ 115.

It might be a pain to work out the answer, but at least you’ve know
without even thinking that it doesn’t matter which order you do
the multiplication in.

But oh! this totally does not work with matrix multiplication. Tak-
ing two matrices at random:

A = [4 2
2 3

] , B = [1 −1
2 0

]

A ⋅B = [8 −4
8 −2

] ,

B ⋅A = [2 −1
8 4

] surprise!

Not even close to the same thing. And in general, matters are even
worse because you normally can’t even do the operation both ways!
(If A were a 2 × 4, for example, and B a 4 × 3, then A ⋅ B would
give you a 2× 3 matrix but B ⋅A is impossible.) You actually have

6.7. ASSOCIATIVE, BUT NOT COMMUTATIVE 155

to really work at it to come up with two matrices whose product is
the same both ways.

Nothing much to say here except to stay on your toes.

Another “given,” however, is true of matrices, and a good thing,
too. That’s the associative property. This means that if you’re
multiplying together a string of matrices, it doesn’t matter which
multiplication you perform first. In other words, for any three
matrices A, B, and C:

(A ⋅B) ⋅ C = A ⋅ (B ⋅ C).

Again, an example to illustrate:

A = [4 2
2 3

] , B = [1 −1
2 0

] , C = [3 4
1 5

]

(A ⋅B) ⋅ C = [8 −4
8 −2

] ⋅ [3 4
1 5

] = [20 12
22 22

] ,

A ⋅ (B ⋅ C) = [4 2
2 3

] ⋅ [2 −1
6 8

] = [20 12
22 22

] . ✓

And this always works.

One reason this is nice has to do with linear operators. Recall from
section 5.2 (pp. 117–125) that we can create operators to scale, flip,
and rotate points in the Cartesian plane. To review:

[2 0
0 2

] stretch points twice as far from the origin

[.866 −.5
.5 .866

] rotate points 30° counterclockwise

[−1 0
0 1

] flip points horizontally across the y-axis

156 CHAPTER 6. MATRIX MULTIPLICATION

Multiplying any of these matrices by a vector has the desired effect.

Now suppose we wanted to perform several of these operations on
a vector. For example, take a random point (8.5, 19). To stretch,
rotate, and flip it, we’d do this:

[2 0
0 2

] ⋅ [.866 −.5
.5 .866

] ⋅ [−1 0
0 1

] ⋅ [8.5
19

] .

This works out to [−33.72224.408] if you’re keeping score at home.

Now often instead of transforming a single point, we want to trans-
form an entire image, which contains multiple points. Imagine cal-
culating every pixel of Bowser as his Kart trips over a green shell
and spins towards the side of the screen. We can take advantage of
the associativity of matrix multiplication to pre-compute a single
matrix that will stretch/flip/rotate/squish/whatever any point we
care to multiply it by:

T = [2 0
0 2

] ⋅ [.866 −.5
.5 .866

] ⋅ [−1 0
0 1

] = [−1.732 −1
−1 1.732

] .

This makes our game engine run a lot faster, since we don’t have
to do all those calculations separately for every point in the image.
Instead, we calculate our T matrix (for transformation) just once,
and then multiply it by every point.

In fact, if we have all of Bowser’s pixels in a 2 × 1000 matrix:

B = [18 19 22 32 34 ⋯ 195
9 9 11 14 19 ⋯ 212

] ,

then we can compute what pixels to draw in the next frame with
just one operation: T ⋅B!

Bnext = T ⋅B = [−1.732 −1
−1 1.732

] ⋅ [18 19 22 32 34 ⋯ 195
9 9 11 14 19 ⋯ 212

] .

You gotta admit, that’s pretty neat.

6.8. THE “IDENTITY” MATRIX 157

6.8 The “identity” matrix

Remember back on p. 98 how we defined “identity matrices?” They
looked like this:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0
0 1 0
0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
They could be any size, but they were always square, and they
always had 1’s on the diagonal and 0’s everywhere else.

I promised to tell you why this kind of matrix was called an “iden-
tity” matrix, and now’s the time. It’s simply because when you
multiply it by any matrix, you get that same matrix back. Let’s
try it:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0
0 1 0
0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
⋅

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

7 7 9 4
−10 −5 5 3
17 16 14 13

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

7 7 9 4
−10 −5 5 3
17 16 14 13

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Yep, it works. And you can put the identity matrix on either the
left side or the right of the multiplication, and it still works.

Because of this property, the identity matrix plays the same role as
the number zero in addition (0 plus any number is that same num-
ber) and the number one in multiplication (1 times any number is
that same number). Those numbers are called the “identity ele-
ments” for those operations, since you get the “identical” number
back when you use them. Same reasoning here.

6.9 The “inverse” of a matrix

In high school (or maybe middle school) you learned what the re-
ciprocal of a number was: namely, the number that you had to
multiply it by to get 1. So the reciprocal of 3 was 1

3
, since 3 ⋅ 1

3
= 1.

Similarly, the reciprocal of −1
5

was −5 and the reciprocal of −π
8

was

− 8
π

. Easy.

158 CHAPTER 6. MATRIX MULTIPLICATION

Another name for the reciprocal of a number, by the way, is the
“multiplicative inverse.” If you want to “invert” the number 3,
you use 1

3
; this sends 3 back to 1, which the identity element for

multiplication. (Similarly, the “additive inverse” of 3 is −3, since if
you’re adding instead of multiplying, that’s the number you use to
send 3 back to 0, which is the identity element for addition.)

Now how do you think this concept would apply to matrix mul-
tiplication? I give you a square matrix A, and I ask you to find
its “reciprocal” – that is, its inverse. The answer I’m looking for
is the matrix you’d multiply by A to get the identity matrix. Ooo,
deep.

Now there are many differently-sized identity matrices, but you can
probably guess that I’m referring to the one of the same dimensions
as A. In other words, if I give you:

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

5 6 7
2 1 2
9 8 −2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

I’m asking for the matrix that we can multiply by A and get:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0
0 1 0
0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

since that one’s the right size.

Incidentally, the notation we use for A’s inverse is not 1
A

, as you

might expect, but A
−1

. It’s pronounced “A inverse.”

Now it’s not at all obvious that (1) there even is an inverse matrix
for A, nor that (2) there’s only one inverse matrix for A. And in fact
we’ll see in the next section that sometimes there is no inverse for
a matrix A (although there’s never more than one, as it happens).
But usually there is exactly one, as it turns out. And that will be
good news.

Why good news? Why do we care?

6.9. THE “INVERSE” OF A MATRIX 159

Simultaneous equations

There are several important reasons why we care, as it happens. In
this section I’m going to talk about only one of them, and it’ll seem
at first as if I’ve veered off-topic into something that has nothing
to do with linear algebra at all. But stay with me.

From your pre-college days, you undoubtedly remember solving si-
multaneous equations. For example, faced with this:

2x − 3y = 1

3x + y = 7,

you could use a variety of different techniques to work out that
x = 2 and y = 1. For me, the least hateful way of solving those
problems was to use substitution: get one variable in terms of the
other (like fiddling with that first equation to get x =

1+3y
2

, then

plugging
1+3y
2

in for x in the second equation). But you may have
done the thing where you multiply one of the entire equations by
some number and add it to the other one, or maybe you learned
yet another way. As long as you don’t screw up any of your math,
you’ll get the same answer regardless of technique.

The reason these are called “simultaneous equations,” by the way,
is that you’re looking for values of x and y that simultaneously
make both equations true. It’s easy to just eyeball it and find an
x and a y that make just one of the equations true. But getting
values that satisfy both equations simultaneously is the trick.

You may have done more than just “two equations, two unknowns”
in high school, like this problem that has three of each:

6x + 2y − 4z = −4

x + y + 2z = 8

2x − 2y + 8z = 4.

(*Shudder*) With enough laborious steps, and enough caffeine,
you’ll manage to crank out the correct answer which is x = −1,
y = 5, z = 2.

160 CHAPTER 6. MATRIX MULTIPLICATION

It probably won’t surprise you to learn that it’s also possible to
solve five equations in five unknowns, or a hundred equations in a
hundred unknowns, etc. It may surprise you to learn that there are
situations where we actually need to do that, because the equations
stand for real relationships between real quantities and solving si-
multaneous equations is how we figure out the real values.

Luckily for the human race, all that error-prone algebraic manipu-
lation required to solve a hundred simultaneous equations this way
(or even a few thousand) is utterly unnecessary. Matrices come
brilliantly to our rescue.

Let me recast the first problem above,

2x − 3y = 1 (6.1)

3x + y = 7, (6.2)

in the following way:

[2 −3
3 1

] ⋅ [x
y
] = [1

7
] . (6.3)

Whoa. Sudden leap from high school back to college. But do you
see the connection? Stare hard at the matrices in equation 6.3
and compare them with the original equations 6.1 and 6.2. You’ll
realize that the matrix entries are the coefficients of the equations,
and the right-most vector has the values from the equations’ right-
hand-sides.

A light bulb will go on for you as soon as you realize that the
matrix equation is exactly the same as the two ordinary equations!
That’s because when we do matrix-vector multiplication, we do two
separate things: (1) take the dot product of the top matrix row and

the [xy] vector, and (2) take the dot product of the bottom matrix

row and the [xy] vector. When we do this, we get:

[2x − 3y
3x + y

] = [1
7
] .

6.9. THE “INVERSE” OF A MATRIX 161

This is just another way of saying exactly the same thing that 6.1
and 6.2 do.

Okay, so why is this important? Here’s why. Suppose we could find
the inverse of the left matrix in equation 6.3. We’ll call it A

−1
.

Now if we multiply both sides of that equation by A
−1

we’d get:

A
−1
⋅ [2 −3

3 1
] ⋅ [x

y
] = A

−1
⋅ [1

7
]

[1 0
0 1

] ⋅ [x
y
] = A

−1
⋅ [1

7
]

[x
y
] = A

−1
⋅ [1

7
]

See how that works? Multiplying the matrix by its inverse makes it
disappear entirely from the left-hand side. That’s because a matrix
times its inverse is the identity matrix, and the identity matrix
times any vector is just that vector. So we’ve reduced the problem
of solving these simultaneous equations the high school way to just

(1) finding A’s inverse and (2) multiplying it by our [17] vector.

Great, so how do we compute A
−1

? Answer: ask a computer. Any
programming language worth its salt (including Python) can figure
it out lickety-split with one line of code. Here, I’m just going to
tell you the answer I got, and see if you can verify it:

Stephen asserts that A
−1

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
11

3
11

− 3
11

2
11

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Crazy, right? Yeah. Let’s multiply it out to be sure:

A ⋅A
−1

= [2 −3
3 1

] ⋅ [
1
11

3
11

− 3
11

2
11

] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 ⋅ 1
11
− 3 ⋅ (− 3

11
) 2 ⋅ 3

11
− 3 ⋅ 2

11

3 ⋅ 1
11
+ 1 ⋅ (− 3

11
) 3 ⋅ 3

11
+ 1 ⋅ 2

11

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
= [1 0

0 1
] ✓

162 CHAPTER 6. MATRIX MULTIPLICATION

Remarkable. Our answer to the simultaneous equations, then, is:

[x
y
] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
11

3
11

− 3
11

2
11

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
⋅ [1

7
] = [2

1
] .

So we confirm that x = 2 and y = 1, just as whatever hellacious
algebra you used on p. 159 told you.

The deal is, this approach is scalable to any number of equations
and unknowns you like, with no algebraic manipulation required.
As long as you have a programming language to compute the inverse
for you, you can crank out your answer in no time. Here’s the
answer to the three-equation example I showed earlier:

6x + 2y − 4z = −4

x + y + 2z = 8

2x − 2y + 8z = 4,

so

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

6 2 −4
1 1 2
2 −2 8

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
⋅

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

x
y
z

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−4
8
4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Ask Python, “what’s the inverse of [
6 2 −4
1 1 2
2 −2 8

]?”

Python replies: “

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3
20

− 1
10

1
10

− 1
20

7
10

− 1
5

− 1
20

1
5

1
20

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

!”

Therefore:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

x
y
z

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3
20

− 1
10

1
10

− 1
20

7
10

− 1
5

− 1
20

1
5

1
20

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⋅

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−4
8
4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1
5
2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Problem solved.

6.10. AN AMAZING (AND USEFUL) FACT 163

6.10 An amazing (and useful) fact

Recall our friends the “orthogonal matrices” from p. 101. (And re-
member that Stephen thought they should be named “orthonormal
matrices” instead, but that he was not yet – and still isn’t – King
of the World.) An orthogonal matrix is one whose columns are all
orthogonal to each other, and all have a norm of 1.

Now here’s an incredible fact about orthogonal matrices which blew
my mind when I first heard it. If O is an orthogonal matrix, then
its inverse is the same as its transpose; namely, O

⊺
= O

−1
.

What?!

This is astounding. When we learned the transpose operation on
p. 88, it was so simple a kindergartner could do it. All you do is
turn the matrix on its side: the rows become the columns and the
columns become the rows. It’s trivial.

But the inverse operation is a horse of an entirely different color.
It’s messy enough that I haven’t even told you how to calculate it:
I’ve just said, “ask Python.” And when you looked at the inverses
of some pretty simple matrices (like on the previous page), you
probably thought “smh, how did Python ever come up with that?”

So it’s truly astonishing that a quick and painless operation like
transpose could ever coincide with a gnarly and perplexing one like
inverse. But they do, if the matrix is orthogonal. And you can
see why, if you think about matrix multiplication in “Way #2”
(p. 147).

Suppose I take the transpose of a matrix O and multiply that by
O itself. So I’m computing O

⊺ ⋅ O. Then, I’ll get every column
of O dot-product-ed with every column of O. See how that works?
Taking the transpose of the matrix on the left-hand side flips the
rows and columns. So when we take the dot product of the first row
of O

⊺
with the first column of O, we’re really doing the dot product

of O
⊺
’s first column with itself. And when we multiply the first row

of O
⊺

by the second column of O, we’re really multiplying the first
column of O by the second column of O. And so forth. Every entry

164 CHAPTER 6. MATRIX MULTIPLICATION

in our final O
⊺ ⋅ O answer will be the result of multiplying some

column of O by some other column of O.

Now consider what we know about orthogonal matrices:

• If O is orthogonal, then each of its columns has a norm of 1.
That means that multiplying any column of O by itself will
give a dot product of 1. (If you have trouble seeing this, you
might peek back to p. 36 where we thought about the dot
product in terms of the cosine of the angle between vectors.
A vector times itself has an angle θ of 0, of course, and so
cos 0 = 1. If the vector itself is already of length 1, then
1 ⋅ 1 = 1, duh.)

• If O is orthogonal, then each of its columns is orthogonal to
all the others. Which in turn means that each column has a
zero dot product with any of the others.

So if O is a 3 × 3, say, computing O
⊺ ⋅O gives us this:

O
⊺
⋅O =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

column 1 ⋅ column 1 column 1 ⋅ column 2 column 1 ⋅ column 3

column 2 ⋅ column 1 column 2 ⋅ column 2 column 2 ⋅ column 3

column 3 ⋅ column 1 column 3 ⋅ column 2 column 3 ⋅ column 3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0
0 1 0
0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
!

Look at that! Multiplying O times its transpose gave us the identity
matrix. And that, of course, is the definition of “inverse”: “the
matrix you can multiply by to get the identity matrix.” And so
we’ve just proven that for orthogonal matrices, the inverse is the
same as the transpose.

This will save us a lot of work in the future, when working with
orthonormal bases, which have an interesting connection to sym-
metric matrices that we’ll see. So file this useful tip away.

6.11. CHANGE-OF-BASIS MATRICES 165

6.11 Change-of-basis matrices (from standard)

I left you hanging back on p. 95 when we converted Ron’s −→r vector
from the “domino basis” to the standard basis, but couldn’t go in

the reverse direction with Hermione’s
−→
h vector. Now we can.

You can probably guess how to do this: all we have to do is compute
the inverse of the COBBd→Bs

change-of-basis matrix, and we’ll get
the corresponding COBBs→Bd

change-of-basis matrix.

Hey Python, “what’s the inverse of [1 4
2 4

]?”

Python replies: “ [−1 1
1
2

− 1
4

]!”

So:

COBBs→Bd
= [−1 1

1
2

−1
4

] ,

and since Hermione was [5
2
] in standard coordinates, we convert her

to the domino basis as follows:

−−→
hBd

= [−1 1
1
2

−1
4

] ⋅ −−→hBs
= [−1 1

1
2

−1
4

] ⋅ [5
2
]
Bs

= [−3
2
]
Bd

.

This means that Hermione, in addition to being expressible as “five

[1
0
]’s and two [0

1
]’s,” is equally expressible as “negative three [1

2
]’s

and two [4
4
]’s.” Multiply it out if you doubt me.

.

166 CHAPTER 6. MATRIX MULTIPLICATION

6.12 “Singular” matrices

All right. Time for the last concept in what has been a hefty
chapter.

Rewind for a moment and think about reciprocals of ordinary num-
bers again. The reciprocal of 4 is 1

4
, the reciprocal of −3

7
is −7

3
,

yadda yadda. A number’s reciprocal is simply the number you can
multiply it by to get 1.

No matter what the number is, you can get its reciprocal just by
taking “one over” it. Right?

Almost right. But there’s one number for which that doesn’t work.
And that’s the number zero. Quick: what can you multiply zero
by and get 1? Answer: nothing. It’s the one and only number that
has no multiplicative inverse.

Now we’ve been drawing this parallel between regular old numbers
and square matrices. The analog of “reciprocal” in Numbers Land
is “matrix inverse” in Linear Algebra Land. So what’s the analog
to the number zero, then?

The answer is a singular matrix. “Singular” is a word I mostly
associate with Sir Arthur Conan Doyle’s original Sherlock Holmes
mysteries: Holmes was always saying, “what a singular discovery,
Watson!” That word struck me as so odd in Doyle’s short stories
that I had to look it up. Turns out, it basically means “incredibly
weird, so much so that it’s practically one-of-a-kind.”

1

Very well, then: a “singular matrix” is essentially a “weird matrix.”
But what does that mean? Simply this: it has no inverse. Just like
the number zero, you can’t take the reciprocal of it.

A few observations about this. First of all, as in Number Land,
the “normal case” is for a matrix to not be singular. If you pick a
number at random, the odds are incredibly high that it will have
a reciprocal. The only way to get unlucky is to draw the number
0 exactly. Similarly, if you pick a matrix at random, it will almost

1
The word singular is not a synonym for the word “single,” as many a college

student has mistakenly supposed.

6.12. “SINGULAR” MATRICES 167

certainly not be a singular one.

However, unlike in Number Land, there’s not just one singular
matrix, either. And there’s not just one of each size, either. In
fact, for any size you like (say, 4 × 4) there are infinitely many
different singular matrices. It might seem like a contradiction to say
“there are infinitely many of them, yet there’s a very low probability
you’ll get one at random,” but it’s really not. It’s no more of a
contradiction than saying “there are infinitely many integers, but if
you choose a real number at random there’s a very low probability
it’ll be an integer.”

2

Now by this point, a question might have occurred to you. Above,
I outlined a very simple procedure for solving simultaneous equa-
tions: convert the equations to an equivalent matrix, take the in-
verse of it, and multiply it by the constants on the right-hand side.
But what if it’s a singular matrix, you ask? How then can we find
the solution?

The important answer is: you can’t. And this isn’t because the
linear algebra shortcut broke down. It’s because a singular matrix
implies that there is no solution.

Here’s an example. Suppose I gave you these two simultaneous
equations:

2x + 3y = 8

4x + 6y = 11.

At first glance, nothing looks out of the ordinary. But look closer
and you’ll see the fatal flaw. The first equation says “2x+3y equals
something.” The second one says “4x+ 6y equals something else.”
But wait a minute! No matter what the right-hand sides may say,
4x + 6y has to be exactly double what 2x + 3y is. (Think about it:
multiply 2x+3y by 2 and you get 4x+6y.) So if 2x+3y is 8 – as the
first equation claims – then 4x+ 6y has to be 16. It can’t possibly
be 11 or anything else, or the wheels would fall off the universe.

2
This is really the same sort of difference as “countably infinite” vs. “un-

countably infinite” sets that I alluded to in Chapter 2 of Cool Brisk Walk.

168 CHAPTER 6. MATRIX MULTIPLICATION

You’ll notice that if you try to solve this using your high school
tools, you will also fall into a pit:

2x = 8 − 3y (subtract 3y from both sides of 1st equation)

x =
8 − 3y

2
(divide both sides by 2)

4(8 − 3y

2
) + 6y = 11 (plug expression for x into 2nd equation)

2(8 − 3y) + 6y = 11 (divide 4 by 2)

16 − 6y + 6y = 11 (multiply out the 2)

16 = 11??!

Don’t worry, 16 doesn’t really equal 11. We just tried to solve two
equations which were mutually contradictory, and it predictably
produced nonsense.

In Linear Algebra Land, the above equations correspond to this:

[2 3
4 6

] ⋅ [x
y
] = [8

11
] ,

which of course is fatally flawed in exactly the same way. The fatal
flaw is that this matrix:

[2 3
4 6

]

is singular.

Now I want you to look carefully at that matrix and make a dis-
covery. Consider the matrix’s columns. Does anything strike you
as unusual about them?

If you can’t spot the weirdness, let me redraw them this way:

[]

6.12. “SINGULAR” MATRICES 169

That’s right: those columns are blue dominoes.

It turns out that the definition of singular is a matrix in which the
columns are not linearly independent. Such a matrix is “broken” in
exactly the same way that blue dominoes are broken: its columns
don’t each branch out in a brand new direction, and so no matter
what linear combination of them you try to take, you can’t reach
most points.

If you think about it, that’s exactly what we’re trying to do here.
The above matrix equation is essentially saying “find me a linear

combination of [24] and [36] that will land me at the point [8
11].”

But there is no such linear combination. I can’t take x copies of

the first vector and y copies of the second and get to [8
11], because

those vectors point in the same dog-gone direction.

By the way, it might have occurred to you that it’s possible to get
extremely lucky. If we tweak the second of our equations ever so
slightly:

2x + 3y = 8

4x + 6y = 16,

then suddenly it’s not only possible to get a solution, but zillions
of different solutions. All of these work:

x = 1 x = 4 x = −2 x = 3 x = 16 ...
and and and and and and

y = 2 y = 0 y = 4 y =
2
3

y = −8 ...

That’s because any pair of numbers that work in the first equation
are automatically going to also work in the second. So it’s not quite
correct to say “a singular matrix means there are no solutions,”
since in very rare cases it can instead mean “too many solutions.”

170 CHAPTER 6. MATRIX MULTIPLICATION

Lastly, let’s complete the connection from section 5.7 (p. 133).
You’ll recall that if a square matrix is full-rank, then its linear
transformation will be both injective and surjective (and hence,
bijective). Every input vector will be mapped to its own output
vector (not sharing that output with any other input vector), and
every possible output vector will have an input that maps to it.

This is precisely true for non-singular matrices. And here’s why:
only non-singular matrices have inverses. A bijective function is
reversible: not only is there a unique output for every input, but
there’s a unique input for every output. And so it makes sense
that there would be an inverse matrix that “undoes” the mapping
from input to output. Singular matrices, on the other hand, do not
correspond to bijective transformations at all. Many inputs will
map to the same output, and some outputs won’t have any input
mapping to them at all. Thus it’s perfectly expected that there
be no inverse for such matrices, because the presence of an inverse
implies that we can do the mapping in both directions.

6.13 The Central Dogma of square
matrices

I’ve mentioned several times how all of these different ideas are tied
together. Let me now be explicit and complete about that.

Suppose you have a square matrix A. There are two possibilities:
either its columns are all linearly independent of each other, or else
they aren’t. Which of those two things are true puts A in one
of two big categories. I’m going to call the first type of matrix a
“yellow matrix” and the second type a “blue matrix,” to match
our definitions about the linear independence (or lack thereof) of
dominoes.

6.13. THE CENTRAL DOGMA OF SQUARE MATRICES 171

The following things are all true for yellow matrices:

• A is a non-singular square matrix.
• A has all linearly independent columns (yellow dominoes).
• A is “full rank.” (The rank is equal to the dimension of

the matrix.)
• The kernel of A has only the zero vector in it.
• The nullity of A is 0.
• A has an inverse matrix, which we can call A

−1
.

• A represents a system of equations which can be solved
(and which has exactly one solution.)

• A represents a linear transformation that is bijective.

On the flip side, the following are all true for blue matrices:

• A is a singular square matrix.
• A’s columns are not linearly independent (blue domi-

noes).
• A is “rank-deficient.” (The rank is less than the dimen-

sion of the matrix.)
• The kernel of A has more than just the zero vector in it.
• The nullity of A is greater than 0.
• There is no inverse matrix of A.
• A represents a system of equations which either can’t be

solved, or which has infinitely many solutions.
• A represents a linear transformation that is neither injec-

tive nor surjective.

Either all the stuff in the first box is true, or all the stuff in the
second box. There is no in between.

172 CHAPTER 6. MATRIX MULTIPLICATION

3 Appendix: Python

Matrix multiplication in Python is easy peasy. In fact, it’s exactly
the same as vector multiplication, and matrix-vector multiplication:
all three operations use the same .dot() syntax. Reproducing the
example on p. 155:

A = array([[4,2],[2,3]])

B = array([[1,-1],[2,0]])

C = array([[3,4],[1,5]])

print("A times B is:")

print(A.dot(B))

print("B times C is:")

print(B.dot(C))

print("(A times B) times C is:")

print(A.dot(B).dot(C))

print("A times (B times C) is:")

print(A.dot(B.dot(C)))

A times B is:

[[8 -4]

[8 -2]]

B times C is:

[[2 -1]

[6 8]]

(A times B) times C is:

[[20 12]

[22 22]]

A times (B times C) is:

[[20 12]

[22 22]]

6.13. THE CENTRAL DOGMA OF SQUARE MATRICES 173

Matrix inverse with NumPy

Many times this chapter (e.g., p. 161, p. 162, p. 165) I’ve told
you that Python can magically find the inverse of a matrix for us,
and that this is so easy I’m not even going to go through how
to compute it by hand. Now’s the time for me to follow through
on that promise. To find the inverse of a matrix, you simply call
“linalg.inv()” and pass the matrix as an argument.

Here are the examples from this chapter:

amazing = array([[6,2,-4],[1,1,2],[2,-2,8]])

print(linalg.inv(amazing))

[[0.15 -0.1 0.1]

[-0.05 0.7 -0.2]

[-0.05 0.2 0.05]]

If that truly is the inverse of amazing, then we’d better be able to
multiply it by amazing and get the identity matrix back, right?

print(amazing.dot(linalg.inv(amazing)))

[[1.00000000e+00 0.00000000e+00 5.55111512e-17]

[2.77555756e-17 1.00000000e+00 1.38777878e-17]

[5.55111512e-17 -2.22044605e-16 1.00000000e+00]]

Believe it or not, that’s the right answer. At first you might cry
foul that this looks very different from this:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0
0 1 0
0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.
But actually it’s not. Look again. The “e-16”s and “e-17”s at the
end of some of the entries are Python’s way of displaying scientific
notation. “e-17” actually means “times 10

−17
,” a number which

is 1
1017

or .00000000000000001 if you prefer. That means that when

174 CHAPTER 6. MATRIX MULTIPLICATION

you see 5.55111512e-17 as a matrix entry, Python is really telling
you that it’s the number .00000000000000000555111512, which I
think you’ll agree is about zero. Similarly, the value 1.00000000e+00
just means 1×10

0
, which equals one. So the matrix above actually

is the identity matrix, to a very high degree of precision.
3

very
close to an identity matrix.

If you try to take the inverse of a singular matrix, of course, you’ll
get an error (after all, you can’t divide by zero no matter how pure
your intentions):

singular = array([[2,4,6],[-1,2,9],[1,2,3]])

print(linalg.inv(singular))

LinAlgError: Singular matrix

Ouch! We got told.

Finally, let me mention that if you actually want to solve a system of
simultaneous equations a la p. 159, it’s best to not take the inverse
with linalg.inv() and multiply it by the vector. This is because
doing so accumulates more round-off error of the type mentioned
above. It turns out to be more precise (and faster besides) to use
the linalg.solve() function for this. This function takes two
arguments – the matrix of coefficients, and the vector of constants
from the right-hand-sides of the equals signs – and computes the
answer all in one go. Here are the answers we found earlier (on
p. 162):

3
This behavior happens very often with computer programs, and there’s

really no way around it. Every time a computer stores a number, it’s really
storing an approximation to that number given a certain amount of storage (in
bits) that it has been given to store it. This leads to tiny round-off errors that
can result in things being very very close to, but not exactly, the correct value.

6.13. THE CENTRAL DOGMA OF SQUARE MATRICES 175

twoM = array([[2,-3],[3,1]])

twoV = array([1,7])

print(linalg.solve(twoM,twoV))

threeM = array([[6,2,-4],[1,1,2],[2,-2,8]])

threeV = array([-4,8,4])

print(linalg.solve(threeM,threeV))

[2. 1.]

[-1. 5. 2.]

Bada. Boom.

Chapter 7

Applications

I was going to make this chapter the finale of the book, but found
I just couldn’t wait. This is what I love about linear algebra: not
the abstract manipulation of meaningless numbers in grids, but the
ways in which the whole topic of matrices applies beautifully and
usefully to real-world scenarios.

This chapter doesn’t begin to cover all the applications of linear
algebra! Those are vast, and probably innumerable. But here are
three of my favorites presented in capsule form so you can get a
taste for why it’s useful to do all this stuff.

177

178 CHAPTER 7. APPLICATIONS

Leslie matrices

Our first example will deal with modeling population growth in
communities of organisms, whether butterflies, ferns, zombies (okay,
maybe not zombies), or people. In these cases, we have a system
whose properties evolve over time, and our interest is in predicting
how those properties will change in the future.

L1. “Systems” and “states”

The word “system” is kind of vague, but really all we mean by
it is some complex phenomenon whose rules of behavior are at
least partly known. Examples of systems are natural habitats,
economies, schools, rocket engines, and sports leagues. Each of
these examples contains interacting parts that influence each other
in complicated ways, and has various things about them we could
measure through time.

We’ll often talk about the state of a system, which is a pretty vague
word too. You can think of a system’s state as a collection of all
the relevant things that characterize its situation at a moment in
time. If our system is an economy, this would include things like the
number of workers in different job sectors, the average wage of those
workers, and the total amount of inventory in all warehouses and
stores. If our system is a habitat, it would include the number of
each different type of animal currently living in it, possibly together
with its sex and age.

I think of a system’s state as “all the things you’d have to write
down and remember if you wanted to pause the system and restart
it later.” Think of a game. If you’re playing chess, and get inter-
rupted, you and your opponent will need to write down the current
locations of all the pieces on the board, plus whose turn it is. If
you’re playing Monopoly, there’s a whole lot more to remember:
how much money every player has, who owns which properties,
what board space each token is on, who has a Get Out Of Jail Free
card, and whether the current player has already rolled doubles
(and if so, whether once or twice).

. LESLIE MATRICES 179

Interestingly, we most often use a vector to model the current state
of a system. Just imagine a vector in which the first element was the
number of Monopoly dollars that player 1 has, the second through
fourth elements are player 2’s through 4’s money, the fifth element
is the space number of player 1’s token, and so forth. Or, imagine
an economy with five different industries, whose state is represented
by a ten-dimensional vector giving the current number of workers
and current demand for products in each industry.

Systems are often studied as though time marched forwards in fixed
intervals. (Sometimes these are called “discrete-time systems.”)
Each “time step” marks the evolution from one system state to an-
other, as a result of that amount of time elapsing. In our Monopoly
example, the time step would be one player’s turn: each time a
player rolls and moves, the state of the system changes slightly.
For the economy, we might measure it in time steps of one week,
in which every industry gains or loses employees and/or inventory
each week.

Starting from an initial state and working out how future states will
unfold is called “simulating” the system, and a computer program
that does this is called a simulation.

L2. The Markov property

One interesting type of system that arises – and the one we’ll study
here – is one in which the state at the next time step depends only
on the state at the current time step. This is accurate for, say, the
game of chess. When you’re considering your move, all you need
to know is the current state; i.e., where all the pieces currently
are. You don’t need to know what happened in the past to get the
game to the current position. Questions like “how did the black
queen get to square e7, anyway?” and “which piece was the one
that captured the missing white knight?” are irrelevant.

A system whose next state depends only on its current state is said
to have the Markov property, a term we will revisit in Chapter 9.

180 CHAPTER 7. APPLICATIONS

L3. The bunny rabbit state vector

Let’s say we’d like to study a local population of bunny rabbits.
For reasons that will become clear later, we’re only going to count
female rabbits. We’ll make our time step be one year, and say that
in each year, there are some number of baby girl rabbits (0 years
old), some number of 1-year-old girl rabbits, some number of 2-year-
old girl rabbits, and some number of 3-year-old girl rabbits. To keep
things manageable, we’ll also say that the maximum lifespan of a
rabbit is 3 years, after which all rabbits go to heaven.

Thus our state vector will be a four-dimensional vector of four num-
bers: namely, the total population of female rabbits of each of the
four ages. Perhaps at “time 0” (the current year, say) our state
vector is:

−−−→pop0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

67
115
23
5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

This indicates that when we begin our study, there are 67 baby rab-
bits, 115 one-year-olds, 23 two-year-olds, and only 5 three-year-olds.
We call this vector −−−→pop0 because it contains the rabbit populations
at year number 0.

L4. The Leslie matrix for population prediction

We’re now going to define a matrix, traditionally named L, called a
Leslie Matrix after ecologist Patrick Leslie. Leslie matrices have
the following very strict form, so study it carefully:

L =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f0 f1 f2 f3
s0 0 0 0
0 s1 0 0
0 0 s2 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

. LESLIE MATRICES 181

Leslie matrices can be any (square) size. Here I’ve chosen 4 × 4
because we’re keeping track of four different age brackets of bunny
rabbits.

Notice that most of the entries are zero. The only ones that can
be nonzero are (1) the top row, and (2) the first “subdiagonal” –
meaning, the diagonal going from row 1, column 0 down to row 4,
column 3. (Or, in a general n×n Leslie matrix, from row 1, column
0 down to row n, column n − 1.)

So what’s the method to this madness? Here’s what:

• “f” stands for fecundity. That’s a fancy ecology word for
“fertility.” The f entries stand for – get this – the number
of babies on average that each female rabbit of a certain age
will give birth to. So if f2 is .9, for instance, that means that
every two-year-old mommy rabbit will, on average, give birth
to .9 baby rabbits. Obviously some two-year-old females will
have fewer babies than others, but f2 = .9 means that on
average each mom will produce .9 of them.

Now you can see why I said we only need to keep track of
the female rabbit population. Females – the child-bearers
– are the limiting factor. As long as there are a few males
(or even one) running around the population to perform the
fertilization task, the number of males won’t really matter to
the long-term survival of the species.

By the way, if any of the f entries are 0, that simply means
that female rabbits of that age are infertile. (In many species,
of course, only females within a certain age range can bear
children.)

• “s” stands for survival. These s entries represent the prob-
abilities that a rabbit of each age will survive another year.
For example, if s0 is .8, that means that every (female) baby
rabbit has an 80% chance of surviving to become a one-year-
old. If s2 = .5, then only half of the two-year-olds will survive
to become three-year-olds. Notice that there is no s3 in the
matrix; that’s because we assumed that 3 years is the maxi-

182 CHAPTER 7. APPLICATIONS

mum age of a rabbit, and so none of the three-year-olds will
survive anyway.

All the other entries in L have to be zero, and I think you can
see the reason. If you’re a one-year-old rabbit, there’s only two
possibilities for you: you can either survive to become a two-year-
old next year, or else you can die. There’s no possibility that you’ll
jump over age 2 and become a three-year-old next year, nor is there
a chance that you’ll “fail” grade 1 and have to be a one-year-old
again next year.

Notice also that the s entries must be between 0 and 1 (they’re
survival probabilities, after all), although the f entries need not be.
(Some species have very high birth rates, and a female of child-
bearing age can easily produce more than just one offspring per
year on average.)

To be concrete, let’s whip up a random Leslie matrix and look at
it:

L =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

.1 .6 .4 .2

.4 0 0 0
0 .8 0 0
0 0 .6 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Upon inspection, we can see that in this population, the following
things are true:

• Baby rabbits rarely – but sometimes – have offspring. On
average, for every ten baby rabbits in our population in a
given year, they’ll produce one new baby rabbit the next year.

• Rabbits reach peak fertility as one-year-olds (6
10

babies per
mother). This fertility then declines each year thereafter until
death.

• Baby rabbits have a hard time surviving: less than half of
them (40%) survive their inaugural year.

• Both one-year-old and two-year-old rabbits have better than
even odds of survival, though this survival rate does decline
from year two to year three.

. LESLIE MATRICES 183

L5. Projecting forwards: matrix multiplication

Now let’s look at our Leslie matrix in action. Earlier, we started
out our hypothetical female rabbit population with these values:

−−−→pop0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

67
115
23
5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Now how many rabbits can we expect in each of these age groups
next year?

That might seem like a complicated question, but the answer is
actually staring you in the face. It’s just matrix multiplication:

−−−→pop1 = L ⋅ −−−→pop0.

Wow! Really? Why does that work?

Well, think about what matrix multiplication actually does. First,
each of our female rabbits, regardless of age, will contribute some-
thing to the expected number of newborn rabbits next year. Our
current babies will contribute on average only .1 of a newborn each,
while one-year-olds will produce .6 newborns each, two-year-olds .4
newborns each, and three-year-olds .2 newborns each. That’s ex-
actly the dot product of the top row of L (the fecundity row) times
the current population vector!

Then, for each of the other age groups, the number of rabbits next
year will simply be the number of rabbits one year younger this
year, multiplied by the survival rate of that age group. For example,
67 babies this year will result in about 26.8 one-year-olds next year,
since only 40% of them will survive. This, too, turns out to be a dot
product: the survival row for that age times the number of rabbits
of that age.

184 CHAPTER 7. APPLICATIONS

Check it out:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

.1 .6 .4 .2

.4 0 0 0
0 .8 0 0
0 0 .6 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⋅

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

67
115
23
5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

.1 ⋅ 67 + .6 ⋅ 115 + .4 ⋅ 23 + .2 ⋅ 5
.4 ⋅ 67
.8 ⋅ 115
.6 ⋅ 23

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

85.9
26.8
92.0
13.8

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Don’t get too freaked out by the idea of “85.9 baby rabbits.” These
are just averages based on the various probabilities. In real life,
there would of course not be any partial rabbits out there.

Once you see the previous calculation, it won’t surprise you that

−−−→pop2 = L ⋅ −−−→pop1,
−−−→pop3 = L ⋅ −−−→pop2,
−−−→pop4 = L ⋅ −−−→pop3,

etc.

These work out to:

−−−→pop2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

.1 .6 .4 .2

.4 0 0 0
0 .8 0 0
0 0 .6 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⋅

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

85.9
26.8
92.0
13.8

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

64.23
34.36
21.44
55.2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

−−−→pop3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

.1 .6 .4 .2

.4 0 0 0
0 .8 0 0
0 0 .6 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⋅

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

64.23
34.36
21.44
55.2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

46.66
25.69
27.5
12.86

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

−−−→pop4 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

.1 .6 .4 .2

.4 0 0 0
0 .8 0 0
0 0 .6 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⋅

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

46.66
25.69
27.5
12.86

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

33.65
18.67
20.55
16.49

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

and so on out to eternity.

Also, since matrix multiplication is commutative, we can carry out
the products in any order. We can start at the beginning (year 0)
and multiply L by itself the requisite number of times to compute

. LESLIE MATRICES 185

any future year. So, computing the fourth generation after the
starting state can be written as:

−−−→pop4 = L ⋅ L ⋅ L ⋅ L ⋅ −−−→pop0,

and the thirtieth generation as:

−−−−→pop30 = L
30
⋅ −−−→pop0,

(where L
30

means “L multiplied by itself 30 times,” of course).

Sadly for the rabbits, this works out to:

−−−−→pop30 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.0123
0.0066
0.0071
0.0057

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

which means that in their present environment, this rabbit colony’s
days are numbered. Maybe Hazel and Fiver will come up with a
migration plan that increases their survival rates...

186 CHAPTER 7. APPLICATIONS

Hamming codes

Our next example is about error-correcting codes, extremely
useful in the transfer of electronic data. These “codes,” by the
way, have nothing to do with the secret codes used in cryptography,
which conceal and reveal hidden messages. (Those are a different
application, which also rely on linear algebra, by the way!)

The particular error-correcting code we’ll learn is called the Ham-
ming code, invented by mathematician Richard Hamming. I hope
you find it as amazing as I do.

H1. Doing “arithmetic mod 2”

One thing we need to get out of the way first is a little book-
keeping matter. With Hamming codes, we’re going to be dealing
exclusively with binary data. As you’ll remember from Cool Brisk
Walk chapter 7, binary numbers are base 2, with only 0 and 1 as
the digits.

Although this may sound like a limitation, it’s not: every single
piece of information that’s transferred between computers or is
stored on one must be represented in binary form anyway. This
is true not only of numeric data, but also text documents, MP3
audio files, GIF or JPG image files, and even videos. Representing
every kind of information as a long sequence of 0’s and 1’s is a
solved problem, so it’s no big deal for our error-correcting scheme
to assume that the messages it works with are in binary. It could
hardly be any other way.

Binary digits thus really aren’t that weird. What’s slightly more
weird is doing our arithmetic “modulo 2,” which the Hamming code
will require. What this means is that every time we perform an
addition or a multiplication operation, we’re only going to keep the
least-significant bit of the answer. Mathematically, this amounts to
taking our result modulo 2 – which means “divide the answer by 2
and take the remainder.” You’ll quickly see that this means all we
care about is whether our answer is even or odd; if it’s even, our

. HAMMING CODES 187

result is 0, and if it’s odd, our result is 1.

Here are the complete addition and multiplication tables for one-bit
binary numbers. There’s only one surprise, and that’s in the lower
left:

0 + 0 = 0 0 ⋅ 0 = 0
0 + 1 = 1 0 ⋅ 1 = 0
1 + 0 = 1 1 ⋅ 0 = 0
1 + 1 = 0 1 ⋅ 1 = 1

Everything else is what you learned in elementary school. But
remember that in “arithmetic mod 2,” one plus one equals zero. In
terms of Cool Brisk Walk chapter 7, we have 12 + 12 = 102, but
since we only want to keep the least-significant bit of the answer,
we throw away the 1 in 102 which leaves us with 02.

To test your understanding, compute this dot product mod 2:

[1 1 0 1 0 1 1] ⋅

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
1
0
1
1
1
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
The answer should turn out to be:

1 ⋅ 0 + 1 ⋅ 1 + 0 ⋅ 0 + 1 ⋅ 1 + 0 ⋅ 1 + 1 ⋅ 1 + 1 ⋅ 0 =

0 + 1 + 0 + 1 + 0 + 1 + 0 = 1.

There are an odd number of 1–1 pairs when lining up those vectors
element by element, and therefore the dot product is 1.

H2. Noisy channels

Okay, down to business. The setting for the Hamming Code is the
sending of information over a so-called noisy channel. A noisy

188 CHAPTER 7. APPLICATIONS

channel is a transmission path through which data can be sent,
but because it is “noisy,” some of the information is likely to be
corrupted along the way. A corrupted bit is simply one that is
transmitted incorrectly: the sender tried to send a 0 but the receiver
erroneously got a 1, or vice versa.

Figure 7.1: A binary message sent through a noisy channel. Seven
out of the eight bits were transmitted and received correctly.

This setting is depicted in Figure 7.1. The sender in the picture
tried to transmit an eight-bit digital message to the receiver, and
was successful in doing so...almost. That fifth bit is the problem:
the sender sent a 1, but the receiver got a 0. This is life on a noisy
channel.

Why would this happen? Interference, distortion, literal “noise”:
these all play a role in our big chaotic imperfect world. You’ve
all experienced your cell phone getting bad service or your radio
getting bad reception. That’s the information getting slightly (or
perhaps majorly) corrupted in transmission, to the point where you
get a garbled version of what the cell tower transmitted or the radio
station broadcast.

And of course the frustrating thing is not merely that some bits
were corrupted, but that the receiver doesn’t know whether any
were corrupted. She received a string of bits, most of which are
probably correct, but a few of which might not be. The bad ones
are indistinguishable from the good ones, so she doesn’t have any
way of knowing which ones to trust.

Or does she?

. HAMMING CODES 189

H3. The Hamming code scheme

Enter the Hamming code. The sender and receiver will cooperate
in an amazing way such that – within certain limits – bits that
are corrupted in-transit can be detected as such by the receiver,
and then corrected without the receiver even needing to asking the
sender to repeat himself.

Figure 7.2: The Hamming code error-correction scheme.

The overall scene is shown in Figure 7.2. Study it carefully. Here
are the key points:

1. Each of the gray boxes – mysteriously labeled G
⊺
, H, and R

in the figure – is a linear transformation.

2. The sender begins by carving up his message into consec-
utive 4-bit pieces. As you may remember from Cool Brisk
Walk, these 4-bit chunks are called nibbles. Each nibble is
sent separately. For purposes of understanding this system,
we’ll just consider “the entire message” to be a single nibble.
(Longer messages simply repeat the whole process once per
nibble.) This 4 bits of information that the sender is trying
to communicate is called the signal.

3. The sender begins by running those 4 signal bits through the
G
⊺

linear transformation, which maps them to a 7 -dimensional
vector. Those 7 bits are called a code word. The code word
is what’s actually sent through the noisy channel, not the
original signal.

4. On the other end of the wire, the receiver gets 7 bits of in-
formation. These may be identical to the code word that

190 CHAPTER 7. APPLICATIONS

was sent, but of course they may instead contain one or more
corrupted bits.

5. The receiver proceeds to do two things with these 7 bits.
First, she runs them through the H linear transformation to
produce a 3-bit string called the error syndrome. This is
the key to the whole scheme. If the error syndrome is exactly
000, that means that the 7 bits were uncorrupted and can be
trusted. In this case, she proceeds to the next step. If the
error syndrome is anything other than 000, this means that
the 7 received bits are not a valid code word. We know, then,
that they could not have come from running any 4-bit signal
through the G

⊺
message. But perhaps the most amazing thing

of all is that in this case – when the error syndrome is not
000 – it will incredibly spell out a binary number telling her
exactly which bit was corrupted!

For instance, if the error syndrome is 110, which is the bi-
nary number six, then she knows bit number 6 (out of 7) was
corrupted, and she needs to flip it from a 0 to a 1 or from a
1 to a 0. If the error syndrome is 001, which is a binary one,
then she knows to flip the first bit of the received message.

6. Finally, the receiver takes the 7 bits – corrected if necessary,
based on the error syndrome – and runs them through the
R linear transformation. This produces the 4-bit nibble that
the sender originally sent.

The reason all this works is that Hamming carefully designed the
G
⊺
, H, and R linear transformations so that everything works out

as described. I’m sure you’d like to look at those now. You already
know something about them, because of the number of bits they
take as inputs and outputs:

• G
⊺

must be a 7 × 4 matrix, since it maps a 4-bit vector to a
7-bit vector.

• H must be a 3×7 matrix, since it transforms each 7-bit vector
into a 3-bit vector.

• Finally, R must be a 4 × 7, since it maps 7 bits into 4 bits.

. HAMMING CODES 191

Here they are in all their glory:
1

G
⊺
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 1 1
1 1 0 1
0 0 0 1
1 1 1 0
0 0 1 0
0 1 0 0
1 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

H =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

R =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 1
0 0 0 0 0 1 0
0 0 0 0 1 0 0
0 0 1 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
You can stare at these for a while if you want, and try to figure
out the method in the madness. I confess, it seems like a lot of
voodoo magic to me, especially G

⊺
. The H matrix actually has a

very reliable pattern: if you look at the columns, you’ll recognize
that from left to right they are the binary numbers 1 through 7!

H4. Examples

All right, let’s work through this scheme for a couple of actual
examples.

Example 1: no corruption

Our sender desires to transmit the 4-bit message 1110 to the re-
ceiver. So 1110 is the signal. He multiplies G

⊺
by it to get:

1
Incidentally, in Hamming’s original design all of these matrices had seven

columns, including “G”, which was a 4 × 7. However, since we always use the
transposed-version-of-G when we multiply a vector by it, the accepted conven-
tion has become to just call it “G

⊺
” and treat it as a 7× 4 matrix, as I’m doing

here.

192 CHAPTER 7. APPLICATIONS

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 1 1
1 1 0 1
0 0 0 1
1 1 1 0
0 0 1 0
0 1 0 0
1 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⋅

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1
1
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
1
1
1
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

So he sends 0001111 into the noisy channel.

(Time passes.)

On the other side of the world, the receiver picks up a 7-bit message:
0001111. She first asks herself: “is this message legit? Is it a valid
code word?” To find out, she multiplies it by H:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
⋅

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
1
1
1
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Good news: the error syndrome is all zeroes! This means that the
7 bits she received are in fact what was sent. All that remains is
to run them through the R transformation to uncover the original
message:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 1
0 0 0 0 0 1 0
0 0 0 0 1 0 0
0 0 1 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⋅

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
1
1
1
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1
1
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Ta da!

. HAMMING CODES 193

Example 2: one-bit corruption

Our sender desires to transmit 0011 to the receiver. He transforms
it using G

⊺
by it to get:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 1 1
1 1 0 1
0 0 0 1
1 1 1 0
0 0 1 0
0 1 0 0
1 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⋅

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
1
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
1
1
1
1
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The sender thus puts the code word 0111100 into the noisy channel.

(Time passes...but something goes wrong! Little do the sender or
receiver know, but the fourth bit of this code word hits a glitch and
is flipped to a 0!)

On the other side of the world, the receiver picks up a 7-bit message:
0110100. She first asks herself: “is this message legit? Is it a valid
code word?” To find out, she multiplies it by H:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
⋅

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
1
1
0
1
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Egads! Our error syndrome raises a red flag. It’s not all zeroes, so
something must have gone amiss.

But all is not lost, since Hamming magic tells us exactly what went
amiss. The error syndrome 100 corresponds to the binary number
4. Therefore, bit number 4 of the received message is what was
corrupted. Our friend must not have sent 0110 100, but rather
0111 100!

194 CHAPTER 7. APPLICATIONS

The receiver thus confidently plugs this corrected vector into the R
matrix to yield:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 1
0 0 0 0 0 1 0
0 0 0 0 1 0 0
0 0 1 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⋅

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
1
1
1
1
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
1
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

which is exactly the signal our sender intended. Amazing!

H5. The one fly in the ointment

Some things are too good to be true. That’s not the case with
the Hamming code: it is good, and it is true. But it does have a
limitation, which I alluded to earlier and will now spell out.

The Hamming code can only deal with single-bit errors. As long
as only one of the 7 bits transmitted as a code word is corrupted,
the receiver can intelligently detect the error and even figure out
which bit to correct. But if more than one bit is corrupted in a
single batch-of-seven, all bets are off.

The reason is this: Hamming designed the G
⊺

matrix (and its coun-
terpart, R) so that any two code words are at least two bits apart.
This calls for some explanation.

Remember from Cool Brisk Walk that there are 2
4
, or 16, possible

4-bit patterns. This is our vocabulary when using the Hamming
code: we can say any of sixteen different “things” each time we
send a message. Now the G

⊺
matrix transforms those 4 bits into 7

bits. How many possible 7-bit sequences are there? Answer: 2
7
, or

128.

Think about that for a minute. There are 128 different 7-bit strings,
yet only 16 of them are valid code words. That means that if you
picked a random 7-bit string out of a hat, the probability is pretty
small that you’d actually hit upon a code word: 16

128
=

1
8
= .125,

. HAMMING CODES 195

to be precise. This is what gives the Hamming code its detective
power: you have to get pretty “lucky” to fool it. Over 87% of the
time, your choice of 7-bits is instantly exposed as a fraud by the H
matrix.

And if we consider only the 16 valid code words out of those 128,
you’ll see that Hamming designed it so that you can’t get to any one
of them from any of the others without changing at least two bits.
This means that two separate, independent errors would have to oc-
cur in order for one valid code word (representing a particular 4-bit
signal) to be corrupted into another valid code word (representing
a different 4-bit signal). As long as only one bit gets flipped, you’re
guaranteed that the code word will be corrupted into a non-code
word, and thus be exposed to the light.

There are actually whole families of error correcting codes with
various properties, some of which are more intricate and can detect
and even correct multi-bit errors. The Hamming code was just the
first, and what a great insight it gave us.

196 CHAPTER 7. APPLICATIONS

Graph analysis

The last application I’ll present in this chapter deals with graph-
based data. We covered graphs extensively in Chapter 5 of Cool
Brisk Walk, but now we’ll bring our matrix skills to bear on our
analysis, and with striking effect.

Recall that a graph, in discrete math terms, is not an x-y plot,
which is what most people think of when they hear the term. In-
stead, it’s a special kind of data structure for organizing data. A
graph consists of vertices (singular: vertex) connected by edges.
Here’s an example:

Figure 7.3: A directed graph.

Each vertex represents some entity (say, a computer on a network,
or a user on social media) and the edges represent relationships
between them (network connections, for example, or “followings”).
As graphs go, this one is minuscule; the Facebook graph, in which
vertices are users and edges are friendships, has well over a billion
vertices. But this will serve our purposes for illustration.

. GRAPH ANALYSIS 197

G1. Graph terms

Here’s a refresher on some important graph terms, most of which
are repeats from Cool Brisk Walk Chapter 5:

order/size. Colloquially, researchers sometimes refer to the num-
ber of vertices in a graph as its order, and the number of its
edges as its size. (The ratio of these quantities becomes a
subject of interest as well.) Figure 7.3 has order 5 and size 9.

adjacent. If two vertices have an edge directly connecting them,
they are called “adjacent.” In Figure 7.3, vertices A and D
are adjacent, but not A and E. (Even though you can get
from A to E, you must do so indirectly, through D.)

directed/undirected. In Figure 7.3, the edges have arrowheads.
This is called a directed graph, and means that there is a
meaningful directionality to the edges: the information that
A points to C does not imply that C also points to A.

Sometimes, though, we don’t care about which “way” the
edge goes, and so we draw the graph with lines only, no ar-
rowheads. This is true of Figure 7.4 on p. 198, which is thus
an undirected graph.

Facebook is real-life example of an undirected graph (if I’m
friends with you, then you’re friends with me, always) but
Twitter is a directed graph (if I follow you, that doesn’t nec-
essarily mean you also follow me).

path. A path is a sequence of consecutive edges that takes you
from one vertex to the other. In Figure 7.3, there is a path
from A to E, which goes through C. By contrast, there is no
path at all from G to J in Figure 7.4.

traverse. We use the verb “traverse” to mean “follow an edge
from one vertex to another.” This often comes up in the
context of searching for data in the graph, or finding a path
through the graph with certain features.

198 CHAPTER 7. APPLICATIONS

Figure 7.4: An undirected graph.

weighted. Sometimes, the edges in the graph are unlabeled. But
we frequently want to associate a number with each edge, in
order to represent the length of a road between cities, say,
or the relative importance of a friendship. This number is
called the weight of the edge, and a graph with such weights
is called a weighted graph.

degree. A vertex’s “degree” is simply the number of other ver-
tices that are adjacent to it. In Figure 7.4, vertices J and K
have degree 1, and the others have degree 2. For a directed
graph, we distinguish between the number of incoming edges,
called the “in-degree,” and the number of outgoing edges,
or “out-degree.” So vertex B in Figure 7.3 has an in-degree
of 2 and an out-degree of 3, while D has an in-degree of 0 and
an out-degree of 2.

connected/disconnected. A graph is connected (sometimes called
“fully connected,” which means the same thing) if every
vertex is “reachable” from every other vertex by traversing
its edges. Otherwise, it’s disconnected. Figure 7.4 is clearly
not connected, since we can’t get to J/K from the others.

. GRAPH ANALYSIS 199

What about Figure 7.3? Well, that depends on how we define
the term “connected.” If we say a directed graph is strongly
connected, that means that every vertex can be reached
from every other even if you only follow the arrows’ directions.
If it’s merely weakly connected if you can reach every ver-
tex when ignoring the edge directions. So the A-B-C-D-E
graph is weakly connected, but not strongly connected.

cycle. In a graph, a cycle is a group of vertices that are connected
in a ring: you can start at one, traverse edges to the others,
and then return to where you started. A→B→A is a cycle in
our first graph, and F–H–I–G is a cycle in the second graph.

DAG. Finally, if a graph is directed and contains no cycles, we
called it a “DAG,” or “directed, acyclic graph.” Certain
kinds of directed graphs must inherently be cycle-free to even
make sense. For instance, if each vertex represents an action
item in a project plan, and a directed edge indicates that one
item must be completed before another can begin, there must
be no cycles or else the project could never be completed!

An example DAG is given in Figure 7.5 (p. 200), which shows
part of the computer science curriculum at UMW. Each ver-
tex is a required course – CPSC 284, in fact, is our Applied
Discrete Mathematics course, which you are currently read-
ing the book for. The directed edges represent prerequisites:
you must complete CPSC 110 before beginning CPSC 284,
for instance. You should take a moment and verify that there
are no cycles in this graph, because if there are, it would spell
doom for computer science majors.

G2. The adjacency matrix

Okay, so that’s a bunch of stuff about graphs. Now let’s talk about
how to represent a graph in a computer program. Clearly, it would
be a poor choice to store an image file with a bunch of circles and
lines. We need something much simpler and more flexible, which
will capture the essence of what the graph is, not how it is drawn.

200 CHAPTER 7. APPLICATIONS

Figure 7.5: A DAG (directed, acyclic graph).

One very common way to do this is with an adjacency matrix. A
graph’s adjacency matrix is simply a square matrix where every row
(and column) corresponds to one vertex. A “1” in row i, column j
means “yes, vertex i and vertex j are adjacent.” Otherwise, they’re
not.

We often use the letter A to denote the adjacency matrix. Here’s
the adjacency matrix for Figure 7.3 (p. 196):

A7.3 =

A B C D E

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

A 0 1 1 0 0
B 1 0 1 0 1
C 0 1 0 0 1
D 1 0 0 0 1
E 0 0 0 0 0

Stick your finger in p. 196 and flip back and forth between the graph
and the matrix to ensure it’s correct. The top row is [0 1 1 0 0],
because vertex A has an outgoing edge to B and to C, but not to

. GRAPH ANALYSIS 201

D or to E. Also, vertex A has incoming edges from B and D (but
neither from C nor E), which is why its left column is:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
1
0
1
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Notice that the diagonal terms are zero, which means that none of
the vertices has “an edge to itself,” which is what we normally do.

When you’ve convinced yourself that you understand that adja-
cency matrix, test your skills by verifying this one as well, for the
undirected graph in Figure 7.4 (p. 198):

A7.4 =

F G H I J K

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

F 0 1 1 0 0 0
G 1 0 0 1 0 0
H 1 0 0 1 0 0
I 0 1 1 0 0 0
J 0 0 0 0 0 1
K 0 0 0 0 1 0

G3. Adjacency matrix properties

I almost named this section “stupid adjacency matrix tricks” (after
David Letterman’s “stupid dog tricks” skit) but I decided to play it
straight. Here we’re going to make some deep connections between
the properties of any graph (we’ll call it G) and its adjacency matrix
A. This is just the tip of the iceberg, believe me; more is coming
in Chapter 9 when we cover eigenvalues.

Undirected G ⇔ symmetric A

The first one you might already have noticed from your study of
p. 200. And that is that if the graph is undirected, its adjacency
matrix will be symmetric. If you didn’t see this before, run your

202 CHAPTER 7. APPLICATIONS

eyeballs over those two matrices again, and notice how the F–G–H–
I–J–K matrix is a mirror image of itself across the main diagonal,
whereas the A–B–C–D–E matrix is not.

This is, of course, a natural consequence of what “undirected”
means. If a graph has no arrowheads, then every time you can
go from X to Y, you can also go from Y to X. So if A’s entry at
row X and column Y is a 1, then the entry at row Y and column
X must also be a 1. And that’s what makes a matrix symmetric.

DAG G ⇐ upper-triangular A

I haven’t yet given you an adjacency matrix for the DAG in Fig-
ure 7.5 (p. 200). Here you go:

ADAG =

110 220 240 340 284 350 326 430

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

110 0 1 0 0 1 0 0 0
220 0 0 1 0 0 0 0 0
240 0 0 0 1 0 1 1 0
340 0 0 0 0 0 0 0 1
284 0 0 0 0 0 0 1 0
350 0 0 0 0 0 0 0 1
326 0 0 0 0 0 0 0 0
430 0 0 0 0 0 0 0 0

.

As always, take a minute to verify the entries. And then, recognize
that this matrix is upper-triangular.

Why should that be? Think of it this way. The graph is a DAG,
which means it has no cycles, which in turn means that there must
be some order in which a student could complete the courses in the
curriculum and not violate any prerequisites. One such ordering is:

CPSC 110, 220, 240, 340, 284, 250, 326, 430.

(That’s not the only such ordering; 110, 284, 220, 240, 350, 340,
430, 326 would work just as well.)

. GRAPH ANALYSIS 203

Now suppose I create the adjacency matrix with the rows (and
columns) in that order. The first column must have all zeroes, be-
cause by definition the first course you take in the sequence must
have no prerequisites. The second column must also have all ze-
roes...with the possible exception of the first row, because the first
course (and only the first course) might be required in order to take
the second course. This goes on down the line: each course we take
may have as prerequisites any of the previous courses, but none of
the future courses. And so the matrix will have all zeroes below
the main diagonal, which is the definition of “upper-triangular.”
Ka-ching.

The order of the rows (and columns) is of course the key. It’s easy
to make a non-upper-triangular adjacency matrix for a DAG, just
by shuffling the rows and columns in a different order. Here’s one:

ADAG2
=

326 350 284 340 240 430 110 220

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

326 0 0 0 0 0 0 0 0
350 0 0 0 0 0 1 0 0
284 1 0 0 0 0 0 0 0
340 0 0 0 0 0 1 0 0
240 1 1 0 1 0 0 0 0
430 0 0 0 0 0 0 0 0
110 0 0 1 0 0 0 0 1
220 0 0 0 0 1 0 0 0

.

Nothing upper-triangular about that one. So the implication only
holds in one direction: if your adjacency matrix is upper-triangular,
this implies that the graph will be a DAG, but not necessarily vice
versa. There will, however, always be some way to get an upper-
triangular A from a DAG, if you order the rows in the “correct”
way.

204 CHAPTER 7. APPLICATIONS

Disconnected G ⇐ block diagonal A

Lastly, here’s kind of a mind-blowing one. Suppose we have a dis-
connected graph, like the one in Figure 7.4 (p. 198). This discon-
nectedness is apparent from the adjacency matrix, because it is –
get this – block diagonal!

A7.4 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 1 0 0 0
1 0 0 1 0 0
1 0 0 1 0 0
0 1 1 0 0 0

0 0 0 0 0 1
0 0 0 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The ordering-of-the-adjacency-matrix-rows thing comes into play
here, just as it did with upper-triangular matrices and DAGs. We
would clearly shuffle the order around and get a non-block-diagonal
matrix. But there will be some ordering that gives us a block
diagonal, and here’s why: a disconnected graph is separable into
isolated subgraphs.

2
None of the subgraphs have any connections

to any of the others. So, if we order our adjacency matrix rows (and
columns) such that we list all the vertices in one subgraph, then
the next, then the next, we must have zeroes everywhere except
the blocks on the diagonal. Neat!

G4. Using the adjacency matrix

The adjacency matrix view of a graph lets us calculate a number of
insightful properties. Some of these we won’t get to until Chapter
9, but some we can look at now.

Here’s a simple one. Suppose we multiply the adjacency matrix by
a vector of all 1’s?

2
This is a partition, if you remember your set theory from Cool Brisk

Walk.

. GRAPH ANALYSIS 205

A B C D E

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

A 0 1 1 0 0
B 1 0 1 0 1
C 0 1 0 0 1
D 1 0 0 0 1
E 0 0 0 0 0

⋅

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1
1
1
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

2 A

3 B

2 C

2 D

0 E

That might seem like a mindless operation, until you realize what
it produced. The result is a vector of the out-degrees of each vertex!
Double check it with p. 196 if you don’t believe me. Vertex A has
two outgoing arrows, B has three, C and D each have two, and E
has none.

A similar trick can be performed by left-multiplying the adjacency
matrix by a row of 1’s:

[1 1 1 1 1] ⋅

A B C D E

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

A 0 1 1 0 0
B 1 0 1 0 1
C 0 1 0 0 1
D 1 0 0 0 1
E 0 0 0 0 0

=

A B C D E

[]2 2 2 0 3 .

This gives us the in-degrees. Of course, for an undirected graph –
and a symmetric matrix – these two results will be the same.

Path counting

One thing that turns out to be very important about graphs is the
number of paths between various nodes. In fact, the whole Google
search engine (and all its imitators) are essentially based on this
principle, which we will further unpack in Chapter 9. If vertices
are Web pages and edges are hyperlinks between them, then the

206 CHAPTER 7. APPLICATIONS

“importance” of a page is intimately related to how many other
pages have paths to it.

3

We could take a first, very rough cut at this just by looking at
the in-degrees we computed in the previous section. Which of our
A–B–C–D–E pages is the “most important?” Well, I guess we’d
say that E is. Its in-degree is 3, more than any other vertex, which
means that three of the other pages in our mini-web link to it. No
other page is so popular.

A more sophisticated analysis involves looking at paths, not just
single edges. If you think about it, the adjacency matrix itself
gives us the number of “paths of length 1” between each pair of
vertices. For short, we use the term “1-path.” Our p. 196 graph
has one 1-path between B and C, but no 1-paths between D and
B, which is why the adjacency matrix has a 1 in one place but a 0
in another.

Now what if we wanted to count the number of 2-paths? Glancing
back at p. 196, you can see that it’s certainly possible to count these,
but it’s kind of a pain in the neck. There’s one 2-path between A
and B (A→C→B), but two 2-paths between A and E (A→B→E
and A→C→E). Clearly this is error-prone, as well as tedious, to
count manually. And if I asked you to stare at that graph and tell
me how many 50 -paths there were from A to C, you’d tell me to
jump in the lake.

Is there a way to automate such computations? Of course, or I
wouldn’t be telling you all this. It’s amazingly elegant, too. Would
you believe that the number of 2-paths from every vertex to every
vertex is just:

A ⋅A

?!!

Holy smokes, that actually works? Yes! Check it out:

3
I’m slightly oversimplifying things, but only a bit. The main principle is

bedrock, and this explanation will hold us over until we get to the PageRank
algorithm itself near the end of the book.

. GRAPH ANALYSIS 207

A
2
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 1 0 0
1 0 1 0 1
0 1 0 0 1
1 0 0 0 1
0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⋅

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 1 0 0
1 0 1 0 1
0 1 0 0 1
1 0 0 0 1
0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 0 2
1 2 1 0 1
1 0 1 0 1
0 1 1 0 0
0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Spot check that result. It says that there is one 2-path from A to C,
and two 2-paths from A to E, both of which we already figured out.
It also says that there’s no 2-path from B to A, even though there
was a 1-path from B to A. Examining Figure 7.3, we see that’s true
as well. And of course the fourth column and fifth row of A ⋅ A
have all zeroes, just as A itself did, since there’s no 2-path (or any
length path) that starts at E nor that terminates at D.

Even more amazingly, by repeatedly multiplying A by itself like
this, we can repeat this result to get the number of paths of any
length: 3-paths, 4-paths, 5-paths...

A
3
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 1 0 0
1 0 1 0 1
0 1 0 0 1
1 0 0 0 1
0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

3

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 2 2 0 2
2 1 2 0 3
0 2 1 0 1
1 1 1 0 2
0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

A
4
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 1 0 0
1 0 1 0 1
0 1 0 0 1
1 0 0 0 1
0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

4

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 3 3 0 4
1 4 3 0 3
2 1 2 0 3
1 2 2 0 2
0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

A
5
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 1 0 0
1 0 1 0 1
0 1 0 0 1
1 0 0 0 1
0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

5

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 5 5 0 6
4 4 5 0 7
1 4 3 0 3
2 3 3 0 4
0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⋯

208 CHAPTER 7. APPLICATIONS

Truly amazing. That last result, for instance, has a 3 in the upper-
left. That means that there must be exactly three 5-paths from A
back to A. Can you spot them in Figure 7.3?

4
And how about the

6 in the upper-right? Can you find all six 5-paths from A to E?
5

Oh, and the number of 50-paths? No sweat:

A
50

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

7,778,742,049 12,586,269,025 12,586,269,025 0 15,557,484,098
7,778,742,048 12,586,269,026 12,586,269,025 0 15,557,484,097
4,807,526,977 7,778,742,048 7,778,742,049 0 9,615,053,953
4,807,526,976 7,778,742,049 7,778,742,049 0 9,615,053,952

0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

So apparently there are exactly 12,586,269,025 different paths of
length 50 between vertices A and B, and just one more (12,586,269,026,
to be exact) from B back to itself. Don’t worry, I won’t make you
figure out all 12 billion in either case.

Okay, but why does any of this work? What possible connection
could there be between multiplying an adjacency matrix by itself
repeatedly and counting the number of paths in the graph?

Well, consider first the 2-path question. To find the number of 2-
paths from (say) A to E, we need the following two things to be
true:

1. We need an edge from A to “something else.”
2. We need an edge from that “something else” to E.

Now the way we got the number “2” in the upper-right corner of
A

2
(top of p. 207) was by taking the dot product of the top row

(vertex A’s row) with the right column (E’s column):

4
The solutions are: A→C→B→A→B→A, A→B→A→C→B→A, and

A→C→B→C→B→A.
5
I believe they are A→B→A→B→C→E, A→B→A→C→B→E,

A→B→C→B→C→E, A→C→B→A→B→E, A→C→B→A→C→E, and
A→C→B→C→B→E. Whew!

. GRAPH ANALYSIS 209

A B C D E

[]0 1 1 0 0 ⋅

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

A 0
B 1
C 1
D 1
E 0

= 0 ⋅ 0 + 1 ⋅ 1 + 1 ⋅ 1 + 0 ⋅ 1 + 0 ⋅ 0 = 2.

Look at that calculation and see the magic. To get from A to
E, there are two possible “something elses”: B, and C. Each one
can serve as a waystation on your two-step journey from A to E.
Accordingly, the two terms in our dot product that multiplied to 1
were the B and C entries. Putting it all together: since there’s one
way to get from A to B, and one way to get from B to E, that’s
one possible 2-path; and since there’s one way to get from A to C,
and one way to get from C to E, that’s the other possible 2-path.

For larger numbers, it’s just more of the same. Let’s say we’ve
figured out the number of 9-paths from each vertex to each other
one:

A
9
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 1 0 0
1 0 1 0 1
0 1 0 0 1
1 0 0 0 1
0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

9

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

21 34 34 0 42
22 33 34 0 43
12 22 21 0 25
13 21 21 0 26
0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Now we want to know how many 10-paths there are. All we need
to do is multiply by A one more time:

A
10

= A
9
⋅A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

21 34 34 0 42
22 33 34 0 43
12 22 21 0 25
13 21 21 0 26
0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⋅

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 1 0 0
1 0 1 0 1
0 1 0 0 1
1 0 0 0 1
0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Let’s again consider the upper-right entry, with paths from A to E.
To get the number of 10-paths, we take the dot product of A’s row
with E’s column:

210 CHAPTER 7. APPLICATIONS

A B C D E

[]21 34 34 0 42 ⋅

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

A 0
B 1
C 1
D 1
E 0

= 21⋅0+34⋅1+34⋅1+0⋅1+42⋅0 = 68.

Here’s the rationale. We can get from B directly to E. That means
that any 9-path from A to B will give us a 10-path from A to
E! And since there are 34 such paths, that’s 34 possible A-to-E
paths with B as their second-to-last step. Similar reasoning for C
as the penultimate vertex gives us our total. The entire answer for
10-paths, if you’re curious, works out to:

A
10

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

34 55 55 0 68
33 56 55 0 67
22 33 34 0 43
21 34 34 0 42
0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

One final thing before I go. What if we wanted to know not how
many paths of exactly length 7, but how many paths of length 7 or
less? Easy. Any such path has 7 or fewer edges. So we can just
add the number of 1-paths, the number of 2-paths, the number of
3-paths...all the way up to the number of 7-paths. Simple matrix
addition gives us that answer:

A +A
2
+A

3
+A

4
+A

5
+A

6
+A

7
=

7

∑
i=1

A
i
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

20 33 33 0 40
21 32 33 0 41
12 21 20 0 25
13 20 20 0 25
0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

So exactly 33 paths of 7 edges or fewer from B to C. This tells
us that there’s quite a bit of information-travel potential between
these two vertices, whether they represent computers or people or
something else. Applying such logic to a social network can tell us
a great deal about who the movers and shakers are in an online
community. Stay tuned for more.

Chapter 8

Eigenanalysis

The title of this chapter alone is enough to make one’s blood run
cold. You might be thinking, “even if I could pronounce this, would
I want to?”

In German, the root eigen (pronounced EYE-gun) means some-
thing like “one’s own, inherent thing.” As we’ll see, in studying the
eigenvectors and eigenvalues of a matrix – a process called eigen-
analysis – we’re examining its deepest, innermost properties. We’re
peering deep within all the flesh to see its skeleton. And it turns
out this is the key to the most profound understanding of what a
given matrix is and does.

Just look at all the nifty words we’ll learn:

• eigenvector
• eigenvalue
• eigendecomposition
• eigenbasis

These are all involved in the eigenanalysis of a matrix.

8.1 The resonant frequency

We could come at this subject in a bunch of different ways, but
let me start with the first thing that clicked for me when I learned

211

212 CHAPTER 8. EIGENANALYSIS

it. At the time, I was reminded of the phenomenon of a “resonant
frequency” that some systems exhibit.

You’ll remember this effect if you’ve ever been on a playground
swing. When somebody pushes you (or when you pump your legs
to “push” yourself) you have to do it at the right time and at the
right pace. The swing has a natural frequency of oscillation, and it
resists being pushed faster or slower than that. If you find you’re
swinging from back to front every two seconds, you’ll have to pump
your legs every two seconds. Period. Even if you have thighs like
Dwayne Johnson, trying to pump once every 1.5 seconds – or even
furiously at 5 times a second – will do you no good. Timing it so
you pump your legs at exactly the swing’s resonant frequency is the
only way to go higher and higher.

There are other famous examples of the resonant frequency phe-
nomenon. Perhaps you’ve heard of the Tacoma Narrows Bridge (if
you’ve never seen it, check out the video on YouTube). It was a
beautiful double-lane suspension bridge in Washington State that
crossed the Puget Sound – at the time, the third-largest suspension
bridge in the world. Incredibly, on November 7th, 1940, it be-
gan to wobble with increasing intensity as crosswinds dangerously
amplified its internal structural vibrations. It looked like a 3,000-
foot-long undulating Slinky.

1
Moments later, the concrete cracked

and split and the entire bridge completely collapsed and fell into

1
The classic “Slinky” toy, by the way, is another example of a system that

has a resonant frequency. You can’t make it go down the stairs any faster or
slower than it wants to go.

https://www.youtube.com/watch?v=j-zczJXSxnw

8.2. LINEAR OPERATORS, REVISITED 213

the water. Luckily, drivers had wisely stopped crossing it minutes
before, and the only actual casualty was a cocker spaniel.

The reasons for the Tacoma Bridge catastrophe are a bit complex,
but a key contributing factor was that a very specific rate of os-
cillation – a “sweet spot,” though it was hardly sweet for those
involved – caused the fluctuations to build on each other instead of
being dampened. It’s as if the Tacoma Bridge wanted to vibrate
at a certain frequency, just like a playground swing has an intrinsic
rhythm that the child can’t speed up or slow down.

Yet another example: every non-percussive musical instrument. A
piano or guitar string tuned to middle C has a certain length and
tension, which causes it to resist vibrations at any frequency other
than exactly 262 per second. Thus, when you strike it, only the
262 Hz

2
tone gains any traction, and the instrument sounds a clear,

pure note.

8.2 Linear operators, revisited

Okay, so what does all this have to do with linear algebra? Well,
consider the linear operators we learned about in Section 5.2 (p. 117).
Remember that a linear operator is a square matrix that transforms
one vector into another one of the same dimension when you left-
multiply that vector by the matrix. Let’s look at this one:

2
“Hz,” pronounced “hertz,” is a unit meaning “cycles (backs-and-forths) per

second.” Every musical note is defined by a particular frequency. The lowest
key on the piano is 27.5 Hz, and the highest is 4,186 Hz.

214 CHAPTER 8. EIGENANALYSIS

M =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

11
2

−1

−1
2

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

and take it for a spin. If we multiply it by, say, [1
2
], we get:

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 1
2

−1

− 1
2

1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
⋅ [1

2
] = [−

1
2

1 1
2

] , so

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1

2

⎤⎥⎥⎥⎥⎥⎥⎥⎦
→ maps to →

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−1
2

11
2

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

For the input [2
1
], we get:

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 1
2

−1

− 1
2

1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
⋅ [2

1
] = [2

0
] , so

⎡⎢⎢⎢⎢⎢⎢⎢⎣

2

1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
→

⎡⎢⎢⎢⎢⎢⎢⎢⎣

2

0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

And M maps the input [−3
5
] to:

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 1
2

−1

− 1
2

1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
⋅ [−3

5
] = [−9 1

2

6 1
2

] , so

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−3

5

⎤⎥⎥⎥⎥⎥⎥⎥⎦
→

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−91
2

61
2

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

See a pattern? Me neither. It seems to be all over the place,
mapping each input to some random output with no real rhyme or
reason. All of these mappings are depicted in Figure 8.1 (p. 215).

Hitting a matrix’s resonant frequency

None of that was very special. Random-looking stuff gets mapped
to other random-looking stuff. But now here comes the plot twist.
Let’s strike this bad boy at its resonant frequency.

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 1
2

−1

− 1
2

1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
⋅ [−1

1
2

] = [−2

1
] , so

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−1
1
2

⎤⎥⎥⎥⎥⎥⎥⎥⎦
→

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−2

1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

8.2. LINEAR OPERATORS, REVISITED 215

Figure 8.1: The M matrix’s operation. Three randomly-
chosen input vectors (solid) are mapped to crazy output vectors
(dashed).

It’s easy to miss the significance of that, so if nothing jumped out

at you, look again. What we just discovered is that the vector [−11
2

]

is sort of magic: if we feed it as input to M , the output is a scaled
version of the same vector. In fact, it exactly doubled in size.

Let’s try that again, with the [−2
1
] we just got back:

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 1
2

−1

− 1
2

1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
⋅ [−2

1
] = [−4

2
] , so

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−2

1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
→

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−4

2

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

Boom. It exactly doubled again. And if we then feed it [−4
2
]:

216 CHAPTER 8. EIGENANALYSIS

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 1
2

−1

− 1
2

1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
⋅ [−4

2
] = [−8

4
] , so

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−4

2

⎤⎥⎥⎥⎥⎥⎥⎥⎦
→

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−8

4

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

Boom. It exactly doubled again. This is very intriguing. Vectors
in this one particular direction aren’t “jumping around” like the
other ones did when M acted on them. Instead, the matrix just
plays them back for us (at twice the volume) like a pure middle C
singing out from a piano. Figure 8.2 shows the illustration.

Figure 8.2: The M matrix’s operation when applied to one of its
eigenvectors. The input (solid) is mapped to the same vector,
but scaled (dashed).

8.2. LINEAR OPERATORS, REVISITED 217

Big concept: the vector [−11
2

] (and all its multiples, like [−2
1
], [−4

2
],

[−8
4
], . . .) is called an eigenvector of M . Here’s what that means:

An eigenvector of a matrix A is any vector that gets mapped
to a scaled version of itself – i.e., to a vector in the same direc-
tion – when muliplied by A. In symbols, if −→x is an eigenvector
of A, then

A−→x = λ−→x
for some number λ. And that number λ is called an eigenvalue
of A.

In this case, the eigenvalue λ is 2, since any vector in the [−11
2

]

direction gets multiplied by 2.

Alternate resonant frequencies

You might be curious: are there any other “magic” vectors for our

M matrix? It turns out there are. Try [4
4
]:

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 1
2

−1

− 1
2

1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
⋅ [4

4
] = [2

2
] , so

⎡⎢⎢⎢⎢⎢⎢⎢⎣

4

4

⎤⎥⎥⎥⎥⎥⎥⎥⎦
→

⎡⎢⎢⎢⎢⎢⎢⎢⎣

2

2

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

So giving [4
4
] to the M linear operator produces a shrunken version

of the input: exactly half as long. And of course this pattern repeats

for any vector in the [4
4
] direction:

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 1
2

−1

− 1
2

1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
⋅ [2

2
] = [1

1
] , so

⎡⎢⎢⎢⎢⎢⎢⎢⎣

2

2

⎤⎥⎥⎥⎥⎥⎥⎥⎦
→

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1

1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

and so forth. This means that [4
4
] (and every other vector in the

same direction) is also an eigenvector of M , this time with eigen-
value λ =

1
2
.

218 CHAPTER 8. EIGENANALYSIS

Wow, okay. And does M have still other eigenvectors in store for
us as well? The somewhat surprising answer turns out to be no.
There’s only those two. This is an important fact we’ll return to in
a moment.

To recap, then, our matrix M has two eigenvectors: [−11
2

] (and any

multiple of it) and [4
4
] (and any multiple of it). The first of these

has eigenvalue 2, and the second has eigenvalue 1
2
. Also, we have a

special name for the [−11
2

] vector: it’s called the dominant eigen-

vector, for reasons you’ll see in a moment. A matrix’s dominant
eigenvector is simply the eigenvector with the highest eigenvalue.

Magnetic pull

Now assuming you followed all that, this next thing is sure to ab-
solutely blow your mind. I know it did mine. I’m going to feed a
random vector in as an input to our M matrix, and then repeatedly
put its output back in to M and see where it goes. Remember that
if I do this with an eigenvector, I’ll keep getting back progressively
scaled copies of the input vector. But let’s see what happens when
I pass in just an ordinary, non-special, non-eigen vector.

I’ll choose [1
2 1

2

] just for giggles, and call it −→r for “random.” If I

keep multiplying −→r by M , here’s what I get:

−→r = [1

21
2

] , ❶

[
11
2

−1

−1
2

1] ⋅ [1

21
2

] = [−1
2
] , ❷

[
11
2

−1

−1
2

1] ⋅ [−1
2
] = [−3

1
2

21
2

] , ❸

[
11
2

−1

−1
2

1] ⋅ [−31
2

21
2

] = [−7
3
4

41
4

] ... ❹

8.2. LINEAR OPERATORS, REVISITED 219

You might ask “what’s the big deal?” until you look at the upper
left of Figure 8.3, where I’ve plotted this sequence of vectors with
the circled numbers ❶, ❷, ❸, and ❹. I’ve also plotted the domi-

nant eigenvector (which was in the direction [−11
2

], as you recall) as

a dotted line on this plot. Look at what happens: every time we
multiply by M , that random old vector is pulled towards M ’s dom-
inant eigenvector like a magnet! And incredibly, this happens with
any vector I start with. The other panes of Figure 8.3 shows what

happens when I start with [−2
−1

], [−1
−2

], and [21
2

]. Resonant frequency

indeed!

Figure 8.3: Holy cow – repeatedly applying the M operator by
any vector at all drags it progressively to the dominant eigenvec-
tor!

So we see that “dominant” eigenvector is an apt term. The matrix
somehow wants to map its inputs to the direction of the dominant
eigenvector. If you keep multiplying by that matrix, you’ll always

220 CHAPTER 8. EIGENANALYSIS

be drawn there. And that’s true no matter what vector you started
with. This fact will have immense repercussions when we look at
things like Markov chains and the PageRank algorithm in the next
chapter.

In fact, the only vector I can start with and not get dragged to the
dominant eigenvector is one that is exactly in the direction of the

other eigenvector. As noted previously, if we give M the input [4
4
]

(or anything in that direction), it will stay locked in that direction
(a 45° angle counterclockwise from the x-axis) and shrink by half
each time. But if we nudge that vector even slightly away from that

other eigenvector – say, to [4
4.0001

] – it’ll get pulled to the dominant

eigenvector’s direction ([−11
2

]) instead.

In terms of our previous analogy, we’re witnessing an even stronger
sort of “resonant frequency.” With a playground swing, if we pump
our legs at the wrong pace, nothing much happens – the swing just
deadens. But imagine if pumping our legs at the wrong pace got
automatically converted to the right pace?

Or take another example. In real life, if an operatic soprano sings
just the right piercing note, she can shatter a nearby glass. But
what if no matter what note she sang, it was automatically adjusted
by the glass to be just the perfect tone to shatter the glass? What
we have here is not only a resonant frequency, but a magnet pulling
every vector towards the resonant frequency. Amazing.

8.3 Basic principles

All right, now let me give you the scoop. First, I’ll tell you what’s
true 99.99% of the time. Then, I’ll say a few words about the other
0.01%.

In 99.99% of cases, an n × n matrix has n different eigenvec-
tors. Furthermore, each eigenvector will be linearly independent
of all the others. Each one has its own eigenvalue, and the eigen-
vector with the highest eigenvalue is called the matrix’s dominant

8.3. BASIC PRINCIPLES 221

eigenvector. This is exactly what we saw with the M matrix we’ve

been using since p. 214: it was 2×2, and had two eigenvectors ([−11
2

]

and [4
4
]) with eigenvalues λ = 2 and λ =

1
2
, respectively. So [−11

2

] is

the dominant one.
3

It’s almost always this simple. The 0.01% cases occur only in the
weird situation when we have a “repeated eigenvalue” and thus
a “duplicate eigenvector.” For example, the innocent-looking but
ultimately weird matrix

W = [−2 1
−1 0

] ,

is an example of this. Its “two eigenvectors” turn out to be the

same: [1
1
]. And each one of them has eigenvalue -1. (Multiply out

W ⋅ [1
1
] to verify that this produces [−1

−1
].) This scenario is very un-

common, and is unlikely to come up for you in practical situations.

While you’re building your understanding of this material, my ad-
vice is to simply blow off the 0.01% stuff. It’s just a footnote.
What’s important is the big takeaway: except in certain diabolically
choreographed cases, the number of eigenvectors is the width/height
of the matrix, and each of them has its own eigenvalue.

Finding the eigenvectors/eigenvalues

By the way, so far I’ve just stated to you what the eigenvectors are,
and you might wonder how I figured that out. The answer is that I
simply gave the matrix to Python and asked it for the eigenvectors
and eigenvalues. We’ll see the code to do that at the end of the
chapter. This is how you’ll always do it in practice.

3
Note that when specifying the eigenvectors, we could use any vectors that

point in the same directions as these. For instance, it would also be correct

to say that M ’s two eigenvectors are [−2
1
] and [1

1
], or even [−50

25
] and [−1.73

−1.73
].

Multiplying a vector by any constant, remember, doesn’t change its direction.
And the eigenvalue of a scaled eigenvector doesn’t change; the eigenvalues here
are still 2 and 1

2
no matter how we might scale the vectors.

222 CHAPTER 8. EIGENANALYSIS

8.4 The Spectral Theorem

And now I present to you a fundamental eigenvalue equation that
has E = mc

2
level significance. It goes by several names: The

Spectral Theorem, the eigendecomposition, and diagonaliz-
ing a matrix. It forms the foundation of much of the advanced
math that all this eigenstuff is based on.

Here it is:

If A is a n × n matrix, it can almost always
4

be decomposed
into the product of three other n × n matrices: V ⋅ Λ ⋅ V −1

,
where V has the (normalized) eigenvectors of A as its columns,
and Λ is a diagonal matrix with the corresponding eigenvalues
on the diagonal. For example, for a 4 × 4:

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∣ ∣ ∣ ∣
−→x1

−→x2
−→x3

−→x4

∣ ∣ ∣ ∣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ1 0 0 0
0 λ2 0 0
0 0 λ3 0
0 0 0 λ4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∣ ∣ ∣ ∣
−→x1

−→x2
−→x3

−→x4

∣ ∣ ∣ ∣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−1

where the −→xk’s are the eigenvectors and the λk’s are the corre-
sponding eigenvalues.

Terminology: decomposing a matrix A into these three matrices –
the first of which has the eigenvectors and the second of which has
the eigenvalues – is called the eigendecomposition of the matrix.
We also say that we have “diagonalized” A because the middle
matrix of the three (called Λ, which is an upper case λ “lambda”) is
a diagonal matrix. Finally, this whole fact is also sometimes called
the Spectral Theorem for square matrices.

4
99.99% of the time. (See p. 221.)

8.4. THE SPECTRAL THEOREM 223

Example

Let’s verify the Spectral Theorem for our M matrix from p. 214.

I told you that the eigenvectors were [−11
2

] and [4
4
], but for the

eigendecomposition we need them to have Euclidean norm 1. So
we normalize them (recall p. 43) to get:

−→x1 =

[−1
1
2

]

ÂÂÂÂÂÂÂÂ
[−1

1
2

]
ÂÂÂÂÂÂÂÂ2

=

[−1
1
2

]
√
(−1)2 + (1

2
)2

= [−.894
.447

]

−→x2 =

[4
4
]

ÂÂÂÂÂÂÂÂ
[4
4
]
ÂÂÂÂÂÂÂÂ2

=

[4
4
]

√
(4)2 + (4)2

= [.707
.707

]

It’s important to note that these normalized versions of our eigen-

vectors point in the same directions that the original ones did ([−11
2

]

and [4
4
]). We just scaled them so that they have length 1 (according

to the Euclidean norm). But they’re still the same eigenvectors.

Okay. Now if the Spectral Theorem is correct, M should be equal
to its eigendecomposition. First, let’s put together our V matrix
(with eigenvectors as columns):

V = [−.894 .707
.447 .707

]

Then, let’s find its inverse (using Python):

V
−1

= [−.746 .746
.471 .943

]

224 CHAPTER 8. EIGENANALYSIS

Next, stick the eigenvalues on the diagonal of an otherwise-all-
zeroes matrix:

Λ = [2 0

0 1
2

]

and finally, multiply it all out:

V ⋅ Λ ⋅ V
−1

= M?

[−.894 .707
.447 .707

] ⋅ [2 0

0 1
2

] ⋅ [−.746 .746
.471 .943

] = [1.5 −1
−.5 1

] ✓

which indeed equals our M from p. 214.

8.5 The “natural” basis

Now think back all the way to p. 69 when we talked about the notion
of a basis: a linearly independent set of vectors that spans some
space. You’ll recall our friends Ron and Hermione, whose vectors
−→r and

−→
h we expressed in both the standard basis {[1 0], [0 1]},

and in a “domino basis” {[1 2], [4 4]}. Importantly, if you
have a basis, every vector in the space can be expressed as a linear
combination of the basis vectors in exactly one way.

I’m now going to argue that in an important sense, the eigenvectors
of a linear operator matrix form the most “natural” basis for it. We
call this set of eigenvectors the eigenbasis of the matrix. Let me
explain why it’s the most natural one.

First of all, realize that multiplying any matrix by a diagonal one
is super easy. All you’re doing is taking multiples of each column.

8.5. THE “NATURAL” BASIS 225

To illustrate, consider the following scattershot matrix, which I
chose at random and will call S:

S =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 4 2 1
5 5 −7 8
1 1 1 2
3 4 6 8

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Now think about this. If I told you to multiply (by hand) S times
the matrix below, you’d probably cry:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 4 2 1
5 5 −7 8
1 1 1 2
3 4 6 8

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⋅

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 2 1 9
6 2 −2 9
1 9 −3 9
7 9 4 9

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= HARD = ?? /

But if I told you to compute this operation by hand, you wouldn’t
cry:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 4 2 1
5 5 −7 8
1 1 1 2
3 4 6 8

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⋅

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 0 0 0
0 2 0 0
0 0 −3 0
0 0 0 9

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= easy! =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

9 8 −6 9
15 10 21 72
3 2 −3 18
9 8 −18 72

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

!

The reason this operation is easy is that each column of the right-
hand-side matrix has all zero entries but one. Consider its first
(leftmost) column, [3 0 0 0]⊺. That says, “for the first column
of my answer, I’d like three of S’s first column, and none of the
others.” So the first column of our answer is simply [9 15 3 9]⊺:
we just multiply each entry by 3. Its second column is [0 2 0 0]⊺,
which means “for the second column of my answer, I’d like two of
S’s second column, and none of the others.” So the second column
of the answer is [8 10 2 8]⊺. And so on.

In fact, if you think of the columns of the S matrix as a basis, the
diagonal matrix is doing nothing more than telling us how much
of each basis vector we want. It’s scaling each basis vector by a
certain amount, and adding them all together. And that’s the key
to seeing the eigenbasis’ “naturalness.”

226 CHAPTER 8. EIGENANALYSIS

Recall (from p.94) that if we have a vector expressed in some basis
B, and we want to convert it to the standard basis, we can multi-
ply it by the appropriate change-of-basis matrix. And that matrix
simply has the basis vectors of B as its columns.

Recall further (from p.165) that if we want to go the other way – if
we have a vector expressed in the standard basis, and we want to
convert it to some other basis – our change-of-basis matrix is the
inverse of the one from the previous paragraph.

Now, let’s put it all together. Suppose we wanted to take a linear
operator A for a test drive; that is, we want to multiply a square
matrix A by some vector −→x to perform a linear transformation A⋅−→x .

Look carefully at the spectral theorem formula again:

A = V ⋅ Λ ⋅ V
−1
.

This tells us that multiplying −→x by A is the same as multiplying it
by those three matrices:

A ⋅ −→x = V ⋅ Λ ⋅ V
−1
⋅ −→x .

Let’s take these multiplications one at a time from the right.
5

Con-
sider what each of them does:

1. Multiplying −→x by V
−1

converts −→x from the standard basis to
the eigenbasis. (!)

2. Then, multiplying by Λ is a trivial operation which gives us
“a certain amount” of each eigenvector. (The “amount” is
the eigenvalue corresponding to that eigenvector, which effec-
tively tells us how important that eigenvector is to the result.)

3. Finally, multiplying −→x by V converts our answer from the
eigenbasis back to the standard basis. (!)

Dissected in this way, we get a super deep insight into what linear
operators fundamentally do. Yes, you can think of them as ma-
trix multiplications. But under the hood, what we’re really doing

5
We’re free to do it in this order if we want, because as you remember from

p. 154, matrix multiplication is associative.

8.5. THE “NATURAL” BASIS 227

is converting our input vector to a particular basis (the matrix’s
eigenbasis). Then, in that space, “matrix-vector multiplication” is
a simple scaling operation. We then pop back into the standard
basis for our final answer.

Just to make this concrete, let’s work out an example using our M
matrix from before (p. 214). From p. 223, we learned that V , the
matrix with normalized eigenvectors as columns, was

V = [−.894 .707
.447 .707

] .

As I explained above, this is really none other than the change-of-
basis matrix from M ’s eigenbasis (we’ll call that basis Bλ) to the
standard basis Bs. And if we take its inverse, we get the change-
of-basis matrix going the other way: from Bs to Bλ. So,

COBBλ→Bs
= [−.894 .707

.447 .707
] , COBBs→Bλ

= [−.746 .746
.471 .943

] ,

where

Bλ = { [−.894
.447

] , [.707
.707

] }, and Bs = { [1
0
] , [0

1
] }.

Now one of our example inputs to the M linear transformation

from p. 214 was [2
1
], which we saw M map to [2

0
]. So let’s run [2

1
]

through the assembly line:

COBBλ→Bs
⋅ Λ ⋅ COBBs→Bλ

⋅ [2
1
]

[−.894 .707
.447 .707

] ⋅ [2 0

0 1
2

] ⋅ [−.746 .746
.471 .943

] ⋅ [2
1
]

228 CHAPTER 8. EIGENANALYSIS

1. Multiplying our input vector [2
1
] – whose coordinates are in

the standard basis – by V
−1

converts it to the eigenbasis.

COBBλ→Bs
⋅ Λ ⋅ ↓

[−.894 .707
.447 .707

] ⋅ [2 0

0 1
2

] ⋅ [−.746
1.886

]

So [2
1
]
Bs

is the same as [−.746
1.886

]
Bλ

, and we’re now in the “eigen-

realm,” ready for the next step.

2. We now take that eigenbasis-version of our input and multiply
it by our diagonal matrix of eigenvalues.

COBBλ→Bs
⋅ ↓

[−.894 .707
.447 .707

] ⋅ [−1.492
.943

]

We’ve merely scaled the eigenbasis-form of our input: the
first element got doubled from -.746 to -1.492 (since the first
eigenvalue is 2) and the second one got halved from 1.886 to
.943 (since the second eigenvalue is 1

2
). This was actually the

only “transformation” work to do!

3. Now we merely translate our vector out of eigenspace back
to standard basis language, by multiplying by the change-of-
basis matrix back the other way:

↓

= [2
0
] !

Exactly as we predicted.

8.5. THE “NATURAL” BASIS 229

This is seriously one of the most beautiful things I’ve seen in all
of mathematics. It reminds me of an apple tree orchard. When
you’re wandering through the grounds, it seems like you’re in the
middle of a chaotic maze of trees planted in random positions. But
when you happen upon a certain special spot, boom! All the trees
suddenly line up and a perfectly symmetric pattern emerges. In a
similar way, multiplying by a matrix looks like a jumble of random
numbers, but seen from one special perspective – the eigenbasis –
the operation suddenly becomes astonishingly simple and elegant.

Postlude: symmetric matrices and their eigenbases

One last little thing before we end this theoretical chapter and
commence with some exciting “eigenapplications” in the next one.
It turns out that in many situations, the square matrix A that we’re
interested in will be symmetric. This is true if we’re dealing with
the adjacency matrix of an undirected graph, for instance (recall
the graph applications section beginning on p. 196). In statistical
applications, we work with something called a covariance matrix
a lot, which shows how much each pair of several random variables
are correlated with each other. This, too, will be a symmetric
matrix.

230 CHAPTER 8. EIGENANALYSIS

It turns out that the eigenvectors of a symmetric matrix will always
form an orthonormal basis. This turns out to be convenient,
because of the lesson we learned on p. 163: there we discovered
that if a matrix is orthogonal, its inverse is simply the same thing
as its transpose. And that means in turn that the Spectral Theorem
for such matrices reduces from this:

A = V ⋅ Λ ⋅ V −1

to simply this:

A = V ⋅ Λ ⋅ V ⊺
.

The symmetric matrix A itself is nothing more than its eigenvectors,
eigenvalues, and eigenvectors back-to-back-to-back.

Crisp and elegant, and as sweet smelling as an apple orchard. In
our next and final chapter, we’ll eat a few of these juicy apples.

8.5. THE “NATURAL” BASIS 231

3 Appendix: Python

On p. 221 I mentioned that to actually find the eigenvalues and
eigenvectors of a matrix, you can just ask Python. Okay, so how
do you do that?

Here’s how: linalg.eig(). This function takes a matrix as an
argument, and returns a vector of two things: the eigenvalues (in
their own vector), and the corresponding eigenvectors. The latter
come in a matrix where each column is its own eigenvector, and
where eigenvalue k corresponds to the eigenvector in column k.

Let’s begin with the M matrix (p. 214) we’ve been using all chapter.
I’ll save the result from calling linalg.eig() (in a variable called
“eigstuff”) and then print out each component separately.

M = array([[1.5,-1],[-.5,1]])

eigstuff = linalg.eig(M)

print(eigstuff[0])

print(eigstuff[1])

[2. 0.5]

[[0.89442719 0.70710678]

[-0.4472136 0.70710678]]

The two eigenvalues are 2 and 1
2
, as we knew. Now the numbers

in the eigenvector matrix look a little funky, but you just have to
realize that they’ve been normalized. That first eigenvector – which
goes with eigenvalue 2 – is:

dominant_eigvec = eigstuff[1][:,0]

print(dominant_eigvec)

[0.89442719 -0.4472136]

232 CHAPTER 8. EIGENANALYSIS

(Notice how I did that, by the way. I took eigstuff, accessed ele-
ment 1 of it (the second element) to get the matrix of eigenvectors,
and then used “:,0” in the boxies to get all rows of column 0.)

Now [0.894 − 0.447]⊺ may not look familiar, but remember that
it only indicates the direction of the eigenvector. Any vector in the
same direction is also an eigenvector. So if we, say, divided it by
the second entry to get an equally good dominant eigenvector:

another_eigvec = dominant_eigvec / dominant_eigvec[1]

print(another_eigvec)

[-2. 1.]

that should ring a bell. We can do the same with the other eigen-
vectors, of course, and there’s really nothing more to it than that.
(Believe me: calculating them by hand is a major pain.)

Chapter 9

Eigenapplications

We end this book with a few more ultra-cool real-world applications
of linear algebra. Unlike those in Chapter 7, though, these will all
involve the eigenvalue concepts you learned in Chapter 8. Our
new ability to penetrate to the heart of a matrix and understand
its inner structure will enable us to do things we could only dream
about before.

233

234 CHAPTER 9. EIGENAPPLICATIONS

Video compression

Imagine you owned a business, and you needed to send a 7×7 matrix
over the Internet to one of your customers. Say, this matrix:

M1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

5 −1 45 16 16 3 37

3 −9 9 27 −100 24 601

13 0 2 13 −18 21 11

−4 33 9 1 4 14 50

−21 51 9 17 5 73 −5

31 −5 9 −99 −22 1 7

6 8 9 24 8 8 8

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

How many numbers in total would you have to send your customer
to communicate the information in this matrix?

Easy question. There are 49 entries in a 7-by-7 matrix, so you need
to send 49 numbers. Duh.

Now suppose you wanted to send this matrix instead:

M2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

5 5 10 −5 20 500 21
2

3 3 6 −3 12 300 11
2

13 13 26 −13 52 1300 61
2

−4 −4 −8 4 −16 −400 −2

−21 −21 −42 21 −84 −2100 −101
2

31 31 62 −31 124 3100 151
2

6 6 12 −6 24 600 3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

How many numbers would you have to send this time?

If you answered, “again, 49,” take another look. M2 is way different
than M1, because it has a very regular structure. Look at M2’s first
(leftmost) column. Then realize that its second column is identical
to the first. Then further realize that its third column is exactly
twice the first. And its fourth column is negative the first. And its

. VIDEO COMPRESSION 235

last three columns are four times, a hundred times, and one-half
times the first column, respectively.

So if your customer knew the matrix would have this type of struc-
ture, I claim you could send them all the necessary information in
just fourteen numbers instead of 42. Here’s how:

1. First, send them the first column: [5 3 13 −4 −21 31 6].
That’s seven numbers.

2. Then, send them the multiplier for each of the other columns.
Namely, [1 1 2 −1 4 100 1

2
]. That, too, is seven numbers.

1

From these fourteen numbers alone, the customer can reconstruct
the original matrix. All they have to do is compute the outer prod-
uct (recall p. 152) of the two 7-element vectors they received:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

5
3
13
−4
−21
31
6

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

• [1 1 2 −1 4 100 1
2
] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

5 5 10 −5 20 500 21
2

3 3 6 −3 12 300 11
2

13 13 26 −13 52 1300 61
2

−4 −4 −8 4 −16 −400 −2

−21 −21 −42 21 −84 −2100 −101
2

31 31 62 −31 124 3100 151
2

6 6 12 −6 24 600 3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

What’s going on here? Simply put, M2 has less information in it
than M1 does, despite the fact that they are ostensibly the same

1
Yeah, yeah, I know we could omit the first “1” in this second set of seven,

because the customer will know that the first column should be multiplied by
1 without us having to tell them. That’s a detail, and it’s actually messier to
take advantage of that. Thirteen is unlucky anyway – ask Thorin Oakenshield
if you don’t believe me.

236 CHAPTER 9. EIGENAPPLICATIONS

size. In fact, you may have realized that M2 is a rank-1 matrix. It
has only one linearly independent column: all the others are simply
(scaled) copies of it. This is what a rank-deficient matrix funda-
mentally is: a matrix that can have some of its entries “squeezed”
out of it without losing any information.

M1 and M2 represent the far extremes of this phenomenon. M1

is full rank (rank-7), and M2 is just rank-1. In general, a 7 × 7
rank-deficient matrix might not be as deficient as M2 is: it could
have a rank anywhere from 1 to 6.

Incidentally, 14 numbers might not seem like that big a savings over
49 (it’s only 3.5 times fewer entries), but consider what happens as
the matrix gets larger. Suppose it were 1920× 1920. Transmitting
a rank-1 matrix of that size would require 1920 + 1920 = 3,840
numbers to go across the wire. But a full-rank matrix of that size
would need 3,686,400 entries. That’s nearly 1,000 times as much
data.

V1. Enter Netflix

Now what’s the application here? Well, it’s probably one you use
every day. Suppose your aforementioned business is a video stream-
ing service, and your customer is watching one of your videos. The
matrix we’ve been talking about is one frame of this video. For
simplicity, we’ll consider images (frames) that are in gray scale
rather than color. Each pixel of the image is represented by a sin-
gle number on some scale: perhaps 0 indicates a pitch black pixel
in the current frame, and 255 is bright white, and all the numbers
in between are shades of gray.

2

If each frame of our movie is a 1920×1920-pixel square
3
, and we’re

2
Why a range of 0 through 255? Because as you may remember from Chap-

ters 6 and 7 of A Cool Brisk Walk, that’s how many different values can fit in
a single byte (8 bits) of data.

3
At this point it may occur to you that when you watch a movie, your screen

typically isn’t perfectly square, but rectangular. Its aspect ratio (width-to-
height) might be, say, 1.875:1, which yields a 1920 × 1024 canvas.

When your matrix isn’t square, instead of using the eigenvalue decomposi-

. VIDEO COMPRESSION 237

shoveling 30 frames per second at our viewer, that would be about
105 Megabytes of information every second we’d be trying to send.
The Internet ain’t got no time for that.

So we’d like to instead send a compressed version of each frame: a
matrix whose rank is far less than 1,920 and yet which looks pretty
close to the original. Our problem thus reduces to: what matrix, of
the same size as the original image’s matrix but of at most rank-k
(for some number k) is the “closest” to the original?

V2. Yet another norm

First, we have to settle on what we mean by one matrix being
“close” to another. Here, we’ll subtract one matrix from the other,
and then take the Frobenius norm of this difference. Subtracting
matrices, of course, is just the inverse of adding them (p. 87): we
do it element by element and get a matrix of the differences. The
“Frobenius norm” (which always sounded to me like a character
from a Willy Wonka story, btw) is just what you would expect it to
be: the square-root of the sum of all these squared differences. In
fact it’s exactly like the Euclidean norm of a vector (p. 36), except
that we have a two-dimensional pane of entries to work with instead
of just a one-dimensional list.

To be concrete, let’s say we have a matrix M , and an “approxima-
tion” to matrix M called M̂ , with the following values:

M = [17 2
−3 6

] , M̂ = [14 4
−5 −1

] ,

How “close” are these two matrices to each other? To quantify this,
we first subtract one from the other (doesn’t matter which order):

M − M̂ = [3 −2
2 7

] .

tion, as we learned last chapter, we can use the singular value decomposi-
tion (SVD), a very closely related technique. In fact, the “singular values”
and “singular vectors” that the SVD gives you are exactly the same thing as
eigenvalues and eigenvectors for a non-square matrix.

238 CHAPTER 9. EIGENAPPLICATIONS

And then we take the square-root of the sum of the squared entries
to give us the Frobenius norm:

ÂÂÂÂÂM − M̂
ÂÂÂÂÂF

=

√
32 + −22 + 22 + 72 = 8.124.

This measure passes a quick sanity check: the further apart the
entries of M and M̂ at a particular row and column, the larger the
difference that is added towards the Frobenius norm. So this metric
gives pairs of matrices whose entries are more similar to each other
a lower overall norm, indicating a higher similarity.

V3. Best low-rank matrix approximations

And now for our eigenstuff. Recall (p. 220 and following) that every
eigenvector of a matrix has a corresponding eigenvalue, and that we
could arrange these eigenvectors by decreasing eigenvalue if we like.
The one with the largest eigenvalue had the special name “dominant
eigenvector.” I’ll also refer to “the top eigenvector,” “the top two
eigenvectors,” “the top ten eigenvectors,” and so forth, by which I
just mean “the k eigenvectors with the highest eigenvalues.”

Okay. It turns out that the best rank-1 approximation to a square
matrix (where “best” means “closest to the original when using the
Frobenius norm”) is the dominant eigenvector, times its eigenvalue,
times the transpose of the dominant eigenvector. To illustrate, let’s
say we had this 5 × 5 matrix

4
:

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

12 2 1 9 13
2 20 12 7 5
1 12 6 −4 5
9 7 −4 8 8
13 5 5 8 13

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

4
You may notice that this example matrix happens to be symmetric. Things

actually get slightly weird for non-symmetric matrices, in which case you can
again turn to the SVD, which is almost the same thing as the eigendecomposi-
tion.

. VIDEO COMPRESSION 239

and we wanted the best rank-1 approximation to it. We ask Python
for its dominant eigenvector, and the corresponding eigenvalue, and
get this:

−→x1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

.462

.538

.257
.38
.535

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, λ1 = 37.363.

Multiplying these out as indicated above, we get:

−→x1 • [λ1] • −→x1
⊺
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

.462

.538

.257
.38
.535

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

• [37.363] • [.462 .538 .257 .38 .535] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

7.963 9.288 4.441 6.563 9.222
9.288 10.834 5.18 7.655 10.757
4.441 5.18 2.477 3.66 5.143
6.563 7.655 3.66 5.409 7.6
9.222 10.757 5.143 7.6 10.68

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Take careful note to see that this is actually the Spectral Theo-
rem in action (from p. 222) but using only a subset of the eigen-
vectors/eigenvalues (namely, the top one) instead of all of them.
(This is why I put the top eigenvalue, 37.363, into a 1 × 1 matrix
in the equation above – to help you see that connection.)

Now how close is this approximation to our original A matrix?
Not that great, actually. If you run your eyes over the entries, and
compare to A (p. 238) it doesn’t even look like it’s trying very hard.
The Frobenius norm of the difference between the two, by the way,
is a whopping 573.04, which tells you that limiting ourselves to
rank-1 isn’t producing a very good approximation. We wouldn’t

240 CHAPTER 9. EIGENAPPLICATIONS

want to send such an image to our viewer, even though it would
only take 10 bytes instead of 25, because they might not even know
whether they were on HBO or the Disney Channel.

Okay, let’s move up to rank-2 then. What’s the closest rank-2
matrix to our original? Python says the second highest eigenvalue
(and its eigenvector) are:

−→x2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−.458
.658
.448
−.266
−.293

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, λ2 = 27.712.

Adding this second eigenvector into the mix, we get:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∣ ∣
−→x1

−→x2

∣ ∣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

• [λ1 0
0 λ2

] •

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∣ ∣
−→x1

−→x2

∣ ∣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⊺

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

.462 −.458

.538 .658

.257 .448
.38 −.266
.535 −.293

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

• [37.363 0
0 27.712

] • [.462 .538 .257 .38 .535
−.458 .658 .448 −.266 −.293

]

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

12.515 2.748 −0.011 9.211 12.138
2.748 20.231 11.577 3.849 6.567
−0.011 11.577 6.831 1.07 2.291
9.211 3.849 1.07 6.95 9.297
12.138 6.567 2.291 9.297 12.548

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Now we’re talking. Flip back and forth between those numbers and
the original A on p. 238, and you’ll see that with just two eigen-
vectors, we’re starting to get a remarkably close approximation.
Frobenius just plummeted to 101.62. Repeating this for the best
rank-3 approximation, we get:

. VIDEO COMPRESSION 241

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∣ ∣ ∣
−→x1

−→x2
−→x3

∣ ∣ ∣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

•
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ1 0 0
0 λ2 0
0 0 λ3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
•

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∣ ∣ ∣
−→x1

−→x2
−→x3

∣ ∣ ∣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⊺

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

.462 −.458 .156

.538 .658 −.33

.257 .448 .525
.38 −.266 −.651
.535 −.293 .408

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

• [
37.363 0 0

0 27.712 0
0 0 7.6

] • [
.462 .538 .257 .38 .535
−.458 .658 .448 −.266 −.293
.156 −.33 .525 −.651 .408

]

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

12.701 2.356 0.612 8.438 12.623
2.356 21.06 10.259 5.484 5.542
0.612 10.259 8.925 −1.528 3.921
8.438 5.484 −1.528 10.173 7.276
12.623 5.542 3.921 7.276 13.815

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

which is even closer, with a Frobenius norm of just 59.07.

Each time we add another eigenvector, we give our approximation
another degree of freedom which it can use to bend closer to the
original. And finally, if we use all 5, we of course get the original
matrix back:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∣ ∣ ∣ ∣ ∣
−→x1

−→x2
−→x3

−→x4
−→x5

∣ ∣ ∣ ∣ ∣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

•

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ1 0 0 0 0
0 λ2 0 0 0
0 0 λ3 0 0
0 0 0 λ4 0
0 0 0 0 λ5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

•

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∣ ∣ ∣ ∣ ∣
−→x1

−→x2
−→x3

−→x4
−→x5

∣ ∣ ∣ ∣ ∣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⊺

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.462 −0.458 0.156 0.735 −0.109
−0.538 0.658 −0.33 0.082 −0.402
−0.257 0.448 0.525 0.105 0.668
−0.38 −0.266 −0.651 −0.181 0.572
−0.535 −0.293 0.408 −0.639 −0.23

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

•

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

37.363 0 0 0 0
0 27.712 0 0 0
0 0 7.599 0 0
0 0 0 −.151 0
0 0 0 0 −6.523

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

•

242 CHAPTER 9. EIGENAPPLICATIONS

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.462 −0.538 −0.257 −0.38 −0.535
−0.458 0.658 0.448 −0.266 −0.293
0.156 −0.33 0.525 −0.651 0.408
0.735 0.082 0.105 −0.181 −0.639
−0.109 −0.402 0.668 0.572 −0.23

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

12 2 1 9 13
2 20 12 7 5
1 12 6 −4 5
9 7 −4 8 8
13 5 5 8 13

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= A ✓

by the Spectral Theorem. (And a Frobenius norm of 0.)

Finally, let’s look at this work on an actual image. Figure 9.1
shows a 1800× 1800 gray scale still frame from a movie. At 1 byte
(8 bits) per pixel, the entire original image would take 3.24 MBytes
to transmit in full. That’s a lot of data for one frame of a movie
that the viewer will only see for 1

30

th
of a second.

Figure 9.1: A 3,240,000-byte gray scale image.

Let’s see if we can do better. Figure 9.2 starts with a lowly rank-1
matrix (using just the dominant eigenvector), and then increases
the rank as the images move left-to-right down the page.

. VIDEO COMPRESSION 243

Rank-1 (3600 bytes) Rank-2 (7200 bytes) Rank-3 (10,800 bytes)

Rank-6 (21,600 bytes) Rank-9 (32,400 bytes) Rank-12 (43,200 bytes)

Rank-20 (72,000 bytes) Rank-30 (108,000 bytes) Rank-40 (144,000 bytes)

Rank-100 (360,000 bytes) Rank-200 (720,000 bytes) Rank-400 (1,440,000 bytes)

Figure 9.2: Low-rank approximations of an image matrix, using
increasing numbers of eigenvectors (and thus an increasing rank,
with increasing storage/transmission costs.)

244 CHAPTER 9. EIGENAPPLICATIONS

It’s interesting to watch how the image emerges as we add more
eigenvectors. With only the dominant eigenvector, all we can make
out is a blurry, right-angle-centric splash of black and white. Still,
it’s not bad for a rank-1 matrix, and after adding just a few more
eigenvectors we can already see the basic shape of the helmet come
through.

Another observation is that we pretty quickly reach a point of di-
minishing returns. Compare the rank-100 and rank-400 matrices
in the bottom row of Figure 9.2. Is it really worth quadrupling the
size to get the second one?

Figure 9.3: The closeness to the original matrix as a function of
the approximation’s rank.

Figure 9.3 quantifies this by plotting the rank of the matrix against
the Frobenius norm of the difference from the original. As you can
see, less than fifty or so eigenvectors (out of the total of 1800) is
enough to eliminate nearly all the error.

. MARKOV CHAINS 245

Markov chains

For our next eigenapplication, we’ll need to review a few concepts
from Chapter 4 of A Cool Brisk Walk : probability.

Recall that we can quantify the likelihood of some event happening
by assigning it a probability between 0 and 1, where 0 means the
event is impossible and 1 means it’s a certainty. We use the notation
“Pr(E)” for this, where E is some event. Sometimes the probability
is based on actual counts of past occurrences, and sometimes it is
estimated based on intuition and common sense. For instance:

Pr(home team wins in college basketball) = .6765

Pr(worldwide pandemic next year) = .1

You may also recall the notion of conditional probability, in
which our estimate of an event’s likelihood changes based on some
other event being known to have (or have not) occurred. We use
the notation “Pr(A∣B),” pronounced as “the probability of A given
B” for this. Examples:

Pr(speeding ticket) = .05

Pr(speeding ticket ∣ driving a red car) = .15

Pr(Jets win tomorrow) = .7

Pr(Jets win tomorrow ∣ starting QB hurt in practice) = .4

In one of these examples the conditional probability is higher than
the original, and in the other case it’s lower, but either way it’s
always between 0 and 1.

M1. Systems and states

Now recall from Chapter 7 that we often want to predict how the
state of some system will unfold over its lifetime. A system’s

246 CHAPTER 9. EIGENAPPLICATIONS

“state” is just a way of talking about the (temporary) condition
it is in at any one point in time. In this section, we’re going to
focus on just a single aspect of a system’s state, which has a single
value at a point in time, not a bunch of stuff like in the Monopoly
example. Perhaps our system is the U.S. economy, and in any given
quarter its “state” is whether or not it’s in a recession. Or maybe
we’re interested in the system of local weather conditions, for which
each day’s state is either sunny, cloudy, or rainy.

Let’s expand on this last example because we all have so much ex-
perience with weather. One way we could get a handle on what
tomorrow may bring is to count how many days in the past have
been sunny, cloudy, and rainy in our region, and then assume in-
dependence between days. Remember that if two events are in-
dependent, that means that the outcome of one of them has no
impact on the other. A Little League player’s jersey color and po-
sition are independent of each other: if you tell me Henry’s uniform
is blue, that doesn’t give me any information about whether he’s
an infielder or a pitcher.

So assuming independence, we could count up the past 100 days in
Fredericksburg, and conclude:

Pr(sunny) = .5

Pr(cloudy) = .4

Pr(rainy) = .1

With this simple model, if someone asked us “how likely is it to rain
tomorrow?” we’d reply “about a 10% chance,” no matter what the
weather was today, yesterday, or any other day. We figure that it
doesn’t matter what happened on those other days, because we’re
assuming every day is independent of the others.

Now this simplistic response is unsatisfying on several levels. For
one, it doesn’t take into account the season we’re in, mushing all
months together into a mediocre gray. But more to the point,
it doesn’t even take into account the recent past. As we’ve all
observed, weather patterns tend to form and transform on a slower

. MARKOV CHAINS 247

time scale than individual days. If it’s hot today, it’s pretty likely
to remain hot for at least a little while – we’re probably not going to
get a string of hot, cold, hot, cold, hot, and cold days consecutively.

Remember that when the current state of some system is influenced
only by its previous state, it has the so-called “Markov property.”
In this case, we can build a powerful structure called a first-order
Markov chain to analyze it. Markov chains are named for the
brilliant Russian mathematician Andrey Markov, one of the most
underrated minds in history, in my opinion. The phrase “first or-
der” here has nothing to do with Kylo Ren or Supreme Leader
Snoke; it means that the system’s current state depends only on
its immediately preceding state, and is conditionally independent
of all states longer ago than that.

5
In weather terms, this means

knowing that it rained on Tuesday tells you something important
about whether it will also rain on Wednesday, but nothing (directly)
about Thursday or beyond.

M2. Stochastic matrices

A Markov chain can be modeled as (surprise!) a matrix, which
encodes all its conditional probabilities. Each one says: “if the
previous state is X, here’s the probability that the current state
will be Y .”

For example, maybe it’s true that heat waves tend to last longer
than a day. If it was sunny yesterday, it’s likely to remain sunny
today. In symbols, we might say:

Pr(sunnyk ∣ sunnyk−1) = .7

The k subscript is just to number the days. This formula says: “the
chances of it being sunny on any particular day, given that it was
sunny the day before, are 70%.”

5
If we said that a system’s current state depended on its immediately two

preceding states, we’d built a second-order Markov chain, and so forth.

248 CHAPTER 9. EIGENAPPLICATIONS

Perhaps it’s also true in our region that rainstorms tend not to last
longer than one day. (Once a storm finally breaks, the atmosphere
has “gotten the rain out of its system” and drier days will likely
follow.) So we might estimate these quantities:

Pr(rainyk ∣ rainyk−1) = .05

Pr(cloudyk ∣ rainyk−1) = .55

Pr(sunnyk ∣ rainyk−1) = .4

We’ve saying that two rainy days in a row are very unlikely: if it
rained yesterday, it’s most likely to be cloudy (and dry) today, not
wet again.

Note carefully that the above three numbers add up to exactly 1, as
they must. The weather on day k must either be rainy, cloudy, or
sunny in our simple weather model. Since these three possibilities
are mutually exclusive and collectively exhaustive, their probabili-
ties must total 1.

If you nodded to the previous paragraph, make sure you also un-
derstand that the following three numbers do not have to add up
to 1 (and normally won’t):

Pr(cloudyk ∣ rainyk−1) = .55

Pr(cloudyk ∣ cloudyk−1) = .6

Pr(cloudyk ∣ sunnyk−1) = .2

Students sometimes get confused here. The three expressions look
an awful lot like the ones at the top of the page, yet the bottom
three don’t represent mutually exclusive and collectively exhaus-
tive options at all. The first of the bottom three says “what’s the
probability it’ll be cloudy today if it was rainy yesterday?” The
second asks a question about a completely different circumstance:
“what about if it was cloudy yesterday? Now how likely are clouds
today?” These two numbers (.55 and .6) are unrelated to one an-
other, and not bound by any probability axioms.

. MARKOV CHAINS 249

And now, the matrix. There are nine different conditional proba-
bilities for this system, and we’ll arrange them in a matrix called
W (for “weather”) as follows:

←
−−−−−→
dayk−1 →

sunny cloudy rainy

⎡⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎦

↑ sunny .7 .3 .4
W = dayk cloudy .2 .6 .55

↓ rainy .1 .1 .05

The columns correspond to yesterday’s weather, and the rows cor-
respond to today’s weather. So if it was cloudy yesterday, the
probability of sun today is .3 (top-middle entry). If it was sunny
yesterday, the probability of rain today is .1 (bottom-left corner).
Take a moment to look at this matrix and verify your understanding
of what each entry means. Also verify that the example numbers
on the previous couple of pages have all been entered in the right
places.

A matrix of the form above goes by many names: some call them
Markov matrices, others probability matrices, still others tran-
sition matrices, and yet others substitution matrices. Me? I
like the term stochastic matrices (since it sounds cool) so that’s
what we’ll go with here. (“Stochastic,” by the way, is a word that
basically means “random” or “indeterminate.” Any time you’re
dealing with probability, you have a stochastic system.)

Just like our Leslie matrices from p. 178 did, stochastic matrices
have certain constraints they must adhere to in order to join the
club. For a matrix to be a stochastic matrix:

1. all its entries must between 0 and 1, and
2. the sum of each of its columns must be exactly 1.

(Notice I wrote “the sum of each column,” not row, for the same
reason I took pains to explain a few paragraphs ago. The rows
don’t normally sum to 1, and there’s no reason they should.)

Before going further, take a moment and verify that the W matrix
above is indeed a stochastic matrix.

250 CHAPTER 9. EIGENAPPLICATIONS

Then, complete this puzzle. Given the stochastic matrix W , which
of the following weeks of weather is most likely to actually occur?
And which is least likely? (“S”=sunny, “C”=cloudy, “R”=rainy)

a. S-R-S-R-S-R-S
b. S-R-R-R-S-S-S

c. S-C-S-C-S-C-S
d. S-S-S-S-C-C-C

(Answers on p. 265.)

M3. Simulating the Markov chain

The W matrix is square, and thus a linear operator. It can be
multiplied by 3 × 1 column vectors to produce other 3 × 1 column
vectors. Its domain is vectors that represent yesterday’s weather,
and its codomain is vectors that represent today’s weather.

Suppose yesterday – which we’ll call “day 1” since it’s the first day
we’ll consider – was a sunny day. We now want to predict what the
weather will be today. If we create a column vector for yesterday
that has 1 for “sunny” and 0 for the other weather options, all we
need to do is multiply it by W , and whammo:

W ⋅
−−−→
day1 =

−−−→
day2.

By the actual numbers, we get:

sunny cloudy rainy

⎡⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎦

sunny .7 .3 .4
cloudy .2 .6 .55
rainy .1 .1 .05

⋅

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

.7

.2

.1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

We set
−−−→
day1 to [1 0 0]⊺ because we knew yesterday’s weather.

When we set out to make our forecast, we knew that there was a
100% chance it was sunny yesterday, and 0% chance it was either
cloudy or rainy.

. MARKOV CHAINS 251

The resulting
−−−→
day2 vector, of course, does not turn out to have only

0’s and 1’s. That’s because the forecast is uncertain. What the
−−−→
day2 vector means is that there will be a 10% chance of rain today,
a 20% chance of overcast skies, and a 70% chance of clear blue.

Just like with Leslie matrices, we can run this forward any number
of times we want to predict into the distant future. Let’s find out
what the weather is likely to be on day 4 (the day after tomorrow):

W ⋅
−−−→
day1 =

−−−→
day2

W ⋅
−−−→
day2 =

−−−→
day3

W ⋅
−−−→
day3 =

−−−→
day4

so

W
3
⋅
−−−→
day1 =

−−−→
day4.

That last step takes advantage of the associative property of matrix
multiplication. This yields:

sunny cloudy rainy

⎡⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎦

sunny .5455 .4815 .49575
cloudy .35925 .42325 .409125
rainy .09525 .09525 .095125

⋅

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

.5455
.35925
.09525

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Apparently, then, on the day after tomorrow we have only about
a 55% chance of sunny weather. That is, if it had been sunny
yesterday. What if it had been cloudy yesterday?

sunny cloudy rainy

⎡⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎦

sunny .5455 .4815 .49575
cloudy .35925 .42325 .409125
rainy .09525 .09525 .095125

⋅

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
1
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

.4815
.42325
.09525

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Given cloudy weather yesterday, our forecast for the day after to-
morrow would look even bleaker: just a 48% chance of sun.

252 CHAPTER 9. EIGENAPPLICATIONS

M4. ...and eigenvectors

Now what does all of this have to do with eigenvectors? So far,
all this neat Markov chain material could have been in Chapter 7
before we’d learned about eigenstuff.

Well, if you haven’t guessed it, the key insight is related to the
diagrams in Section 8.2 (“Magnetic pull,” p. 219). Remember that
when we took any old vector, and repeatedly multiplied a square
matrix by it, the answers we got out were sucked closer and closer
to the matrix’s dominant eigenvector, as if by magic.

Realize that’s exactly what we’re doing here with this forecasting-
the-future stuff. We started with a vector of 0’s and 1’s representing
the actual weather on a particular day, and we multiplied it by W
once for each day we wanted to project our forecast into the future.
This means that the further into the future we go, the forecast is
going to inevitably be drawn to W ’s dominant eigenvector.

Python tells us that the dominant eigenvector for our matrix W is:

−→x1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

.5159

.3889

.0952

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, with λ1 = 1.

Believe it or not, this vector gives us the long-run distribution
of the states in the weather system. Up until now, we’ve been
extrapolating from yesterday’s weather out two or three days. But
suppose I said, “okay, let’s just say a year goes by. What’s the
probability on any given future day that we’ll have sunny, cloudy,
or rainy weather?” The answer is given in that magical eigenvector
−→x1. On days far in the future, there will be precisely a 51.59%
chance of sun, a 38.89% chance of clouds, and a 9.52% chance of
showers.

This is the long-run behavior of the Markov chain, dissected and
exposed.

It’s interesting to think about the fact that it only depends on

the W matrix itself, not on the starting vector we used for
−−−→
day1

(such a starting point is often called an initial condition). If

. MARKOV CHAINS 253

you think about it, it makes a lot of sense. If we’re projecting the
long-running behavior of a system, many many days in the future,
should it really matter whether today happened to be sunny, cloudy,
or rainy? Surely predictions way out in the future shouldn’t rely
any longer on any one observation in the distant past. Its influence
has long since faded to nothing. And that’s exactly what we find.
If you’re trying to predict the weather a few days from now, it’s
worth it to consider what yesterday’s weather was and extrapolate
out from that. But if you’re interested in planning your wedding
weekend for next summer, that’s just too far out for yesterday’s
weather to matter. The eigenvector will keep your forecast honest.

254 CHAPTER 9. EIGENAPPLICATIONS

Web search

We end this chapter, book, and series with a look at one of the most
influential algorithms in world history. It’s called “PageRank,”

6

and it’s what made Google Google. Like the other applications in
this chapter, it’s based on eigenvectors. First, though, let’s take a
look at the state of the art before PageRank.

W1. Web search: pre-Google

It’s interesting to study the history of Web search engines, which we
don’t have time to do here. But one thing you should know is the
approach that Google used to dominate the market. Before Google,
search engines (like Yahoo!, Excite, and Alta Vista) focused only
on returning results that matched your search terms well.

Remember all the way back to the beginning of this book (p. 27 and
following), where we discussed a matchmaker dating application for
Jezebel, Filbert, and friends. Each person took a survey of interests,
and was thereafter represented by a single vector of numbers, which
represented how well they liked hiking, candlelight dinners, and
so forth. To determine the compatibility between two people, we
simply computed the dot product of their two vectors. This worked
because in order for a dot product to be large, the two vectors have
to have large entries in the same slots of the vector.

One wrinkle with this approach, which we analyzed on pp.44-45,
was that it was possible for someone to game the system by sim-
ply answering 10 to all the questions. The way to counteract this
insidious strategy was to normalize everyone’s vector before com-
putation. This way, each person effectively only has a certain total
“amount” of “interests” which they have to spread among their
answers.

Interestingly, this is almost exactly the approach used by Web

6
PageRank was invented by Larry Page and Sergey Brin, the founders of

Google. I always wondered if Sergey was jealous that the algorithm wasn’t
called “BrinRank.” Wdyt?

. WEB SEARCH 255

search engines to gauge the similarity between two pages, or the
similarity of a page to a search query. Each Web page is repre-
sented as a vector of numbers. In place of survey responses as the
vector elements, substitute word counts. That’s right: for every
word that appears on any Web page anywhere, a page’s vector has
an entry for the number of times that word appears on that page.
So the vector corresponding to (say) cnn.com’s home page today
might be:

−−−−−−−→cnn.com = [105 0 1 3 ⋯ 0]
a aardvark abolish abstention ⋯ zoology

This would indicate that the text on cnn.com has 105 instances of
the word “a,” no “aardvarks,” one “abolish,” three “abstentions,”
and so forth: one entry for every possible word.

7
Notice we’re

deliberately throwing away the information about the order words
appear on the page. All we care about is how many times each word
appears. This is called the “bag of words” model, since it’s like
taking scissors to the page, cutting up all the individual words, and
dropping them in a bag. It turns out to work very well in practice.

After forming this vector for a page, we then play the same trick
we did on Jezebel & Co., which is to normalize it:

−−−−−−−→cnn.com = [.0249 0 .000237 .000711 ⋯ 0]

a aardvark abolish abstention ⋯ zoology

This tells us that about 2.5% of all the words on cnn.com today
are the word a, .0237% of them are the word abolish, and so on.
We’re thus summing up the content of the page by saying: “this
cnn.com page is 2.5% ‘about’ the word a, .0237% ‘about’ the word
abolish, etc.”

7
This might seem like a prohibitively huge number to you at first, but it’s

really not. The English language, for instance, only has about half a million
words in it, and that’s if you count absolutely everything, even obscure words
that haven’t been used since the 15th century. Throw in all the proper nouns,
trademarks, slang terms, misspellings, abbreviations, plus the words in every
other language on earth and you’re still just in the low millions. Contrast that
with the number of pages there are on the Web, which is in the billions.

256 CHAPTER 9. EIGENAPPLICATIONS

Now, if I wanted to find “pages with similar content to cnn.com,”
I’d calculate the dot product of every page’s (normalized) vector
with CNN’s vector, and take the highest results. Or, if a Ya-
hoo! user entered “harry potter the sorcerers stone” in the
search box, I’d first make a vector on the fly with a 1 for each of
the five words of the query and 0 everywhere else, then normal-
ize it, and finally take its dot product with every page’s vector.
Effectively, this means I’d be looking for the pages for which the
percentage of words that are harry, potter, the, sorcerers, or
stone is the highest.

I’m glossing over several other pragmatic steps that search engines
take to improve the accuracy of their results. Among them are:

• Getting rid of punctuation, capitalization, and other stuff
that doesn’t pertain to the root meanings of a word.

• Collapsing all different forms of the same root word to a single
entry. In English, this is called stemming, because we’re
finding the word’s stem and using it instead of the raw word.
The idea here is that the words jump, jumps, jumped, and
jumping all reflect the same basic meaning. If we’re trying
to capture the topics of a Web page, we really don’t care
which of the specific variants of the word appear, only its
root meaning.

• Dropping super-common words altogether. Words like “a,”
“the,” and “of” don’t actually hold any meaningful content,
because every page has zillions of them regardless of what it’s
about. Search engines use a stop list of common words to
discard.

• Scaling the importance of each word by how common it is.
This is a gentler version of the previous item, but it’s very
important. The idea is that the more common a word is, the
less about the page it tells you by being present on it.

Consider these two words, for example: dollar, and Jedi. If
I chose a random Web page and told you only that it con-
tained the word dollar, how much would you know about

. WEB SEARCH 257

its content? Some, but not much. But if I told you that
it contained the word Jedi, how much would you know? A
lot more. This is because dollar is a more common word,
and therefore appears in many more different contexts than
the word Jedi does. A popular algorithm for this is called
TF/IDF, which stands for “term frequency / inverse doc-
ument frequency.” The amount that a vector’s entry con-
tributes to the dot product is the frequency of that word in
the page (i.e., how many times abstention or a variant of it
appears in that page) divided by that word’s frequency ap-
pearing in documents (i.e., what percentage of all Web pages
that abstention appears on). Words like dollar will ap-
pear in a much higher percentage of Web pages, and thence
be “discounted” more steeply when it comes to computing
similarity to queries.

W2. Web search: Google

Now let’s take a step back. All of the details in the previous sec-
tion were devoted to one strategy: find Web pages whose content
matches the user’s search terms well. The entire purpose of a search
engine (everyone thought before 1998) was to identify relevant doc-
uments for the user, and “relevant” meant “the words on the page
are a good match for what the user typed.”

When Google came on the scene in 1998, they of course did all
that content-matching stuff too. But they added a critical second
component to the criteria for ranking search results. In a way, I’ve
always thought their new ingredient was kind of depressing, but in
the end it turned out to be what the world really wanted. The key
second ingredient was to factor in the popularity of a page, in
addition to its content.

Simply put, Google realized that in addition to wanting pages that
match their search terms, users also want pages that are well-known
and in some sense authoritative. They want to be channeled to-
wards the pages that everyone else already knows about and likes. I
find this depressing because it seems to encourage a herd mentality,

258 CHAPTER 9. EIGENAPPLICATIONS

and to discourage the discovery of new information. But the fact
of the matter is that when I type “harry potter the sorcerers

stone” in a search box, most of the time I don’t want to read the
Web page of some random crazy Harry Potter fan from Greenland.
Instead, I want the IMDB page from the movie, or J.K.Rowling’s
site that discusses her ideas, or the Wikipedia page describing the
book’s release and its reception. In a word, I want the popular
websites.

That was Page’s and Brin’s first innovation: to factor popularity
into search results, so that even if a big well-known website didn’t
match the search terms as well as a lesser-known website did, it
would get funneled up to the top of the results list anyway.

W3. The PageRank algorithm

So their first innovation was to take into account a page’s popularity
at all. Their second one was in how to determine the popularity of a
page. A good illustration here is to think of the drama on a middle
school playground. Everyone knows that a school has popular kids,
and not-so-popular kids. (I was one of the latter.) A first cut at
measuring this could be expressed as follows:

First try: “You’re popular if a lot of kids like you.”

Now if we substitute Web pages for kids, this formula gives us some
hope of quantifying the popularity of a Web page. All we have to do
is figure out what one page “liking” another page really means. And
I’ll bet you can figure it out if you just think about it for a moment.
The way page A can “like” page B – the way it can vouch for page
B’s awesomeness, or authoritativeness, or whatever – is simply to
link to it. Most every Web page has embedded hyperlinks in it, so
that when you click on a word or a button you’re transported to
another page. So we can measure a page’s popularity by how many
other pages have a link to it:

First try: “A page is popular if lots of other pages link to it.”

. WEB SEARCH 259

That simple idea is almost PageRank. Almost. But the killer
feature of Google’s algorithm was to add one little word to the
middle school popularity contest. Here it is:

PageRank: “You’re popular if a lot of popular kids like you.”

Or, expressed in terms of the Web:

PageRank: “A page is popular if lots of other popular
pages link to it.”

Yeah, that does pretty much match my experience, I have to admit.
If the dweebs and the losers like you, that doesn’t say very much.
But if kids who are themselves well-liked and admired by others
express admiration for you, that’s a gold-plated imprimatur.

W4. Calculating the PageRank vector

Now as true as the above definition of popularity rings, you may
rightly object that it seems circular. We want to measure how
popular Sam is. And we know that popular kids are liked by lots
of popular kids...but how could we determine how popular Sam’s
admirers are themselves without getting in an infinite loop?

Eigenvectors will turn out to solve this problem for us. Like. Magic.

To get there, remember your graphs from A Cool Brisk Walk Chap-
ter 5, or from p. 196 of this book. The World Wide Web is nothing
other than a gigantic directed graph, where each vertex is a Web
page and each edge is a hyperlink. Here’s a tiny tiny example of
one:

260 CHAPTER 9. EIGENAPPLICATIONS

In this minuscule “Web” of just four pages, page A has a link to
page B, page B has links to each of the other three, page C has
links to B and D, and page D has only a link to page C.

Remember also from p. 200 that we can represent a graph by its
adjacency matrix A. This square matrix has one row/column for
each vertex of the graph, and a 1 in the positions with an edge from
one vertex to another. In this case, the matrix is:

Amini-Web =

A B C D

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

A 0 1 0 0
B 1 0 1 1
C 0 1 0 1
D 0 0 1 0

.

(Run your eyeballs over that matrix, and compare it with the graph,
before continuing.)

We’re going to compute what’s known as the PageRank vector
for this graph. It will have one numeric entry for each Web page,
which will represent the popularity of that page.

Here’s how to do it.

First, we’ll do some light bookkeeping on the Amini-Web matrix,
by (1) taking its transpose and then (2) normalizing the columns.
We’ll call this revised matrix M :

Mmini-Web =

A B C D

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

A 0 1
3

0 0

B 1 0 1
2

0

C 0 1
3

0 1

D 0 1
3

1
2

0

.

I used the Manhattan norm here to make the numbers easier on the
eyes, but any other norm would be okay too. Note that the sum of
each column is 1.

. WEB SEARCH 261

Now here’s how to interpret M . Each column corresponds to one
page’s “praise” for the other pages in the Web. And that page
has a total of one “praise point” to spend on this praise. In the
first column, we see that page A has put all its eggs in one basket:
it’s screaming loudly that page B, and only page B, is important.
That’s because in the graph, A has only one outgoing link (which
is to B). In the second column, by contrast, page B has spread its
praise equally across pages A, C, and D – since it has links to all
three of those. Page C divvies up its praise between B and D, while
D shouts loudly for C and only C.

The rationale behind normalizing the columns should now be ap-
parent to you. It’s the matchmaker leveling effect in action again.
A page can have as many outgoing links as it wants, but the more
it has, the less potent each one will be in determining popularity.

To get your head around PageRank, try to visualize a random
surfer mindlessly clicking links in his browser as he surfs the Web.
Imagine that this surfer started with some arbitrary page, and then
he chose one of its links at random and clicked on it. Then he chose
one of that page’s links at random and clicked on it, and continued
that process indefinitely. (You should try this at home – it’s usually
rather amusing where you end up after a minute or two, no matter
what page you started on.)

The key question to ask is this: after the random surfer does his
thing for a few hours, what’s the probability that he lands on page
A? What about B? C? D?

Let’s work it out mathematically. We’ll create a vector −→p that
contains, for each page, the probability that the random surfer will
be on that page. The process starts with a completely random
page, remember, so we have a 1

4
probability of starting on each:

−→p 1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

.25

.25

.25

.25

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The “1” subscript says that these are the probabilities for the first
page the random surfer browses.

262 CHAPTER 9. EIGENAPPLICATIONS

Okay, what’s the probability that the second page he browses is
each of the four?

If you remember your Law of Total Probability from A Cool Brisk
Walk, you’ll know that the probability of visiting page A second is:

Pr(page A second) = Pr(page A second ∣ page A first) +

Pr(page A second ∣ page B first) +

Pr(page A second ∣ page C first) +

Pr(page A second ∣ page D first).

In other words, there are four different ways that page A could be
my second destination; namely, my first two pages could have been
AA, BA, CA, or DA.

Do you see how to get the probability of this – and also the prob-
ability of landing on any of the other pages second – from the M
matrix? It’s a snap. All you do is matrix-vector multiplication! −→p2

is simply M ⋅ −→p1.

−→p 2 = M ⋅ −→p 1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1
3

0 0

1 0 1
2

0

0 1
3

0 1

0 1
3

1
2

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⋅

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

.25

.25

.25

.25

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

.25 ⋅

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
1
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ .25 ⋅

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

.333
0

.333

.333

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ .25 ⋅

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
.5
0
.5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ .25 ⋅

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
1
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

.083

.375

.333

.208

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

I’m using the “second way” of thinking about matrix-vector multi-
plication here (from p. 91) – a linear combination of M ’s columns.
Since there’s a 1

4
chance of being on page A first, and page A always

goes to page B, that means there’s a .25 probability of starting the
random surf with the sequence AB, and a 0 probability of starting
with AA, AC, or AD. So when constructing our totals, we add .25
times [0 1 0 0]⊺.
There’s also a 1

4
probability of starting on page B. But if that

happens, then there’s a 1
3

chance (each) of going to A, C, or D

. WEB SEARCH 263

next. Put that together, and you see that there’s a 1
12

probability
of starting with any of the BA, BC, or BD sequences, and a 0
probability of starting with BB. Etc. Repeat that process, and you
get the −→p 2 result shown above: a 37.5% chance of landing on page
B second, nearly that high a chance (33.3%) of landing on page C
second, and smaller likelihoods (8.3% and 20.8%, respectively) of
landing on page A or D second.

What about how likely each page is to be third in the sequence?
Just multiply by M again to get −→p3.

What about fourth? Just multiply by M again to get −→p4.

What about fifth? Just multiply by M again to get −→p5.

(. . . and so on . . .)

And now for the finishing touch. What about the long-term likeli-
hood of visiting each of the pages? In other words, after the random
surfer has been doing his thing for a while, what do the probabilities
settle down to?

What we’re really asking for is −−→p∞. This would seem to require
infinite multiplications to compute the value of M

∞ ⋅ −→p1. But re-
member the magic of eigenvectors: if you keep multiplying M by
any vector, it will be drawn to the dominant eigenvector like a moth
to the flame. So we don’t have to actually multiply infinitely many
times, or even once; instead, we just take M ’s dominant eigenvec-
tor!

And that, my friends, is the PageRank vector. For the graph above,
the dominant eigenvector turns out to be:

−−−−−−−−→
pagerankmini-Web =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

.159

.286

.305

.249

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

which announces with finality that C is officially the most popular
page of the bunch, with a PageRank score of .305, and that the
others are B, D, and A, in that order.

264 CHAPTER 9. EIGENAPPLICATIONS

The PageRank algorithm vanquishes the circularity problem. We
can safely define popular pages as “pages which lots of other popular
pages link to” yet not get stuck in an infinite loop. All we need to
do is calculate the dominant eigenvector of the modified adjacency
matrix, and we magically obtain the popularity of every page in
our Web.

Combining this popularity information with the relevancy informa-
tion used by older search engines (p. 254) is how Google changed
the world. It’s why you can type any old thing into a search engine
these days and in the blink of an eye get exactly the pages you were
looking for. I search the Web many times every day, and I almost
never need to go to even the second page of search results. The
pages I want are invariably at the top of the list. Who knew that
steering me towards popular pages would be exactly what I really
wanted?

. WEB SEARCH 265

Answers to Markov chain puzzle from p. 250

Just by thinking about how we designed the probabilities, you can
probably eyeball that sequence d is the most likely and sequence
b the least likely. In sequence d, we have four sunny days in a
row, followed by three cloudy days, and it is in fact true that both
sunny days and cloudy days like to follow each other. In sequence
b, though, we have four rainy days in a row which just isn’t going
to happen very often, since our probability of two consecutive rainy
days is a mere .05.

Here’s the precise numerical answers:

a. Pr(rainy2 ∣ sunny1) ⋅ Pr(sunny3 ∣ rainy2) ⋅ Pr(rainy4 ∣ sunny3) ⋅
Pr(sunny5 ∣ rainy4) ⋅ Pr(rainy6 ∣ sunny5) ⋅ Pr(sunny7 ∣ rainy6)
= .1 ⋅ .4 ⋅ .1 ⋅ .4 ⋅ .1 ⋅ .4 = .000064

b. Pr(rainy2 ∣ sunny1) ⋅ Pr(rainy3 ∣ rainy2) ⋅ Pr(rainy4 ∣ rainy3) ⋅
Pr(sunny5 ∣ rainy4) ⋅ Pr(sunny6 ∣ sunny5) ⋅ Pr(sunny7 ∣ sunny6)
= .1 ⋅ .05 ⋅ .05 ⋅ .4 ⋅ .7 ⋅ .7 = .000049

c. Pr(cloudy2 ∣ sunny1) ⋅ Pr(sunny3 ∣ cloudy2) ⋅ Pr(cloudy4 ∣ sunny3) ⋅
Pr(sunny5 ∣ cloudy4) ⋅ Pr(cloudy6 ∣ sunny5) ⋅ Pr(sunny7 ∣ cloudy6)
= .2 ⋅ .3 ⋅ .2 ⋅ .3 ⋅ .2 ⋅ .3 = .000064

d. Pr(sunny2 ∣ sunny1) ⋅ Pr(sunny3 ∣ sunny2) ⋅ Pr(sunny4 ∣ sunny3) ⋅
Pr(cloudy5 ∣ sunny4) ⋅ Pr(cloudy6 ∣ cloudy5) ⋅ Pr(cloudy7 ∣ cloudy6)
= .7 ⋅ .7 ⋅ .7 ⋅ .2 ⋅ .6 ⋅ .6 = .024696

Take special note that even though weeks a and b have the same
number of rainy and sunny days, the order makes all the difference.
Since rainy days don’t like to follow each other, sequence a is more
likely to occur than sequence b. By contrast, weeks c and d have
the same number of sunny and cloudy days, but since those types
of weather do like to follow each other, sequence d is far more likely.

Index

: (colon), 105

[] (boxies), 46, 103

“1-path”, 206

aardvark, 255

additive inverse, 157

adjacency matrix, 199, 259

adjacent (vertices), 197

affine function, 3

“ah-ha!” moment, 21

Algebra, 1

“an algebra”, 1, 19

Anaconda, 7

arange() function, 47, 77

.argmax(), 50

.argmin(), 50

argument, 74

array, 21, 46, 103

aspect ratio, 236

assignment (Python), 9

associative (operation), 154, 226,
251

associative array, 21

average() function, 75

backwards, 60

bag of words, 255

bake sale, 32, 92

basis, 69, 71, 94, 165, 224

Battlestar Galactica, 125

Biff, 27

bijective function, 133, 170

binary, 186

bit / byte, 236

block diagonal matrix, 99, 204

blue matrix, 170

BMI (body-mass index), 116

body (function), 74

Bond, James, 147

Bowser, 156

branching, 107

bridge, 212

Brin, Sergey, 254

brownies, 32, 92

bunny rabbit, 180

butterfly, 178

calculator, glorified, 7

“calling” a function, 75

Cartesian coordinates, 17

Cartesian plane, 13, 155

Cartesian product, 86

CGI movie effects, 124

change of basis, 72, 94, 165,
225

chess, 178

267

268 INDEX

chocolate chip cookies, 32, 92
closure, 2
cnn.com, 254
code, 7
code word, 192, 193
codomain, 20, 86, 114, 133
Col. Mustard, 23
collectively exhaustive, 248
colon operator (NumPy), 105
colonial viper, 125
column vector, 84, 88, 151
commenting out code, 8
commutative, 23, 25, 154, 184
conditional probability, 245
connected (graph), 198
console window, 7
coordinate, 16
coordinate plane, 13
corrupted data, 187
cosine, 36
counter-clockwise, 13
covariance matrix, 229
CPSC 284, 199
credit card, 150
cross product, 24
“crow-flies” distance, 17, 35
.csv file, 104
cycle, 199
Cylon, 125

DAG (directed, acyclic graph),
199

debug, 7
def (Python), 74
default, 84
degree (of a graph vertex), 198
degree of freedom, 129
diagonal matrix, 97, 110

diagonal, of a matrix, 96, 157,
201

diagonalize (a matrix), 222

dictionary, 21

dimension, 11, 18, 70, 85, 103,
130

directed graph, 197, 198, 201

direction (of a vector), 13

disconnected (graph), 198

discrete-time system, 179

distributive, 23

domain, 20, 86, 114, 133

dominant eigenvector, 218, 238

domino basis, 71, 94, 165

.dot(), 51, 107, 172

dot product, 24, 25, 34, 36, 51

double-pipe sign (∥⋅∥), 35

dweeb, 259

edge (graph), 196

editor window, 7

eigenbasis, 224

eigendecomposition, 222, 238

eigenvalue, 217

eigenvector, 217

element, 16

elephants, 6

else branch, 109, 111

error syndrome, 189

error-correcting code, 186

Euclidean distance, 35

Euclidean norm, 36, 52, 237

expectations, linear, 5

Facebook, 197

fat, saturated, 33

fecundity, 181

fern, 178

INDEX 269

Filbert, 27, 44, 254
first-order, 247
Fiver, 185
for loop, 76, 110
frame (of a video), 236
Fredericksburg, Virginia, 85
frequency, resonant, 211
Frobenius norm, 237
fudge, 32, 92
full-rank matrix, 131, 171
function, 3, 20, 21, 83, 86, 113
function (Python), 74

Get Out Of Jail Free card, 178
GIF file, 186
Google, 254
graph, 196, 259
gray scale, 236
guitar, 213

Hamming code, 186
Harry Potter, 255, 257
hash table, 21
hashtag, 8
Hazel, 185
Hermione, 73, 95, 165, 224
hippo butts, 120
horses, 134
hyperlink, 258

identity element, 157
identity matrix, 98, 118, 157,

164, 173
if statement, 107
in-degree, 198, 205
indentation (in Python), 74,

77, 107
independence, 246
index number, 16, 46, 85, 103

Inf (infinity), 52
information loss, 12
initial condition, 252
injective function, 133, 170
inner product, 152
inverse, 73, 95, 136, 157, 163,

165, 171, 225
is diagonal(), 110
is square(), 109
iteration, 76

Jezebel, 27, 91, 254
JPG file, 186

kernel, 125, 130, 136, 171
King of the World, 102, 163
Kylo Ren, 247

label, 19, 85
Law of Total Probability, 262
left-ness, 12
length (of a vector), 13
Leslie matrix, 180, 249
Letterman, David, 201
lifespan, 180
linalg.eig(), 231
linalg.inv(), 173
linalg.norm(), 52
linalg.solve(), 174
linear, 3
linear combination, 58, 67
linear expectations, 5
linear independence, 53, 63, 171
linear map, 114
linear operator, 117, 213, 250
linear transformation, 113
linearCombo(), 78
list, 21, 46
loadtxt() (NumPy), 48, 104

270 INDEX

loop, 76

losing information, 12

lower-triangular, 97

machine, 113

magnitude (of a vector), 13

main diagonal, of a matrix, 96

Manhattan norm, 39, 260

Mario Kart, 124

Markov chain, 247

Markov property, 179, 247

Markov, Andrey, 247

matchmaker.com, 27, 28, 44,
91, 149, 254

mathematical object, 1

matrix (plural: matrices), 84

matrix multiplication, 173

matrix-vector multiplication, 107,
145, 160, 204

.max(), 50

McDonald’s, 117

middle C, 213, 216

.min(), 50

mirror, 96

Miss Scarlet, 23

modularity, 74

modulo operator (mod), 186

Monopoly, 178, 245

mosquito, 14

MP3 file, 186

Mr. Green, 23

Mr. Right, 28, 44, 254

Mrs. Peacock, 23

Mrs. White, 23

multiplicative inverse, 157, 166

mutually exclusive, 248

ndarray (NumPy type), 46,
103

nested for loop, 110

network-based data, 196

nibble, 189

“no can do”, 22, 23

“noisy channel”, 187

norm() (from linalg), 52

norm (of a matrix), 237

norm (of a vector), 35, 52, 222

normalizing (a vector), 43, 223,
231, 254

nullity, 130, 171

nullspace, 125

NumPy, 7, 46, 103

Oakenshield, Thorin, 235

object, mathematical, 1

one-dimensional quantity, 11

order (of a graph), 197

origin, 3, 126

orthogonal, 30, 100

orthogonal matrix, 100, 163

orthonormal, 102

orthonormal basis, 164, 229

out-degree, 198, 205

outer product, 152, 235

Page, Larry, 254

PageRank vector, 260

partition, 204

path (through a graph), 197,
205

perpendicular, 30

piano, 213, 216

plain-text file, 48, 104

playground, 212

plot operator(), 140

INDEX 271

plotting, 78
point of origin, 13
polar coordinates, 17
popularity, 257
porcupine, 3
Potter, Harry, 255, 257
prerequisite, 199, 202
probability, 245
probability matrix, 249
Prof. Plum, 23
programming, 7
pylab library, 78, 138
pylab.arrow(), 138
pylab.plot(), 78
pylab.xlim()/ylim(), 78
Pythagorean Theorem, 17, 35
Python, 7

rabbit, 180
racehorses, 134
“radius”, 17
random.rand() function, 48,

104
random surfer, 261
rank, 131
rank-deficient, 131, 171
rank-nullity theorem, 132
“reachable” vertex (graph), 198
reciprocal, 157, 166
Ren, Kylo, 247
resonant frequency, 211
return statement, 74, 109
reversible, 134, 170
Rice Krispie treats, 92
Richmond, Virginia, 85
right angle, 30
right-ness, 12
Ron, 71, 94, 165, 224

rotation matrix, 123, 127
round () function, 49
row vector, 84, 88, 151
Rowling, J.K., 257

saturated fat, 33
scalar, 11
scalar-vector multiplication, 22,

51, 220
scale of measure, 11
scattershot, 225
scientific notation, 173
search engine, 254
set, 126
shopping list, 33
signal, 189
simulation, 179
simultaneous equations, 159
single-bit error, 194
singular matrix, 166, 171
singular value decomposition

(SVD), 237, 238
size (of a graph), 197
slice, 49, 106
Slinky, 212
smooshing, 120, 127
Social Security Number, 133
span, 68
Spectral Theorem, 222, 229,

239
Spyder, 7
square matrix, 95, 109, 117
squishing, 120, 127
standard basis, 69, 71, 94, 165,

225
Starbuck, 125
Stark, Arya, 13
state, 245

272 INDEX

state (of a system), 178
state vector, 178
stemming, 256
stochastic matrix, 249
stock price, 12, 116
stop list, 256
stretching, 119, 127
strongly connected (graph), 198
stupid dog tricks, 201
subdiagonal, 181
substitution matrix, 249
sucky matrix, 132
.sum(), 50
Supreme Leader Snoke, 247
surfer, 261
surjective function, 133, 170
survival rate, 181, 185
swing, 212
symmetric matrix, 95, 153, 164,

201, 229
system, 178, 245

Tacoma Narrows Bridge, 212
tail (of a vector), 13, 17, 35
taxicab norm, 39
tensor, 103
TF/IDF, 256
the Domino Game, 53
Thrace, Lt. Kara, 125
tip (of a vector), 13, 17, 35
transition matrix, 249
transpose, 88, 91, 152, 163,

191, 260
.transpose(), 107
traversing (a graph), 197
“trivial” solution, 64, 126, 128
trunc() function, 49
tuna fish, 12

Twitter, 197
.txt file, 48, 104

Ulam, Stanis law, 6
undirected graph, 197, 201
upper-triangular, 97, 202

variable (Python), 9
vector, 11, 12, 21, 83
vector addition, 22, 51
vector multiplication, 24, 51
vector space, 19, 68
vertex (graph), 196
video file, 186

Wal-Mart, 132
Washington, D.C., 85
Watership Down, 185
weakly connected (graph), 198
Web search, 254
Wegmans, 33
weighted graph, 197
weights, 50, 75, 107
Wendell, 27
whirlpool, 127
windshield wiper, 60
word count, 254

y-intercept, 3
y = mx + b, 3
Yahoo 254
yellow matrix, 170

zero vector, 125
zeros() function, 47, 104
zombie, 178
zoology, 255

	Contents at a glance
	Acknowledgements
	Stretching our legs
	Vectors
	Linear independence
	Matrices
	Linear transformations
	Matrix multiplication
	Applications
	Eigenanalysis
	Eigenapplications

