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CHAPTER 1
INTRODUCTION

Motivation

As low-cost computing solutions have become more widely available to them,
studio musicians have discovered many applications of concise, digital representations
of their music. Already, keyboardists can capture their performances in digital MIDI
format and play them back later at a different tempo, with a different volume mix
between parts, or even with different timbres (synthesized instruments) than were
originally used in the recording. The songs themselves are simply saved in a
"musician’s format," with information about which notes were played at what instant,
and with what volume, but with no explicit audio information such as an actual
waveform. At playback time, a digital sound module plays these notes in time from
selected voices (a voice could be the sound of a flute, or bagpipe, or piano, for
instance.) The composer can experiment with different voices, levels, and effects to
produce a wide variety of different sounding songs, all from the same original
recording. Such flexibility is a powerful tool in the hands of a competent musician.

What is lacking, though, is the ability to "go the other way." In other words, it
is a simple matter to take a MIDI file with information about pitches and timing, and
produce an audible song from it using a digital sound module. All that is necessary is
to play the proper tones at the proper times using whatever voices the musician
wishes. However, the ability to take raw audio information from, say, a band in a
concert hall, and analyze it to produce a written score of the piece (or at least a MIDI

file from which a score can be retrieved) is a much more difficult matter. A sample of



a single-voice, pure-tone melody could probably be analyzed and the corresponding
notes of the melody constructed. But the digital signal processing required to
determine the score of a piece being performed by a twelve-part orchestra, each part
with a rich audio spectrum and performing out of time with the other parts, staggers
the mind.

Many parallels exist between this problem and other analysis-synthesis
problems, such as text recognition. It is a relatively straightforward task, for instance,
to take a file of ASCII text, together with a set of bitmaps (or mathematical
descriptions) depicting those characters in a particular font, and display the document
in that font. This is because there is no guesswork involved. The computer does not
have to analyze anything complicated or ambiguous, but just to spit out the image
associated with each of the characters in a repetitive way. Consider the difficulties,
however, when the problem is reversed: instead of starting with the list of characters
and producing the graphics, to be given a graphical image and attempt to derive the
characters from it. Now, instead of monotonously outputting images that are known a
priori, the program must analyze its inherently "fuzzy" input and apply a set of rather
vague guidelines to try and deduce what information is present. This is the situation
with automated musical recognition, or automatic transcription, as it is also called.
We are given not a rigid written score from which to play a melody, but a recording of
instrumentalists playing the tune with feeling and interpretation, in the presence of
noise, reverberations, echoes, and other acoustical effects, and asked to derive the
notes.

The capability to analyze musical performances in an automated fashion -
either to produce a written score, or to segment the separate voices of the audio track
so they can be treated independently - would make possible a wealth of applications.

Rock musicians who like to "jam" in the studio to come up with new songs could



circumvent the painful process of trying to put down on paper what felt natural on the
guitar. Computer systems could be developed for beginning music students to provide
automated feedback about notes incorrectly played. Erroneous notes in an @ cappella
recording could be identified and removed without even having to do another take.
The musical expressions of primitive cultures without technology or even a precise
notation could be recorded locally on cassette tape and quickly analyzed for rhythm
and harmony. Expensive multi-track recording could be eliminated, since keeping
different parts isolated on different tracks would become unnecessary. And alterations
of existing musical pieces could be created that were only dreamed of before. Imagine
being able to reduce the Cleveland Orchestra’s performance of Mozart's 40th
Symphony down to the score, and thereby play it back with woodwinds instead of
strings. Or capturing a jazz saxophonist's improvisation in MIDI format so it could be
analyzed and elaborated upon. Or combining these techniques with sophisticated
speech processing to change John Lennon's voice into Dolly Parton's in the Beatles'
original recording of "Hey Bulldog." Granted, these applications represent "grand
challenges" and would require considerable research effort. Nevertheless, their utility

and power provide a great motivation for learning more.

Scope of the Study

As the title of this work implies, my research concentrates on the development
of software techniques that might make automated musical recognition possible. I
have not designed a special-purpose digital signal processing (DSP) chip or
microprocessor for the task, but rather have considered the problem of taking mono-
channel audio, recorded and digitally sampled elsewhere, and employing software

algorithms to attempt to derive the notes from the sample.



The centerpiece around which this thesis revolves, then, is a software system
which implements and combines a variety of DSP procedures. The title of this
program is "Score" - so named because its purpose is to furnish information from
which a written musical score of its input could be constructed. Score was developed
entirely in MATLAB, and comprises several modules which analyze digital audio in
different ways. The input it receives, in addition to a considerable number of
parameters through which its internal algorithms can be "tweaked,” is a single data
vector of samples from a recorded song. After processing the vector, it attempts to
produce textual information equivalent to a written musical score of its input,
including the durations (half note, dotted 16th note, etc.) and pitches (C4, F#6, etc.) of
notes contained therein. A complete program lsting of the Score prototype is
provided in Appendix A.

The principal focus of my study was to investigate the DSP-related problems
involved in identifying musical information, and not to build a comprehensive product
which musicians would find immediately useful. Therefore, a few things that would be
necessary in a fully-featured tool, but that deal strictly with musical issues and not with
DSP, have not been addressed as part of this thesis. For example, I have not written
procedures to make a reasonable guess as to the key signature or time signature of the
piece, given the series of pitches. A user-friendly, graphical display of notes on staves,
too, is outside the bounds of this project. I have focused only on the problem of

extracting the pitch and timing information of notes embedded in a digitized signal.

Physical Setup

Most of the songs I have used as input for my experiments in the laboratory
were generated by a Korg 03R/W sound synthesis module. (See Figure 1) The
03R/W is a powerful piece of equipment which accepts as input MIDI controller



information about what notes to play (for instance, from a keyboard capable of
producing MIDI output, or from a software sequencer) and produces an analog signal
simulating the waveforms of live instruments playing those notes. Its advanced
synthesis techniques allow it to generate sounds which are quite similar to those of an
actual violin, trumpet, oboe, etc., and in many cases they are indistinguishable to the
human ear. Effects such as echoes or reverberations occurring in live conditions can

also be generated by the 03R/W.
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Figure 1. Studio and Laboratory equipment used to test the Score
software. Notes are generated from either an electronic keyboard
played by an instrumentalist, or from sequencer software on a PC
playing an existing piece of music. Pitch, volume, and timing
information about these notes are transmitted over a MIDI cable
(asynchronously, at extremely low data rates) to the Korg 03R/W
sound module, which in turn synthesizes an audio signal that can be
input to the AUX jack of an ordinary tape recorder. This tape is then
taken from the studio to the laboratory, recorded into the microphone
of the workstation, digitally sampled, and prepared for software
analysis.



To test the Score ﬁrogram, I have used the Midisoft Studio for Windows
software sequencer to create simple melodies and harmonies. (This sequencer is
essentially a musical editor, through which information about the times and pitches of
notes can be entered and modified.) After a melody has been entered, the sequencer
"plays" the song by sending MIDI information over 2 serial cable to the 03R/W,
instructing it to generate the pitches of the song at the specified times. The 03R/W,
selecting from a bank of available instruments, then produces the sounds required,
such that the output is an audio signal which can be amplified and heard by a listener.

In order to capture this "performance” in a form that MATLAB can input and
analyze, I connect the output of the 03R/W to an ordinary cassette recorder via RC
audio jacks, and record the sound onto a blank cassette tape. Then, in the laboratory,
I play the tape back through the speakers of a tape player, and use the built-in
microphone of a Silicon Graphics Unix workstation to sample and digitize this audio
signal. The workstation's "Sound Editor" utility program saves the digital data into an
ordinary Unix file which the MATLAB program can read and store as a single vector
of samples. Score then analyzes this data vector using the techniques described in this
thesis, and prints lines of text to the screen describing the durations and pitches of the
notes it finds. Such text is not in the same form as, but is virtually equivalent to, a
written score in musical notation.

One liability of the above arrangement is in the frequency response of the tape
player and recorder. The equipment I used was both old and inexpensive, and as a
result had a very poor bass response. (Upon testing, frequencies at middle C (261.63
Hz) came through about 10 dB higher than frequencies at an octave below middle C
(130.81 Hz.)) Therefore, for much of my testing, I have used only input songs in the

treble clef; that is, songs with notes that have fundamental frequencies of 260 Hz of



higher. Tt should be understood that this is purely due to a weakness in the physical
equipment I had available for testing, and not due to any inherent flaw in the
algorithms used. The Score program does not treat notes below middle C any
differently than it does those above, and if machinery capable of a better bass response
were available, Score should have exactly the same success rate in detecting lower

notes as it does the higher ones.

Arrangement of the Thesis

The structure of any kind of systemized analysis depends greatly on the
character of what is being analyzed. In Chapter 2, therefore, I will provide an
overview of the characteristics of sounds produced by musical instruments, and point
out which particular features factor heavily into the automated musical recognition
problem. Chapter 3 contains a discussion of the "big picture” algorithm employed by
Score in light of this information.

From that point on, the thesis - as well as my underlying research - falls into
two parts. First, in Chapter 4, I will introduce my approach regarding a simplified
model for musical instruments: a sound generator with a sinusoidal wave form and
square volume envelope. I will present the results of the Score program when given
such simplistic data, and demonstrate that the automated recognition of notes
produced by this model is not only theoretically possible, but realistically achievable
with a very high rate of success. Then, Chapter 5 explores the program modifications
necessary when the eccentricities of "real world" instruments are introduced. Finally,
Chapters 6 and 7 put my research into perspective, and discuss what the next step
might be towards the realization of a practical product suitable for assisting musicians

in a substantial, everyday way.



CHAPTER II
CHARACTERISTICS OF MUSICAL INSTRUMENTS

The differing qualities of the sounds produced by common musical instruments
are complex and widely varied. A study of audio characterizations could easily fill
volumes; an extensive treatment is given in [4]. For purposes of the Score program,
however, such detailed analysis is unnecessary. The problem of automated musical
recognition is concerned neither with how to duplicate the tonal qualities produced by
live performers, nor even with the identification of what kinds of instruments are
present in a given recording, My algorithms seek only to recognize the pitch and
timing information associated with each instrument in a song, and hence, the only tonal
features we need to explore are those which factor into this problem. This chapter
presents some practical considerations regarding what distinguishing attributes of

musical notes can be exploited to uncover this information.

Volume Envelope

If we were to plot the audio waveform produced by the plucking of a harp
string, we would discover that the magnitude of the signal varied significantly with
time. At the instant the note is played, we would see a sharp rise in intensity, followed
by something very much like an exponential decay. (See Figure 2.) This agrees with
our intuition in hearing the instrument, for a "plucking" sound has a sudden, crisp burst
of tone followed by rapidly decreasing volume, and in just a few moments, we hear
nothing. The signal generated when a piano key is struck has a somewhat similar

shape, though the peak is not as intense, and the sound does not die away as quickly.



Other instruments - such as violins or flutes - have completely different characteristics,
and may even present increasing intensity as the note is played. We can think of this
phenomenon as an envelope which is multiplied by the underlying periodic components
that produce the sound. It turns out that this so-called "volume envelope” is one of
the most important factors in determining how the instrument sounds to the listener.
The differences in the periodic waveforms produced by a piano and a flute, for
instance, may not be very great; yet their sounds could never be confused precisely

because they have such remarkably dissimilar volume envelopes.

Figure 2. The approximate shape of the volume envelope for the
plucking of a harp string. The amplitude of the signal produced is not
uniform throughout the note, but rises very fast initially and then
experiences a near exponential decay.

Theoretically, there is no limit to the amount of "detail" the volume envelope
of a sound might exhibit, we might even envision a hypothetical instrument whose
intensity varied with time as pictured in Figure 3a. For convenience, however, we will
adopt a simplified model of the volume envelope that is familiar to musicians who
attempt to synthesize sounds: the "Attack-Decay-Sustain-Release," or ADSR
representation, depicted in Figure 3b. In this simplified model, the volume envelope of
an instrument is represented with just four parameters. The "Attack time" is the time,
in seconds, from which the note is struck until it reaches its maximum intensity. The

"Decay time" represents how long it takes for the sound to drop from its peak intensity
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to its "Sustain level," or the volume (in percentage of the maximum) held by a long
whole note. Lastly, the "Release time" characterizes how long the instrument
continues to sound (above some arbitrary minimum level) after the performer stops
playing the note. We might parameterize the ADSR envelope of any instrument, then,
as a four-tuple of values. For example, the sound in Figure 3¢ has an ADSR of
(1,0,100%,1), and the sound in Figure 3d has an ADSR of (0.1,1,20%,2). Note that
the precise mathematical description of how the envelope behaves during the four
intervals (eg., whether the attack is exponential, linear, or sub-linear) is not specified
as part of the ADSR. The model is only used to provide a rough classification of the

way the sound's intensity varies with time, and will be suitable for our purposes.

Figure 3. (a) Volume envelope for a hypothetical instrument. (b) The
definitions for the ADSR volume envelope parameterization. (c), (d)
Sample volume envelopes.

Each of the instrumentalists that make up an orchestra or a rock band produces
sound with a widely different ADSR characterization. To get some idea of the nature

of these envelopes, however, we can divide the vast array of musical instruments into
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two broad classes. I will call "striking" instruments those devices where a note is
sounded by some initial sharp contact, such as when an acoustic guitar string is
plucked or a xylophone is hit with a mallet. "Continuous" instruments, on the other
hand, produce sound only when provided with a continuous amplitude source, such as
the constant bowing action of a cello or the blowing of a trombone. These two classes
of instruments tend to have very different ADSR characterizations, as depicted in
Figure 4.

Figure 4a shows an approximation of the volume envelope for a piano (which
is a striking instrument, since notes are produced when hammers strike strings inside
the body of the mechanism.) We notice several important features from the diagram,
which is roughly typical of all striking instruments. First of all, such instruments have
an extremely fast attack, which corresponds to A~0 in the ADSR model. The moment
the key is pressed (or the string is plucked, or the drum is struck), there is an explosion
of intensity up to the maximum level. We also see that there is no real notion of a
sustain level for such instruments, since after the initial event which triggered the
sound, there is no more energy input to the system by the performer. Hence, we may

consider S~0 as well.

(@) @)

Figure 4. Typical volume envelope for (a) instruments of the "striking"
family, (b) instruments of the "continuous" family.
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The rate of decay of intensity is highly dependent upon the nature of the
striking instrument, and it is difficult to establish generalizations. For stringed
instruments, the more rigidly the string is mounted, the more energy is transformed
into heat instead of sound, leading to a less intense peak but a slow decay. A piano,
on the other hand, is constructed such that the endpoints of the string can move
slightly, releasing energy to a resonator (the piano's sound board). This allows for a
greater overall signal intensity, since the energy is converted with greater efficiency
into sound, but also gives rise to a faster rate of decay. Striking instruments involving
other vibrating elements (eg., the percussion family) have rates of decay that are
dependent on completely different parameters. In general, we may say that the D
value of the ADSR characterization varies even among instruments within the
“striking" categorization. Simiiar& we find striking instruments with varying release
times, since this is also governed by a broad range of physical parameters. The rates at
which a piano's damper cushions its string or a timpanist's hands quiet the drum's
membrane are difficult quantities for which to establish broad guidelines. So in the
end, we are left with the principle that striking instruments tend to have an ADSR
parameterization of nearly (0,D,0,R), where the values of D and R are dependent on
physical measurements peculiar to the instrument and which may vary widely from
instrument to instrument.

When we come to analyze instruments in the "continuous” class, we find a very
different sort of volume envelope than we did with striking instruments. As can be
seen in the Figure 4b (an approximation of the envelope for a bowed violin), the attack
is no longer instantaneous. It fakes the sound some fime to reach ifs maximum
intensity, which has a significant effect on the ability of the Score program to detect
notes from these instruments, as we will see later. The actual value of the A parameter

is dependent upon a number of factors specific to the instrument and performer, such
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as the time it takes for the bow to fully "grip" the string, or how long the flautist takes
to reach maximum air pressure. Another feature we glean from this diagram is that
although the continuous instrument may have some decay from its peak intensity, it
often very quickly establishes a nearly constant amplitude which lasts for the duration
of the note. This is because the amplitude loss seen in the striking instrument is now
compensated by the supply of extra energy to the vibrating system. Instead of a piano,
which is struck once and then left to decay, we have a clarinet, which is continually
given more energy by the breath of the performer. At the very beginning of the attack,
the supplied power far exceeds the rate of energy loss, and the signal's amplitude
gradually builds up. Then, while the power supply remains constant, the power
dissipation increases as the amplitude grows, and a steady-state condition is reached
where the dissipated power is equal to the supplied power. This is the situation all the
time the note is sounding (subject to intentional or unintentional variations on the part
of the instrumentalist, of course), until the release point. The R parameter for
continuous instruments varies widely across the different families as it did for striking
instruments, since once the breath or bow has stopped the rate of decay of power is
subject to all kinds of physical properties of the particular mechanism in question.
Even among different violins we will find bodies that resonate for longer periods, so
we dare not make any simplifications for the R parameter. In summary, then, the
distinguishing marks of a continuous instrument's volume envelope can be expressed in
an ADSR which is (nonzero, short, high, R), remarkably different than striking
instruments in three of the four categories.

We will defer until Chapter 4 the discussion regarding which ADSR
characteristics mmight facilitate the correct identification of notes in an analog
waveform, and which might hinder it. For now, it is sufficient to note that different

musical instruments - particularly those from different categories - have noticeably
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diverse volume envelopes, which not only lend a distinctive quality to the sounds they
produce, but which appear as conspicuously dissimilar attributes in the signal

processing domain.

Harmonic Signature

A second characteristic of musical tones which has a great bearing on the
observed quality of the sound is the frequency content of the instrument's waveform.
A basic property of virtually all musical instruments (percussion excepted) is that the
chief frequencies they produce are almost all harmonically related to one another. !
The reason for this can be seen in Figure 5a, which depicts a string about to be
plucked with both of its ends rigidly fixed When such a string is struck, hammered, or
bowed, it begins to vibrate, and elementary physics tells us that the only possible stable
form of vibration are standing waves, which by necessity have frequencies such that an
integer number of wavelengths will "fit" on the string. Because of the principle of
linear superposition, these standing waves can all co-exist on the same string without

interfering with each other.
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Figure S. (a) Standing waves produced by the plucking or hammering
of a string. (b) The discrete nature of the frequency spectrum for a
musical instrument.
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The standing wave with the longest wavelength - and lowest frequency - is the

top one shown in the diagram. It vibrates with frequency f;, which can be described to

a good approximation as

1 |T

1551 14

where L is the length of the string, T is the tension in units of force, and d is the mass
per unit length of the string. We refer to this frequency f; as the fundamental

frequency of the vibration, and use it as the best measure of the pitch of the note?.

The other frequencies represented in the diagram are all integer multiples of the

fundamental frequency, and are denoted the harmonics of the fundamental. f] itself is

the first harmonic, f, the second harmonic, and so on. There are an infinite number of

these harmonics for a given fundamental frequency, though only a certain number fall
within the range of human hearing. The result is that if we took a Fourier Transform
of the waveform produced by the vibrating string, we would see that virtually afl of the
energy was concentrated in these harmonic frequencies, in various proportions (see
Figure 5b).

This situation is not unique to the family of stringed instruments; in fact, all
orchestral and acoustical instruments exhibit this property. Figure 6a depicts a simple
model for a flute, with the mouthpiece and the first open hole on the body serving as
the open ends of an otherwise closed pipe. When longitudinal waves driven by the
flautist's breath propagate through the cylinder, the pressure at any point along the
body can experience temporary increases or decreases, since the rigid cylinder walls
hold the necessary forces in balance with respect to the atmospheric pressure outside.
At the two holes, however, there can be no substantial difference between the pressure
inside and outside of the flute, because the inside is exposed to the open air. These

points therefore play the same role with respect to air pressure that the fixed ends of
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the string do to vibration, and the only stable frequencies at which air can vibrate in a
standing mode are those which satisfy the integer number of wavelengths property.
Virtually all the instruments that are driven by breath work in roughly this way, where
the pitch of the note played can be altered by changing the distance between the holes
(via fingers, valves, or a trombone's slide). The result is that all common instruments
almost exclusively produce frequencies that appear at discrete, regular intervals. It is
really this property which gives musical instruments their recognizable tone that is
pleasing to the ear. When frequencies are produced which are nof harmonically
related, the result is more like a sound than a note. The notion of the "pitch" of such a
sound becomes blurry, and these kinds of audio events become useless for carrying
their weight as a distinctive tone in a melody. Most of the instruments in the
percussion family behave in this way - for instance, a cymbal crash, which appears in
the frequency spectrum as a concentration of high frequency noise. The prototype of

the Score program will not attempt to analyze such instruments.

]
il

|

E
g”

@f

(@) (b)

Figure 6. Standing waves formed in the chambers of (a) a flute, (b) 2 clarinet.
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We have established, then, that for ordinary, non-percussive instruments, only
frequencies which are harmonically related appear with any significant magnitude. The
next question becomes. what are the relative strengths of each of the harmonics for
particular instruments? And what physical properties of the instruments give rise to
these strengths? In practice, the question proves very difficult to answer because of
the extremely complex physical situations. We can, however, provide some idea of the
factors involved. In some cases, the construction of the body of the instrument itself
naturally reinforces certain harmonics while suppressing others. A good example is
the clarinet, shown in Figure 6b. The mouthed end of the instrument is a vibrating
reed which serves a purpose opposite to that of the first open finger hole, or the bell at
the end of the body. It essentially functions as a closed end, making the clarinet itself
very much like a stopped cylindrical pipe. The result is that the clarinet's fundamental
frequency is only half of that for a pipe of the same length with two open ends, and the
stable modes of vibration are only at the odd numbered harmonic frequencies with
respect to this lower fundamental. The distinctive tone of the clarinet arises in part
from this extreme emphasis of the odd harmonics and absence of even harmonics.

The harmonics produced by a stringed instrument are highly dependent on the
physical location along the string where it is plucked or struck. If a string is grasped at
the midpoint between its two fixed ends, as was the case in Figure 5a, we find that odd
harmonics are emphasized and evens are suppressed. The reason is simply that the
point on the string with the greatest initial displacement - and hence, greatest kinetic
energy when the string is released - is in the middle, which corresponds to a peak on
all standing waves at an odd integer multiple of the fundamental, and to a node for all
even multiples. In general, it can be shown that all harmonics which have a peak at the
point where the string is excited will be strong and all that have a node will be weak.

Plucking near the ends of the string, then, will naturally augment the upper harmonics



18

and give a "richer" tone, while plucking in the center subdues them and yields a
“purer” tone. This phenomenon allows harpists great flexibility to modify the quality
of the sounds they produce throughout a single song.

Other effects are more subtle. The fingerholes of a flute, whether open or
closed, tend to attenuate the high harmonics (those above 1.5 kHz) and give the
instrument a very simple but beautiful spectral content. We find that partly because of
this effect, throughout most of its range the flute exhibits a strong first three
harmonics, and then almost nothing higher. This quality is what gives the instrument
its pure, clean tone quite different from many of the other woodwinds. Another
important physical factor which influences the harmonic content of instruments is the
resonator employed to efficiently transform vibrational energy into sound. Two good
examples are the body of a cello and the piano's soundboard. Both instruments are
initially driven by vibrating strings, but the relative magnitudes of the harmonics at
which the strings vibrate may be quite different from the frequencies the resonator will
naturally reinforce. We may crudely say that each resonator can be characterized by a
"resonance curve" as shown in Figure 7, and that whatever spectrum the vibration
component of the instrument produces is filtered through that curve to arrive at the set

of frequencies really heard by the listener.

lml.’l SN |||'ll|‘|

Frequencies of .
Vibrati Component Resonance Curve Audible Frequencies

Figure 7. Effects of resonator frequency response on audible signal.
The frequencies originally present in the vibrational component of the
instrument are filtered through the resonance curve (specific to the type
and particular model of the instrument) to produce what is actually
heard by the listener.
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Given that different kinds of instruments have such diverse sets of harmonic
components, one might be tempted to attach a unique "harmonic signature" (or
“spectral envelope," as it is often called in the literature) to each instrument and use
that information to assist in automated musical recognition. Unfortunately, this idea
proves overly simplistic in practice. It is certainly true that there are specific frequency
domain characteristics that remain constant in many circumstances, such as the
clarinet's weak even harmonics or the flute's bold fundamental. But the view that the
harmonic signature forms a stable and compact representation of the frequency content
produced by an instrument, and can be used to reliably and completely characterize its
behavior, is flawed for a number of reasons.

First of all, even instruments of the same kind display vastly different harmonic
spectra. It has been determined by experiment that two different makes of grand
piano, each playing the same note, can easily produce signatures that are dissimilar in
many respects.3 The aforementioned resonance curve is another example: comparing
the frequency response of violin bodies of different makes or even different
instruments among the same make yields widely different behaviors. For these
reasons, it seems hopeless to attempt to construct "the piano signature" or "the oboe
signature” for use in recognizing any particular piano or oboe with accuracy.

To make matters even worse, we find that the harmonic signature varies even
on the same instrument during the same performance. We have already seen how the
audio frequencies produced by a stringed instrument vary with the physical location of
string excitation. Even more universal, the frequency content changes with the
intensity of the notes played. This is particularly evident in reed instruments, where
the nth harmonic is perceived to grow proportionally to the 2nth power of the
fundamental, leading to a "brighter" sound for louder notes. Therefore, any musical

piece or even individual phrase where an instrument is likely to vary its dynamics from
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note to note will involve a part with a dynamically changing harmonic signature. The
signature can also be seen to fluctuate with the pitch of the note played. This much is
apparent just from the fact that a resonator has fixed filter characteristics, while notes
of different pitch will input different sets of frequencies to that filter. But at an even
more basic level, the waveforms of the vibrational components themselves can change
dramatically with the fandamental frequency. The four strings of a violin, for instance,
have harmonic signatures so completely different from one another that upon
analyzing them one would never guess they came from the same instrument.

Finally, and even more detrimental to the prospect of characterizing
instruments by a static harmonic signature, is the fact that the signature can vary with
time even in the duration of a single note. As a rule, for example, frequencies with
greater initial energy decay more rapidly than those with less in striking instruments
(though this is more or less constant with continuous instruments.) Therefore, as the
note plays out its decay interval, each frequency component will be decaying at a
different rate, producing an ever-changing signature. Other instruments have bursts of
high harmonics present during the attack, and which are immediately quenched
thereafter. For wind instruments, the excitation mechanism (such as the reed or air
stream) is in turn affected by the sound waves in the air column, a form of
considerably complex non-linear feedback. During the initial part of the sound, the
tone buildup process often amplifies the upper harmonics more quickly than even the
fundamental (since the reed itself tends to vibrate at a much higher frequency until
driven by the feedback from the instrument body.) This, too, leads to a decidedly
different signature depending on which instant in time it is measured.

The practical result of all these findings is that any attempt to extract the
components of a single part in a song from the complete waveform must be very

cautious in making assumptions about the frequency content of that instrument. It
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may be possible to apply very sophisticated techniques and get a handle on all of the
above factors for a given instrument. But any algorithm that simply identifies the
harmonic signature of a particular part and proceeds on the presupposition that it will

remain constant is doomed to failure.

A Model for Musical Instruments

For purposes of this thesis, then, I have adopted a very flexible model for
instruments that makes few presumptions about harmonic content. I have assumed
that the volume envelope of a particular instrument, which can be roughly
characterized by the ADSR model, is to a great extent determined by whether the
instrument is of the striking or continuous variety. The envelope associated with a
particular performer should be fairly stationary throughout the song. In regards to
frequency content, however, I make few such assumptions about stasis. My model is
that the notes sounded by any instrument will have energy present at a frequency
corresponding to the pitch of the note played, and at integer multiples of that
fundamental, with all non-harmonically related frequencies essentially zero. The
relative strengths of these peaks is unknown a priori, even if the type of instrument is
known, and may change without notice as the song progresses and even as a single
note is played. However, I do assume that the "harmonic signature" of a particular
instrument will remain "relatively stable” throughout the song. This does not mean
that the strengths of the harmonics will march in lock-step with precisely the same
ratios note after note. We will be under no delusions that we can accurately "subtract
out" one instrument's waveform from the whole. In order to track the movement of
¢ach part from note to note, though, we will use the harmonic signatures as a rough
guideline for instrument identification.  These signatures will be computed

dynamically, as explained in Chapter 3, not assumed to be known before the data is
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analyzed. Such an approach prohibits us from taking advantage of too many unique
features of instruments, but allows more hope for a general solution to the automated

musical recognition problem.



CHAPTER I
OVERALL STRATEGY FOR RECOGNITION

Presented with a sampled input of an audio signal, there are many possible
schemes one might employ to come up with the rudimentary musical information. The
approach taken by the Score program is a combination of time domain and frequency
domain analysis designed to mimic the response of the human ear and mind. What it
lacks in theoretical optimacy it makes up for in simplicity and (hopefully) universal
applicability.

When one listens to a piece of music, one is conscious of at least two general
phenomena. The first is that the character of the tones is changing with time, such that
a melody or rhythm is conveyed to the audience. There are identifiable musical
phrases which begin and end and lead to other phrases in some sort of progression. A
"song" that did not exhibit this property - one which had a static character throughout
- would be decidedly uninteresting and would probably not be classified as music at all.
The second quality is that at each moment in time - an infinitesimal "snapshot" of the
song, as it were - there are possibly several instruments each playing a particular note.
And from what we learned in chapter 2 regarding the nature of the harmonic spectra of
musical tones, each instrument's contribution to the total song is isolated to a set of
frequencies related by integer multiples. From the principle of superposition, then, we
can say that each of a given song's snapshots is characterized in the frequency domain
by a series of discrete peaks of various amplitudes.4

Moreover, we observe that in most cases, the gross changes of the music with

time are not continuous, but discrete. Except in the case of an instrument "sliding"
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through a series of notes (a trombone's glissando, for example), we typically hear each
instrument begin a note, hold the pitch constant throughout some period, and then
move to the next note. We find that the lengths of these periods are usually related in
some simple mathematical way, so that the "beat" of the song is easily established by
the listener. The audience will then mentally impose a timing framework on the
sounds that reach them, so that what they perceive is a group of simultanecus tones
which change pitch at fairly regular intervals.

The most natural approach to the automated musical recognition problem,
then, is to devise an algorithm which "sees" music in this way. First, the program must
ascertain the beat of the song similar to the way a human listener would. Then, once
this has been established, it faces the task of analyzing each of the intervals to decide
what notes are being played by what instruments in that interval. As will be seen, the
first of these operations is best analyzed in the time domain, while the second lends
itself principally to the frequency domain. This two-step plan for arriving at musical

information forms the heart of the Score program, and will be outlined below.

Event Detection

A present-day computer can do many things well; unfortunately, enjoying a
musical performance and "digging the beat" is not one of them. When the bare
digitized signal is first received by our program, it appears not as a series of well-
defined musical intervals, but as a long string of indistinguishable samples of varying
amplitudes. Our first task, then, is to find some way to carve up this sequence

meaningfully, so that we can discover where the notes it contains begin and end.

Mathematically, if we let X={x,} for /=1,2,. N be our input data vector of N samples,
we seek to find V={v;} for i=1,2,. M, where {v;} is the set of indices into X (e,

sample numbers) that correspond to the beginnings of the M notes in the song. (For
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purposes of notation, we will designate our algorithm's guess at the event samples as

V={v';} fori=1,2,.M")

A Naive Approach

One simple attempt to solve this problem would be to ask the user of the
program to provide information about the tempo of the song (ie., the number of notes
that were played per second), and to divide the data vector into uniform segments of
the length of one note. Each of these segments could then be analyzed to determine
the pitches present. Assuming that the input the program receives has some "dead
space" before and after the actual music, it would be necessary to employ some

elementary power threshold techniques to determine the precise beginning and ending
of the song. We let X;;;, = {x, X, ., - xﬁ}, where x, and x5 are the first and last

samples, respectively, which are greater than a trim threshold th, Then we would

compute the number of notes in the song as
M o B-o+1
Ninin

The quanitity N,;, represents the minimum number of samples a note will contain, and
is computed from the initial user input as follows:

Noia= ;2 (b4
where £, is the rate at which the digitized signal was sampled, T is the tempo in bpm,
and b_; is the shortest note in the song, expressed as a musical fraction - for instance,
bpin = 1/2 would indicate that the shortest note was a half note, b,;, = 1/16 a sixteenth

note, etc. Our approximation to the true event indices {v,}, then, is merely

V’i =0+ (i— I)Nnm
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This solution is unsatisfactory for a number of reasons. In the first place, even
presuming that all songs our program would wish to analyze would have unvarying
tempos, the character of real music is not such that one can employ such mechanistic
rules. A soloist - and indeed, an entire orchestra - will naturally speed up and slow
down during various parts of a melody, which would skew the positions of the actual
notes relative to the estimates this "equal segmentation algorithm" provided. Also,
consider the problem if the beginning or ending of the song were not computed
accurately. This is certainly possible if cne is establishing the endpoints based on a
crude power threshold, because musical pieces vary widely in volume, and hence their
signals vary widely in amplitude. In trimming the input vector, we might easily
mistake a modest noise spike for the first note in a song, or even unwittingly trespass
on a pianissimo ending. In this case, not only the positions of the crudely determined
intervals, but their widths become suspect. There is every possibility that each of the
segments we analyze will actually contain parts of two or more of the real notes in the
song.5 Additionally, we have the problems that realistic songs have dynamically
changing tempos, that the user often will not know the tempo accurately, and that with
this approach we are really asking the user to do some of the work that the program
ought to be doing. And even more troublesome from a conceptual viewpoint is the
fact that this sort of division into uniform segments does not begin to imitate what
human beings do when they listen to music. No one even hears a whole song in an
instant, let alone mathematically partitions it into artificial segments regardless of their
actual content. For all these reasons, it is clear that a better solution is needed to

determine the positions of the notes.
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Power Threshold Detection

What we would like is a method of traversing through the song, sample by
sample, searching for the beginnings of notes. This is doubtless the way the human
being analyzes music: by simply waiting and listening until he or she notices that tones
are present. We will refer to these "beginnings of notes" {v;} as evenrs, and to the
process of searching for them as event defection. This approach looks much more
promising than the aforementioned equal segmentation algorithm, because it has none
of the drawbacks. Since we will move linearly through the song, analyzing it sample
by sample, missing one event should not impact those before or after it. We will be
able to naturally adjust to changes in tempo, because we are not artificially imposing a
lattice of intervals over the entire song. And this solution requires no great degree of
accuracy in determining the first and last sample in the actual song. The question now
simply becomes: as we progress through the sound samples, what sorts of things
should we look for? What criteria should we adopt for judging where the true events
are?

Perhaps the most natural inclination would be to zero in on the note attacks we
saw in chapter 2. Each note had some sort of rapid rise in amplitude at its beginning
(though the rate of this ascent was greatly dependent on the type of instrument), so it
would seem that merely monitoring the power of the signal as the song progressed
would give us a very good idea of where the true events were. Whenever we saw a
sudden increase in the magnitude of the samples, we would assume that we had
discovered the beginning of a note.

Implementing this idea is a bit more complicated than that, because the graphs
of the instrument volume we saw in the previous chapter were really volume
envelopes. The actual signal, of course, is oscillating with a frequency characteristic of

its pitch, and only the peaks of this oscillation are described by these envelopes. If we
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merely watched for an increase in raw magnitude, we would detect numerous false
events in the middle of every note, because of the strongly periodic character of a
tone. Such an obstacle can be easily overcome, however, by adopting a scheme
similar to that described in [2] where one compares the average signal power over
some small interval with the power of the recent past to determine if an event is

present. Figure 8 depicts the algorithm graphically. For each sample £ of the signal,

we compute the average signal power both over the most recent S,,, samples and the

most recent L,,, samples. The first of these averages we will call the STA (for "Short

Term Average" power), and the second the LTA (for "Long Term Average" power).
If we use only these averages for event detection rather than the magnitudes of
individual samples, we should succeed in filtering out the periodic nature of notes and

getting a good estimate of when the attacks of notes occur. The procedure is simply

to take the ratio of the two power averages, and compare it to some threshold th,:

STA >th
LTA P

An appropriate value for the threshold must be determined by experiment. If it is
exceeded, then that should indicate that the power of the signal in the proximity of
sample % is significantly higher than the power for the time immediately preceding it,

and we include £in V',
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Figure 8. STA/LTA power ratio threshold technique. For each data
point in the signal %, the average power over the smaller interval is
compared to the average power over the longer interval. If the
STA/LTA ratio is above a certain threshold, an event at sample £ is
predicted.

Unhappily, this method is still not sufficient by itself in practice. Its downfall
comes from the fact that in real music, individual notes are not always accompanied by
a significant amplitude peak. This is because once a musical phrase is begun by a
performer, the attacks of notes may be hidden beneath the volume level sustained by
the phrase as a whole. Especially in passages performed in a legato style, a change in
pitch may be the only noticeable effect when a new note is played. Figure 9 contains
the waveform for such a passage. As is easily seen, the beginning of the second note
in the phrase does not correspond to any significant rise in signal amplitude; in fact, it
is barely visible in the plot. The bottom half of the figure shows the value of the
STA/LTA ratio for each of the samples in the song, and it is clear that any peak
resulting from the second note lies buried far below the point where any threshold
would be safely crossed. When the song represented is played for a human listener, it

is clear that a new note has been played because one detects a change in pitch; but the
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STA/LTA ratio technique is powerless fo track such changes. One could envision
tweaking the M, N, and th, parameters just to the point where the peak would be
singled out and no false events would be detected, however, the general-purpose
utility of an algorithm that required such fine tuning for every input is doubtful, and in
any case this calls into question whether the method is really the best suited for the
problem. We are facing a bigger issue here: in reality, a volume attack is not the only
feature which may signal a new note, and therefore, this technique will only find a

subset of the events if used in isolation.
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Figure 9. The insufficiency of the STA/LTA power ratio algorithm to
properly identify events by itself. On the top graph is an audio signal of
a three-note melody played by a synthesized instrument. The three
notes of the melody are shown immediately below the points at which
they were played in the recording. Notice that the second of the three
has no significant amplitude peak at its beginning; the only thing
signalling the listener to the fact that a new note has begun is a different
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pitch. On the bottom graph is the corresponding STA/LTA power
ratio taken at each point of the sample. It is clear that although peaks
are seen for the first and third notes, and could be detected by a
threshold test on this ratio, the event associated with the beginning of
the second note lies buried, and could never be properly identified using
this technique.

Tracking the Error of an Adaptive Linear Predictor

It appears, then, that we will need the STA/LTA ratio to find volume attacks,
another algorithm to detect changes in pitch, yet another to find variations in quality,
and so on until we have exhausted all of the possibilities for what might constitute a
"new note" audially. However, a simpler approach can be found if one considers the
general notion of a note as it strikes the listener. More than a change in one particular
characteristic such as volume, pitch, or quality, 2 new note really constitutes any kind
of change. Speaking loosely, when we listen to a song and perceive that the music is
"holding steady," we would naturally write down a group of long notes if asked to
provide the score. It is when changes or "surprises" occur in the music that we view
them as signalling distinct musical events, and hence, new notes. This suggests that
we might use an algorithm which didn't hone in on one particular attribute of the
music, but which simply informed us when the character of the piece was seen to have
“changed" in a significant manner.

This concept leads us to the method of event detection utilized by the Score
program: tracking the error of an adaptive predictor. Adaptive predictors are used in a
wide variety of applications to perform event detection: for instance, tracking
inconspicuous but meaningful seismic activity, monitoring the sound waves in a
secured area for faint footsteps, or extracting data transmissions in the presence of
background noise. The idea s that the predictor, which is really an adaptive digital

filter, analyzes a signal and "learns" what to expect of its input so that it is sufficiently
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“surprised" when the character of the input changes. It accomplishes this by
maintaining a series of weights which it multiplies by its input samples, and then
adjusts to minimize the error of its prediction for the value of the next sample. After
only a small amount of data, the predictor will have adjusted to the input so that its
error is very small. When an unexpected change in the data occurs, such as a new
note sounding that a human being would notice, the error becomes very large for a
short period of time while the predictor adapts to it. Monitoring the predictor's error
while allowing it to perform its function, then, would seem to be an appropriate way to
uncover notes in the midst of an audio sample.

The particular algorithm implemented by the Score program is the well-known
LMS (Least Mean Square) adaptive linear predictor described in [13]. Briefly, it
operates as follows. The adaptive filter consists of a set of Z modifiable weights6
which, at each iteration of the algorithm, are multiplied by the L most recent samples
of the data, and added together to yield a prediction of the next data sample.

Symbolically, for the 4th data point, we specify the predictor's output y, as
Y

Vi = X "Wy
where X, is a columnn vector of the most recent L data points {x;_(, X .1, ..., %1}, and
W, is the column vector of weights. The error of this prediction g, is simply the
difference between it and the actual value of the data point, x,:

7' ﬁ

Sk. = xk— Xk 'Wk
The adaptive predictor problem is to compute the set of weights for successive data
points such that the error in the prediction becomes as small as possible. Many

methods are available for achieving this goal, most of them involve forming some

estimate of the gradient of the predictor's performance surface. (This gradient is

simply a vector containing the partial derivative of E[g,?] with respect to each of the
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weights,) The LMS algorithm represents the simplest approach to estimating this
gradient: just take the square of the predictor error ifself, £,2, as an approximation to
E[g,2]. The result is an algorithm which is somewhat less than optimal in minimizing
the error (since it is based on rather crude estimates of the true gradient), but which is
elegant and straightforward to compute.

Specifically, for each point £, we compute the set of weights for the next data

point by adjusting our current set of weights as follows:
—_— —

Wiey = Wi~ iV

where L, the coefficient of the gradient estimate, is a gain constant which must be

carefully chosen. By using g,? as our approximation to Efg,?], our expression for the

gradient reduces to

5,2 _ [ =
Swy, N
Ve=| ¢ |Frae] =-:).-sk-;k
b5, N
| oW L oWy L |

and the set of weights for each progressive iteration of the algorithm becomes simply

LY LY JR—1

Wip1 = Wier 2000 Xy

In other words, cur adjustment to the weights is simply a scalar multiple of the data
window. Conceptually, the greater the error g, the faster the weights will change to
reduce it, and when the error grows small, the predictor "settles down" and makes
only small changes in response to the input. The gain parameter p governs the whole

process by dictating at what rate the predictor will shift its weight values. Obviously,
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the factor of 2 may be absorbed into the arbitrarily defined gain constant, so that an
extra multiplication is not necessary at each iteration. ’

The purpose of implementing the adaptive linear predictor is not to get an
accurate prediction of the next sample and make use of it; after all, we are given the
entire data vector at the start of the problem. Rather, we are interested merely in the
value of the squared error £,2 at each data point . Therefore, the only output from

the linear predictor algorithm that Score uses is a data vector E composed of the

squared errors for each data point prediction. Our hope is that E(k), the squared error

of the predictor at point £, is small for k # v,, but that it rises sharply for k= v,

A Combination of the Two Methods

In practice, the error vector produced by the linear predictor does in fact rise
coincident with note beginnings. After testing the algorithm on sample music data,
though, it appeared that E itself is not the best entity to perform a threshold test on.
The trouble is that depending on the parameters of the linear predictor, the error even
near events can be quite small. In many cases, the error peaks are so short that it is
extremely difficult to establish the proper threshold such that true events will exceed it
and false alarms will not. Extracting small peaks from a signal, however, is precisely
what the previously described STA/LTA power ratio technique excels at. By using
the predictor's error vector E rather than the input signal X as data for the STA/LTA
algorithm, excellent results for event detection are possible. (See Figure 10.) During
laboratory experiments, it was very rare for Score to fail to identify the beginning of a
note once appropriate settings for the predictor and the STA/LTA windows were
selected; and faise alarms, though more frequent, were to a great degree eliminated.

It is useful, though, to combine this signal processing wizardry with some

musical know-how in order to improve performance even further. Score allows the
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user to input the approximate tempo of the song (in beats per minute, bpm) so that it
may apply additional heuristics after the above event detection techniques have been
c:ompleted.8 In particular, false alarms occurring immediately after true events are
suppressed by enforcing a minimum length of time between events, subject to a certain
relaxation factor. Basically, a procedure scans through the vector V' of supposed
events and eliminates any that occur too close in time to their preceding neighbor.

(See Figure 11.) Mathematically, for a relaxation factor 0 < r < 1, the ith predicted
event which corresponds to index v, is rejected if

V- ¥ SN, 2<is M.

The relaxation factor » is necessary in case the user's guess at the tempo was
inaccurate, or if the song contains an actual tempo change. In the lab, a relaxation
factor of 65% of the user's tempo input was found to be satisfactory, and successfully
reduced the small number of spurious events left over from the adaptive predictor /
STA/LTA scheme. The only downside to this particular technique is that if a false
alarm occurring just defore a true event were recognized, the algorithm would view
the succeeding true note as a false event that needed to be suppressed. If enough false
alarms were left over from the predictor, then the entire song could get off-track and
only false alarms would be recognized. (See illustration in Figure 11b.) However, the
first note of the song by definition has no musical events before it, and therefore is
recognized accurately nearly all the time. And in practice, once the first note has been
established, this heuristic inevitably masks out false events instead of true, so the pitfait
does not often materialize itself. Still, 1t 1s a consideration, and could be eliminated at

the cost of a few more false alarms.
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Figure 10. The combination of the linear predictor error with the
STA/LTA power ratio test is sufficient to detect events. On the top
graph is the data sampled from a five-note melody performed by a
french horn. The second graph shows the linear predictor's squared
error at each data point. Note that although there is a rise in g2
accompanying each note, this rise is not restricted to the beginning of
each note; in fact, the squared error is sometimes higher in the middle
of the note than it was at the beginning. Therefore, a threshold test on
the squared error alone is insufficient to detect the true events properly.
The third graph, however, shows the results of using the squared error
vector E as input to the STA/LTA power ratio algorithm. This filter
succeeds in picking out the starting points of the notes and suppressing
the magnitude during the middle of the notes. Therefore, a threshold
test can be applied to this output to yield a good V' vector. The results
of the threshold test are shown in the bottom graph; peaks indicate
guesses at the true events.
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Event Detection - Summary

The overall strategy for event detection, then, is as follows. First, we feed the
input vector to an adaptive linear predictor and compute the squared error of the
predictor at each sample. Then, turning our attention to this error vector rather than
the input data, we compute the STA and LTA powers for each point, and use the
results to build another vector. We then apply a threshold to this vector, and identify
all indices whose STA/LTA ratio exceeds it. Finally, we eliminate some of these
indices which are likely to be false by enforcing a minimum time inferval in between
each pair of events; any sample with a sufficient STA/LTA. ratio that occurs too soon
after another sample with such a ratio is removed from the vector of events. The final

result is a set of M’ indices v'|, v’,, ..., vy into the original data vector X that forms a

very good approximation as to when the notes in the music began.
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Figure 11. False alarm elimination heuristic. On the top graph in (a) is
the digitized data for three hypothetical musical notes. The second
graph contains the STA/LTA power ratio of 2 for each point. The
dotted horizontal line represents the threshold th, applied to the power
ratio to determine events. False alarm elimination is performed on this
output, however, by masking out any predicted events that occur too
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close to their previous neighbor. The thick brackets immediately below
the second graph indicate the area in which events are suppressed, their
length in samples is equal to N, * », where r is an experimentally
chosen relaxation factor. The result is that the false events where the
ratio exceeded th, during the middle of the note are masked out, and

the resulting {v’} estimates are extremely close to the actual {v;}

events. (b) The possible danger of using this algorithm, If the
STA/LTA power ratio is often above the threshold (due to an
extremely noisy or poorly-behaved signal, for example) then true events
might be masked out instead of false ones. In practice, however, this
hazard rarely materializes.

Pitch Extraction - Compiling the Frequency Domain Information

Once the events (ie., note beginnings) in a song have been properly identified,
the next phase in the Score algorithm is to analyze the frequency content of the
established intervals to determine what tones, if any, are present. The first step in
accomplishing this goal is to compute the Fourier Transform of the data, so that the
power of the various frequency components of the signal can be readily identified and
dissected.

Clearly, taking the overall transform of the entire music signal will not yield
any useful information, because the Fourier Transform makes sense only on signals
that are at least locally periodic. A given song is composed of a long sequence of
connected notes, each of which carries unique frequency information related to its
pitch. What we need, then, is an incremental transform performed locally within each
of the intervals identified in the event detection phase, so that we may isolate and
analyze only the frequencies contained in each of the individual notes. The first
question to be asked is, where during the interval should the transform be taken?
Should all of the samples comprising the given note be used, or only a portion, and if

so, which portion?
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A purely performance-related issue constrains us somewhat. If we compute
the Fourier Transform of a number of points which is an even power of two, then we
can employ the Fast Fourier Transform (FFT) algorithm, and significantly reduce the
total computation time.? Another consideration is that the larger the number of data
points we use, the more frequency bins will be available from the transform, and
consequently, the better our resolution in the frequency domain will be. 10 Hence, we
desire to use the greatest even power of two that is less than the allotted number of
samples for the note. In general, though, the notes in a song will be of varying
lengths: some will be whole notes, some half-notes, quarter-notes, eighth-notes, etc.
The next issue, then, is whether to change the size of the transform depending on the
length of each interval, or whether to consistently use the size that would fit in the
smallest interval. The effect of lengthening the transform in the larger intervals would
be to increase the FFT resolution for only some of the notes. It is not clear whether
this would be advantageous, especially in light of the global nature of Score's
subsequent pitch extraction algorithm. After all the FFT's have been taken, the
algorithm will compare the magnitudes of peaks from interval to interval, and so it
seems natural to maintain a uniform size so we can compare "like to like." Hence, the

program as currently implemented computes the largest even power of two that is less

than N_; , and uses this for Tg,, the transform size. 1

We then face the question of which samples within the interval should be used
to compute the FFT. Recalling our discussion in the previous chapter about the
characteristics of striking and of continuous instruments, it seems that we might want
to do something different in each case. For continuous instruments, a significant
power level is typically maintained throughout the duration of the note, so we may
desire to take the transform of the samples centered around the midpoint of the

interval. This way, any noisy or atonal effects produced by the note's attack (eg., the
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violin bow catching, the flautist's breath before a pure tone is achieved) can be avoided
and the FFT can be taken over the heart of the richest harmonic portion of the note.
For striking instruments, though, the intensity of the sound decays as the note is
played, so we might rather take the FFT of the samples near the beginning of the
interval, in order to maximize the frequency domain power.

After experimentation on songs which contain only one kind of instrument
(eg., three violins, or two harps), it turned out that centering the FFT within the
interval yields excellent results, even for striking instruments. The decay of the latter
is rarely so steep that the resulting harmonics cannot be easily located in the frequency

domain. Mathematically, then, to extract the piiches from event 7, we would take the

FFT of the vector X;, where
- = X R4
X ( Vit1 Vi Tsz) ( vis1 % Tsz ) y
v+ ——— v, + +—1
1 2 2 1 2 2

Score used this approach for all the results in Chapter 4 (songs containing only
the simplified model), and for the solo instrument results in Chapter 5. In all these
cases, centering the FFT within the interval proved to be a prudent method. The
strategy was found to be lacking, however, when different %inds of instruments were
present in a song. More specifically, when a song contains both striking and
continuous instruments, the FFT of the vector above will often be dominated by the
frequencies of the continuous instruments. This is simply because continuous
instruments are still more or less at their maximum intensity throughout the interval,
while the striking instruments have decayed significantly. The notes played by the
latter can be simply lost, especially during the longer intervals, as we will find in
Chapter 5. For this reason, a modified strategy is often more useful when analyzing
such "mixed-instrument”" recordings. For the shortest interval(s) in the song, we

center the FFT, as before. For the longer intervals, however, we place it the same
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number of samples after the starting point of the interval as we did for the shortest

interval(s). The result is that we take the FFT of the vector X, where now

For all intervals I, then, we take an FFT of size Tg; starting the same number of
samples after the beginning of the interval, v, regardless of the size of the interval. As
we will see, this proves to be a fair compromise between the desire to avoid the noisy
qualities of the attack, and the necessity to capture the frequency information of
striking instruments before too much of it decays away. This also will tend to make
the harmonic signatures we retrieve from the freguency domain more stable. Recall
from Chapter 2 that the signature of a particular instrument can vary with time as the
note resonates. By taking the FFT the same amount of time after the beginning of

each note, we will avoid some of the difficulties presented by this phenomenon,

Pitch Extraction - Analyzing the Frequency Domain Information

After the FFT of an interval has been taken comes the much more difficult
problem of extracting the pitches of notes from the sea of harmonic peaks. As we
discovered in Chapter 2, each note of each instrument may contribute a half-dozen or
more strong frequency components to the total picture we see in the FFT. The basic
problem we are presented with is identifying which peaks represent fundamental
frequencies of notes, and which are simply harmonic frequencies of some lower
fundamental. Once we have recognized the true set of fundamental frequencies in
each of the intervals, we must associate each one with a particular part in the song as a
whole. (In other words, the trumpet notes from each interval must be grouped into

one part, and the clarinet notes into another part, etc.) We refer to this total process
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as pitch extraction, and as we will see, it requires a very complicated algorithm to
attempt to resolve the inherent ambiguities.

We have been using terms like "voice" and "instrument" rather loosely up to
now, and before we consider the pitch extraction problem in detail, it is sensible to
define our terminology more precisely. (The exact meanings of these and other terms
is summarized in Table 1.) We will use the word "instrument" to refer to a real-world
object capable of producing one or more simultaneous tones. This is likely to be the
way a user of the Score program would think about the music signal: as composed of a
number of instruments. (The relevant questions are, "What are the clarinets playing?
What is the harpsichord playing?" etc.) From the viewpoint of a pitch extraction
algorithm, however, we have to consider the problem space a bit differently. Each
instrument may produce one or more tones in a given interval, and in general it will
not be obvious to the algorithm which sets of tones came from a common instrument.
For example, if during the first beat of the third measure of a song there is a piano
playing four notes, and a flute soloist playing one note, all the program will be able to
"see" is five distinct notes. It has no idea without a good deal of extra processing
whether they were produced by five different instruments, two, or only one. Hence,
the term "instrument" to refer to the producer of a single note in an inferval is
misleading. Instead, we will use the term "voice" to indicate the producer of an
individual note. (In the previous example, then, there are five voices present in the
given interval, not five instruments.) We will also find it necessary to refer to the
sequence of notes throughout a song that are all associated with a given voice. This is
called a part. For instance, in a song featuring a trumpet, bassoon, and oboe, there are
three parts: one for each instrument. In the case of a polyphonic instrument like a
piano, the notion of a "part" is somewhat artificial, however, we can still satisfy our

definition as follows. If J is the maximum number of notes the polyphonic instrument
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plays anywhere in the song, then we will simply say that the instrument is composed of
J parts, some of which have rests during the intervals in which it plays fewer than J
simultaneous notes. To illustrate, if we have a piano which plays at most five notes
simuitaneously in a given song, then we will assign five parts to the piano; perhaps
calling them "the lowest piano part," "the second lowest piano part," etc. During an
interval in which the piano is playing only three notes, we will say that the parts called
"the fourth lowest piano part" and "the highest piano part" have rests. Note that if the
output of the Score program were put into musical notation, all the notes that make up
a single part would be combined into one staff; though a given staff may contain the
notes from more than one part, as would be the case with our J piano parts. Hence,
the terms "instrument,” "voice,” and "part" all refer to related, but distinct concepts.
One of the questions that will come up repeatedly in the pitch extraction algorithm is,

“This song has J parts in it, and a certain interval has J; voices present. Which of the

voices correspond to which of the song's parts?"

Table 1. Terminology used in the discussion of the pitch extraction algorithm.

instrument - A real-world object capable of producing one or more
simultaneous tones.

voice - The producer of an individual note that appears in the song. Observe
that in any interval, a given instrument may be responsible for only one voice
(eg., a trumpet), or many voices (eg., a piano.)

part - The sequence of notes throughout a song which all come from the same
voice. For instance, we may refer to "the trumpet part” as the series of notes
(and possibly rests) that correspond to the trumpet voice.

harmenic independence - Two sets X and Y containing frequencies are
harmonically independent iff no frequency in X is an integer multiple of a
frequencyin'Y.

harmonic irreducability - A set X containing frequencies is harmonically
irreducable iff every frequency in X is an integer multiple of the lowest
frequency in X.
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harmeonic decomposition - The process of taking a general spectrum S and
representing it as a group of harmonically independent, harmonicaily
irreducable sets Q.

harmonic ambiguity - A condition arising where the fundamental frequency
of a particular voice is very close to the harmonic frequency of another voice.
In this case, the first voice will be hidden in the Q set after a straightforward
harmonic decomposition of the spectrum.

upper harmonic ambiguity - A condition arising where any harmonic
frequency of a particular voice is very close to the harmonic frequency of
another voice. In this case, the harmonic signatures of the two voices will
"overlap." The two fundamental frequencies will be included in their own
distinct Q sets, but neither Q set will properly represent the harmonic signature
of either voice.

interval - a region in fime which begins at the starting point of some note in
the song and ends at the starting point of the next note. These intervals are
identified by the event detection algorithm, which is completed before any
pitch extraction takes place.

well-behaved interval - An interval in which all of the parts present in the
song appear unambiguously. Therefore, (a) every voice is represented in the
interval, and (b) no harmonic ambiguity exists in the interval.

poorly-behaved interval - An interval in which nof all of the parts present in
the song appear unambiguously. This means that either (a) one or more of the
voices is resting during the interval, or (b) the interval contains harmonic

ambiguity.

Basic Concepts
We are now ready to consider the problems involved in pitch extraction. First,

let us develop some notation so that we can formulate our ideas precisely. (This

notation is summarized in Table 2, at the end of this chapter) Let L, i=1,2,..M
denote the ith interval that was identified in the event detection phase; namely, that

which contains data values
£y o)
i i+1
For simplicity, we will assume that our event detection was error-free (V' = V), and

that we will manually insert an event vy, ,=x, at the end of the data so that the last

note of the song will have an interval which satisfies this definition. We examine the
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frequency content of each of these M intervals as previously described, in order to
acquire a set of peak frequencies and their corresponding amplitudes. In actuality, this
is somewhat complicated, for two reasons. First, the song may contain changes in
volume, so the threshold for what constitutes a "peak" frequency must be dynamic.
The Score algorithm handles this by simply computing the threshold for each interval
as a function of the power in that interval, subject to a certain minimum which allows
for the proper identification of rests. Secondly, the actual peaks corresponding to
fundamental and harmonic frequencies have non-zero widths, which means that extra
processing is required to isolate the true peak frequency from each contiguous series
of FFT bins that exceed the threshold, and to combine the power from the true peak
and any leakage bins to yield an accurate amplitude. After this processing has been

completed, we have for each I; an ordered set S; of ordered pairs of peak frequencies

and amplitudes:;
Si={ (flaa’] }s {f2=a2}= '"n{va aK} }

where f; <f, <... <f,. We refer to this ordered set as the spectrum for interval L.
Suppose that in interval I, there are J; different voices present. This S;, then,

contains peak frequencies from J; voices, each voice with its own fundamental

frequency and series of harmonics. To uncover the pitches present in interval L, our

task is to decompose S; into sets Q,;, where Q;; has the same structure as S; except

1j>
that it contains only the peak frequencies that were contributed by part j of the song.
Then, the pitch corresponding to the lowest frequency in each Q;; represents a note
that is present in interval I, All that remains is to associate each of these notes with

one of the parts in the song as a whole. Note that the Q;;'s are not subsets of S; in the

usual set theory sense, because two voices may contribute amplitude to the same peak

frequency f,, in which case their a,'s will add to form the amplitude in S;.



Consider a melody played by a solo instrument. For each of the intervals I, no
more than one voice will be present. (Zero voices will be present if the instrument has
a rest during the interval.) Since J < 1, we have at most one set Q with Q;; = §;, We
can safely deduce, then, that the lowest frequency in the set S, (denoted SJ|f)) is the
fundamental frequency of the note present, if any. We output the pitch corresponding
to that fandamental frequency. This is straightforward and involves no ambiguities.

Now suppose there are two or more voices playing in a given interval, but that
none of them "overlap” in their harmonic spectra. In other words, none contribute
harmonic frequencies which are present in any of the others, and we have Q;; N Q;; N
.. 0 Q;y =, if we take the intersection with respect to the frequencies only (ie., we
ignore the amplitude part of each ordered pair.) Again, this situation presents no
ambiguities, because it is an easy matter to extract each of the Q;;'s. The procedure is
to take the ordered pair with the lowest frequency f; in §; and include it in Q;;. We
can now "strike it out" of S; because we know that it is not present in the spectra of
any other part j. We then examine each other ordered pair in §; and include it in Q;,
iff it is harmonically related to f;; namely, only if its f, = »-f;, for some integer n. After
we finish this for all ordered pairs in S; (striking out the pairs which we include in Q;,),
we have effectively extracted voice 1 from I, and we repeat the procedure with the
remaining ordered pairs in 5;, When §; = &, we have successfully derived our Qj's,
and we can determine the pitches as we did in the solo instrument case. We refer to
this process of forming the Q,;'s as the harmonic decomposition of S;, and we say that
the resulting Q;; sets are harmonically independent; that is, no frequency in any Q set
of an interval is an integer multiple of a frequency in any other Q set of that interval.
These Q sets are also harmonically irreducable, which means that each frequency in

Q,, is an integer multiple of the lowest frequency in Q;;.
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Let us now consider more carefully our requirement that Q;; N Q;; ... N Q;;
= J. I we want each of the Q sets to contain only the frequency contributions from
one instrument, and no others, we do in fact need to impose that requirement. But if
our goal is simply to uncover the pifches of each of the notes, then it is actually overly
strict. In order to unambiguously derive the pitches present in S,, it is necessary only
that the fundamental frequency of each Q;; set is not "covered” by a frequency
component in another Q;;, We can see this by examining the above algorithm
carefully. Suppose J=2 and that in interval I, we have one voice contributing
frequencies at 100, 200 and 300 Hz, while the other voice contributes frequencies at
150 and 300 Hz. We assume for simplicity that all frequency contributions from all
voices are of equal magnitude. This results in

S, ={ {100,1}, {150,1}, {200,1}, {300,2} }.
It is clear that the information about which voice contributed how much amplitude to
the 300 Hz bin has been lost. However, in order to properly identify the pitches of the
two notes, we need only guarantee that neither fundamental frequency has been thus
obscured. We see that applying the extraction algorithm yields
Q= {{100,1}, {200,1}, {300,2} } = and Q;,={ {150,1} },

and we correctly deduce that the two pitches present are at 100 and 150 Hz. Observe
carefully that neither Q, ; nor Q, , actually contain the frequency contributions from a
particular voice any longer. In particular, Q;, contains not only the frequencies from
voice 1, but also the 300 Hz component from voice 2. And Q,, has only the
fundamental frequency of voice 2, while its second harmonic has been "stolen" by
Q,;- However, it is easy to see that this does not prevent us from correctly
determining the pitches of the two notes. Hence, we can say that as long as no voice's
fundamental frequency "lands on" another voice's harmonic, pitch extraction can be

performed without any ambiguities. Since the second harmonic of a note is musically



48

an octave higher, situations such as these arise whenever two voices are closer than an
octave in pitch. An example would be most piano chords that are played by one hand
- all the notes played simultaneously are typically within an octave of each other. An
analysis of the Score program's behavior on such musical pieces is given in the section

on the "Soprano-Alto problem" in Chapter 5.

The Problem of Harmonic Ambiguity

Unfortunately, pitch extraction is not always this straightforward. Problems
arise, of course, when the fundamental frequencies of certain voices are obscured by
the harmonics of other voices. Consider the previous example once more, only let the
second voice contribute frequencies of 200, 400, and 600 Hz. Now, we have

S, ={ {100,1}, {200,2}, {300,1}, {400,1}, {600,1} }.
The second voice's fiindamental of 200 Hz has been "hidden" by a harmonic of the first
voice, and so our harmonic decomposition algorithm yields
Q,; =S, ={ {100,1}, {200,2}, {300,1}, {400,1}, {600,1} }.

The algorithm "sees" only one voice. We are faced with an inherent ambiguity: this
simplified algorithm has no choice but to assume that all frequencies which are
harmonically related to 100 Hz were in fact produced by the voice at that fundamental.
One might argue that the magnitude of the 200 Hz component should be enough to
alert the program that a voice has been hidden, but this presupposes fairly precise
knowledge about the harmonic signatures of the instruments involved. It is certainly
possible that a single voice might well have a second harmonic with twice the
amplitude of the first, and therefore, it is unlikely that this sort of indication could ever
be used reliably in practice.

We say that intervals such as the one above contain harmonic ambiguity. To

provide a concrete definition, harmonic ambiguity is a condition arising where the
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fundamental frequency of a particular voice is very close to the harmonic frequency of

another voice. In this case the first voice will "hide" behind the second voice in the S;
set, and a straightforward decomposition into Q;; sets will result in both voices being
included in the same set. Note that our definition requires the fundamental frequency
of a voice to be thus obscured. There are also situations where two voices have
fundamental frequencies that are not harmonically related to one another, but where
each of them have upper harmonics that overlap. For instance, in our previous
example, the third harmonic of 100 Hz was equal to the second harmonic of 150 Hz,
even though the pitches of the two simultaneous notes were unambiguously resolved.
To distinguish this situation (which presents its own problems) from the former, we
will refer to it as upper harmonic ambiguity.

(Before we continue, let us address a possible point of confusion regarding our
notation. Earlier, we spoke of the Qj; sets as each containing the significant frequency
components of a particular voice. Now, however, we will use this notation to refer to
the harmonically independent subsets of the spectrum §S;, as obtained by a
straightforward harmonic decomposition. If there is no harmonic ambiguity or upper
harmonic ambiguity in a particular interval, then these Q;; sets will indeed each
contain the peaks from one and only one voice. In general, though, some components
of some voices will have been "stolen" by Q sets that do not correspond to those

voices. We could have used a notation such as Q';; to refer to these sets which may or

may not each represent one voice, but to simplify the subsequent discussion, it seemed

prudent to drop the "prime” and refer to them simply as Q;;.)

An Approach for Resolving Harmonic Ambiguity
Score's approach to resolving harmonic ambiguity is to make use of its

knowledge about the song as a whole. The idea is that even though in a particular
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interval I, we might have a part obscured by other parts, it is likely that over the course
of an entire song, there will be other "well-behaved" intervals in which we will be able
to see all parts. For purposes of this thesis, I have made two simplifying assumptions
in order to facilitate this approach, each of which could be analyzed to adapt the
algorithm to other situations. First, I make the basic assumption that every song will
have at least one well-behaved interval in which all voices appear unambiguously.
Second, I assume that the same set of instruments is present in the song throughout
the period analyzed. This does not mean that a particular part cannot rest for one or
more intervals, but it does mean that we will not have, for instance, a flute in the
beginning of the song which is replaced by a trumpet towards the end. Such an

assumption is essential for the harmonic signature averaging portion of the algorithm.

An Intuitive Overview of the Pitch Extraction Algorithm
Construct and decompose the spectrum for each interval

A formal description of the complete pitch extraction procedure is provided at
the end of this chapter. In order to provide a more intuitive understanding of it,
however, I include the following informal description. First, the ordered sets S; are
computed for each interval i=1,2,...,M, and split up into the harmonically independent
Q,; components according to the algorithm above. At this point, it is almost certain
that some of the Q,; sets contain "hidden" notes. Yet we assume that it is likely that
for at least some intervals L, none of the fundamental frequencies were obscured, and
hence the Q,;'s are "correct” for those intervals. Let us refer to the number of resulting
Q;; sets in I; as J';. We now make the assumption that J, the true number of parts
present in the song as a whole, is equal to the maximum of the J''s (we call this

maximum J'y;.x.) It is clear that this presupposition breaks down in the event that in
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every interval one or more notes were obscured. However, as long as 37 | J'=J, the

assumption will be reliable and we will have deduced the correct number of parts.

Identify well-behaved and poorly-behaved intervals

We now conceptually separate the intervals into two groups: those that we

know are well-behaved, and have J'=J,x, and those which may contain hidden
notes, where J';<J'y,x. Call the first group the "well-behaved intervals" W,
i=1,2,...,m, and the second group the "poorly-behaved intervals" P, i=1,2,....x. (Note
that the Pjs fall into two different classes: intervals in which there is harmonic
ambiguity, and intervals in which one of more of the parts has a "rest." In either case,
J'<J'max-) Because we will treat the Q sets in these two kinds of intervals completely
differently, it is appropriate to introduce a different notation for each of them: let €;;
represent the Q;; sets for well-behaved intervals, and let IT;; represent the Q;; sets for
the poorly-behaved intervals. Now we have seen that for each of the © intervals W,,
we can extract the pitches without ambiguity: we would simply take the lowest
frequency in each of the ();; sets. Our plan, however, is to use the information about

the harmonic spectra derived from the W/'s to help us identify hidden notes in the P;'s.

Compute the mean harmonic signatures

In this vein, we begin by computing the mean harmonic signatures Z;, which
will be our best approximation to the signatures for each of the J parts in the song. In
order to even form these averages, however, it is necessary to identify which voices in
each well-behaved interval correspond to which parts. (It would obviously be
counterproductive to form the mean harmonic signature for a tuba by averaging
together seven signatures from tuba notes and six from piccolo notes!) Therefore, we

must determine what to average with what by comparing each signature in an interval
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to a "master list" of signatures. We decide which instrument's signature in the master
list a given voice looks “"closest" to (in practice, by computing the norm of a
subtraction between the two vectors), and average it into the Z; for that instrument.
One question that arises is, how do we get the master list in the first place, since we

are assuming nothing a priori about the values of the signatures? The answer is that

we must choose one of the intervals W; with which to bias the signature computation.
We take the ;.'s from one interval W;, and use them for comparison with all other
intervals W;, #i. Intuitively, if we choose poorly (ie., if the £} /'s for our choice of W;
are “atypical"), then we will not have a good initial model with which to compare the
signatures from the other intervals. The consequence is that we will end up averaging
in a few piccolo notes with our tuba notes, for instance. The brute force solution to
this problem is to try every well-behaved interval W, as a possible bias interval, and to
find the one that yields the least total error - where we define the total error to be the
sum of all the norms of differences as we compare Q;;'s with the Q;;'s. (This is
essentially step 5A of the formal description at the end of the chapter.) We form the
Z's by choosing the interval which gave the least error as the bias interval, and
performing the averaging described above.

Note that in a well-behaved interval, we have no harmonic ambiguity, but we
might still have upper harmonic ambiguity. In other words, even though no voice's
fundamental frequency has been "hidden" by another voice's harmonic signature, one
or more upper harmonic frequencies may have been hidden. In this case, the ();; sets
will each have a fundamental frequency which corresponds to one and only one voice,
but the rest of the harmonics will not necessarily accurately represent the voice's
signature. (Such was the case with our two voices at 100 and 150 Hz, above.) In
effect, when we compute the X's, we will not actually be averaging in perfectly

accurate signatures for these kinds of intervals. The result of this will be decreased
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resolution in the Z; computations, and it is unknown how much of a problem this
might pose in general. For the inputs used as part of this thesis, we still achieved fairly
adequate results, as will be seen in chapter 5. In general, however, we must admit at
this time that we are tacitly making the assumption that the harmonics which are
"stolen" from various signatures in these intervals will not have too severe an effect on

the computations of the Z's. Our hope is that they should roughly "average out" and

still leave us with reasonably accurate signature approximations.

Derive the pitches in the well-behaved intervals

Once the Zj's have been computed, then, we know which €Q;; sets in each
interval correspond to which parts of the song, and we can derive the notes for the
W.'s in a straightforward way. (Since by definition there is ro harmonic ambiguity in a
W, interval, we just take the lowest frequency in each €);; as the fundamental

frequency for a voice.) Now, we can use this knowledge about what the signatures of

the J parts look like to analyze the poorly-behaved intervals P;.

Derive the pitches in the poorly-behaved intervals

Consider the J'; harmonically independent sets IL;; for a given pooriy-behaved
interval P, By definition, J';<J"y;4x. This could either be because one or more of the J
parts has a rest during the interval, or because one or more of the voices present has
been obscured by harmonic ambiguity, or both. In general, a given set IL; with
fundamental frequency II;|f; may be composed of one or more voices. At least one of
the voices must be playing a note at pitch IL;|f;, while each of the others has a
fundamental frequency equal to an integer multiple of IL;[f;. We also have the
constraints that each of the parts in the song may be present in no more than one 11

set, and that every I1 set must contain the frequencies for at least one voice.
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Our approach to determining which voices are present in the IT sets and with
which fundamental frequencies is to use a sort of brute force approximation algorithm.
In every interval, some combination of voices at particular fundamental frequencies
was responsible for making up the peaks in the spectrum. And for every group of Il
sets in a particular poorly-behaved interval, there is a finite (albeit large) set of these
combinations that might possibly represent what "really” was being played in the song.
As an example, suppose that we have a flute, trumpet, and oboe as the parts in a three-
part song, and that in a certain poorly-behaved interval of this song we have two II
sets: one with lowest frequency 400 Hz, and another with lowest frequency 500 Hz.
There are many possible ways these two II sets could have been generated: perhaps
the flute was playing at 400 Hz, the trumpet at 500 Hz, and the oboe was resting. Or
the oboe could have been playing at 500 Hz, while the trumpet was the one resting.
Or we could have had the flute at 400 Hz, the trumpet at 500 Hz, and the oboe at 800
Hz, which was therefore harmonically obscured by the 400 Hz flute fundamental. Or
the flute and oboe might have been in unison, both with fundamental 400 Hz. Or the
oboe could have been at 1500 Hz, obscured by the trumpet's fundamental, efc., efc.
The number of possible combinations will quickly become large as we add more and
more voices, but it should be clear that as long as we place a limit on how many
multiples one voice's frequency can be above another, there are only a finite number of
possibilities.

Our approach is therefore to "try" every such combination (under the
assumption that each voice's harmonic signature will be reasonably close to its mean
harmonic signature ;) and compare these results to the actual representations from
the IT sets. We will choose whichever combination gives us the least total error, and

report that the voices and pitches corresponding to that combination were what was
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actually present in the interval. This method is described formally in step 7 of the pitch

extraction algorithm at the end of the chapter.

An issue concerning the formation of guesses

One remark is in order concerning how to form these "guesses" for each
combination that we will compare to the actual IT sets. It may appear at first glance
that we could directly add harmonic signatures (appropriately shifted to account for
differences in pitch) to obtain a guess at the Il sets for a particular combination, but
this is not so. To illustrate: if we have two sinusoids, each at the same frequency and
with amplitude 1, we would not necessarily expect that the addition of the two would
yield a sinusoid with amplitude 2. That could only occur if the two sinusoids
happened to be at exactly the same phase, which will not be generally true. We know
only that the two signals will add to form another sinusoid with an amplitude
somewhere between 0 (perfectly destructive interference) and 2 (perfectly constructive
interference.) How, then, do we form our guesses? Suppose we want to guess that
the oboe was at 400 Hz and the flute at 800 Hz - how do we determine what the
signature for this combination "would have" looked like so we can compare it to what
was actually found in the spectrum?

One strategy would be to keep track of not only amplitude information, but
phase information in the computation of the Z;'s. Then, the phase differences between
the frequency components of a single signature would be fixed, and we could simply
add as another degree of freedom the phase difference between each pair of voices in a
given [l set. For simplicity, however, the Score program does not attempt this level of
sophistication. Rather, it forms the "guess" for a particular combination of voices and

frequencies by using a sort of "expected value addition." That is, when it adds the
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components of two signatures to arrive at an amplitude, it takes the expected value
with respect to the possible phase differences between the components.

To determine what this expected value is, we apply a bit of probability theory.
Suppose we have two sinusoids (represented by phasors) of equal amplitude but

possibly unequal phase: ael® and ae¥®. If we add them, the magnitude of the result is:

J(a + (a-cost))* + {asinf)?

= a Jz + 2'cosf

We see that by allowing 0 to range from 0 to «, the amplitude indeed ranges from 0 to

2a, as expected. Assuming that 6, the phase difference between the two signals, is

uniformly distributed on (0, 27), we can find the expected value of this expression:
2T

Efamplitude] = ﬁ (a-,.’z + z-cosﬁ) dg

~0

= |.-lb-

In other words, if we add two sinusoids of equal amplitude with a uniformly
distributed random phasé shift, we will on average get a signal with an amplitude of
4/m (or about 1.27) times the amplitude of the original signals.

Now in general our sinusoids will not have the same amplitude. Let us extend

this argument to the two phasors ael® and 5e/°. In this case, we have as the amplitude:

Jaz + 2ab- cosf + b?

and the expected vaiue is given by
27

Efompliude] = | —ofa? + 26t cosd + b
2T

~0
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Unfortunately, this integral has no known closed-form solution. We can normalize it,
however, by dividing through by a and scaling our answer accordingly, this gives us
the plot in Figure 12, which was obtained through a number of numerical integrations.
Score evaluates the integral to approximate the expected value of the joint amplitude,
and from the result computes the "guesses" for each combination of voices and
frequencies.

Expaeted value of Jointampltude
i .3 ) i ) 1 T T T

1.25

12

11

1.05

.l 1 1 1 i 1 1 1

1 14 2 -3 ] 3L 4 4.5 8

Figure 12. The expected value of the joint amplitude of two sinusoids.
Suppose we have two sinusoids at the same frequency but with different
magnitudes and phases. Without loss of generality, we may say that one of
them has an amplitude of 1, as long as we scale our result accordingly. In the
figure, the scaled magnitude of the second sinusoid (called &) is plotted versus
the ratio of the expected value of the joint amplitude to the amplitude of this
second sinusoid. Note that as b increases, the ratio approaches 1; this agrees
with our intuition, since if one of the signals has a magnitude that far exceeds
that of the other, we would expect the joint amplitude to be approximately that
of the greater sinusoid.
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Score's Implementation of the Pitch Extraction Algorithm

Because of time constraints and practical limitations, I was not able to
implement the pitch extraction algorithm in its most general form. For one thing, the
version of MATLAB I used did not allow multiple indexing of matrices, which meant
that it was literally impossible to have, say, M different Q matrices, each one
containing the H harmonic frequencies for each of J different voices, where M, H, and
J were all parameters that could grow without bound. The most feasible option was to
"hardcode" the solution for a particular number of voices, which is what I elected to
do. The version of Score included in Appendix A is hardcoded for no more than three
voices, and is unable to even recognize any others. It should be understood, though,
that this is due to no inherent weakness of the algorithm, but only of the
implementation tool selected. The program could be redesigned in a fairly
straightforward manner to accomodate a greater number of voices.

Also, it should be noted that with only three voices, the number of
voice/frequency combinations that must be checked for each IT set is not great enough
to cause a noticeable performance slowdown. In fact, the event detection procedure
which precedes any pitch extraction still dominates the total computation time by far.
If the program were extended, though, the time required by step 7 of the pitch
extraction algorithm would explode as J!, where J is the number of voices, and the
straightforward approach I used for checking each combination individually would
produce unacceptable delays. It is likely that a more intelligent method of analyzing
the possible combinations could be developed, such that those that are clearly
improbable could be eliminated at the outset, before the computation-intensive
procedures of shifting and adding signatures are performed. The well-known Viterbi

algorithm, described in [7], could probably be adapted for this purpose. It provides a
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more efficient means of arriving at the "most likely" solution to a set of observation
data.

In summary, then, the pitch extraction procedure used by the Score program
involves taking FFTs in each of the intervals found by the event detection procedure.
The resulting frequency domain peaks from each interval are then analyzed with
respect to the entire song. Those intervals which appear to contain pitches that do not
harmonically conceal each other are treated in a straightforward manner. Additionally,
information from them is compiled to form an approximation to the harmonic
signature for each part present; these approximations can be used in analyzing the
other "poorly-behaved" intervals. Assuming that the signature for each part is
relatively consistent throughout the song, and that there are enough well-behaved
intervals from which to form an approximation, we should expect good results for

pitch extraction.

A Formal Description of the Pitch Extraction Algorithm
Table 2. Summary of notation for the pitch extraction algorithm.

M - The total number of intervals identified by the event detection algorithm.

L, i=1,..,M - The M intervals in the song.

Y; - The total number of peak frequencies found in the FFT for interval I,

S;={ {fi. a,}, {;, a5}, ..., {fyi, ay;} } - A set representing the full spectrum of
peaks for interval I, Each {f, a} pair represents a frequency and an
amplitude. (The a,'s are found by summing the amplitude corresponding to
f, and any leakage bins immediately surrounding f,.)

Z;; - The number of (harmonically related) peak frequencies in set Q;;.

Q= { {f}, 2.}, {f), &}, ..., {f;;, az;;} } - A subset of S; where all the f's are

harmonically related.
J - The actual number of individual voices present in the recording.
J'; - The number of Q;; sets extracted from spectrum S;.

¥ uax - The estimated number of individual voices present in the recording; this
is calculated as the maximum of the J';'s over all intervals L.



® - The number of well-behaved intervals in I; viz., the number of intervals
where I'; = I '\jax-

W, - Those @ intervals which are well-behaved.

Q;; for i=1,...,@, j=1,....J \yax - These sets are merely the Q,;'s for all the well-
behaved intervals. (A different symbol is appropriate here because the
treatment of the well-behaved intervals is fundamentally different from the
poorly-behaved intervals.)

7 - The number of poorly-behaved intervals in I;.

P, - Those 7 intervals which are poorly-behaved.

IL; for #=1,...,7, j=1,...,J; - These sets are the Qs for all the poorly-behaved
intervals.

H - The maximum number of harmonics the system will keep track of for each
voice. (An adjustable system parameter.)

Z, for /=1, .Jyax = { 21, 4y, ..., 8y } - The mean harmonic signature for voice
j. It represents the relative magnitudes of each of the harmonics in voice j,
independent of any particular fundamental frequency.

Z,(¢) - This notation describes the harmonic signature for voice j "projected"
onto fundamental frequency ¢. It is equivalent to a set with the same
structure as the Q;;'s and with value { {9, a,}, {29, a,}, ..., {H'0, a} }.

Z;/a, - This notation describes the magnitude of the #th harmonic component of
the mean harmonic signature for voice j.

IT; fa, - This notation describes the magnitude of the #th harmonic component
of the set I

IL,if, - This notation describes the frequency of the nth harmonic component
of the set IL;.

W, - The interval which is chosen to bias the mean harmonic signatures.

B; for j=1,....J \iax - The signatures of the voices taken unaltered from interval
W;. These are the "biased” harmonic signatures which we will use to
compare to the ;;'s for ##i in order to compute the mean harmonic
signatures.

A for j=1,. . Jyax - A "dummy" harmonic signature "variable" used to
describe step SA of the algorithm below; used instead of Z; to avoid
confusion.

Vi;» Tor j=1,...J yax - A variable to indicate where voice j appears in poorly-
behaved interval P;. for example, if v, ,=3, then voice 2 is present in Il 5; if
Vs,,=0, then voice 1 is resting during interval Ps.

n, - A variable indicating how far voice j is "shifted up" in its IL;; set. For
example: if n=1, then the fundamental frequency of voice j is simply the

60
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lowest frequency present in IL;. If n=2, then voice j is an octave above
some other note also present in IT;;.

N, ~ The maximum number of multiples of a low note's fundamental a high
note can occupy. (An adjustable system parameter.)

The Algorithm.
1. Take the incremental FFT within each interval. Perform heuristics to determine the
“"true” peaks, and form the sets S, /=1,... M.

2. Decompose each S; into J'; subsets Q;;.

3. Compute J';5x as the maximum of the I'/'s over all intervals I, We assume that
T max=J, the true number of parts present in the song.

4. Separate all intervals I, into Wi's (if J'; = J'31ax) and Py's (if J'; <J'y1ax0).

5. We now compute the mean harmonic signatures Z; for each voice j. Note that we
are only dealing with the intervals W, throughout step 5.

A. Find the starting interval with which to bias the ¥; computation. (Note that we

are not actually computing the real /s in step 5A, but only determining which
interval W, is best to bias the real computation with.)
For each i=1,...,0,
1. Set Aj =€ for j=1,....0 yax.
i1. Set error, =0,
iti. For each 4=1,...,0, kI,
a. Find set of (j,{) pairs over all combinations of (j,£), with
J&=1,2,Vyax, such that 2 || A; - ©, |} is minimized.
b. Add this minimum value of the summation to error;
Find the interval i for which error; is the smallest. We will bias the mean harmonic

signatures with this interval W;, by setting B; = Q;; for j=1,2,...,J yax.

2 gnatures with this bias.

Initially set each X; = B, for /=1,2,....J’ . Then, for each k=1,...,®, ki,
i. Find set of (j,£) pairs over all combinations of (7,€), with ,6=1,2,. .3 \1ax
such that 2. || B; - ¢ || is minimized.

ii. Average K - into Z; for each (7,) pair.
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6. We now extract the pitches from each well-behaved interval W, in a straightforward
fashion:
For each i=1,...,0,
i. Find set of (j,£) pairs over all combinations of (f.,{), with j,£=1.2, .. .V 1ax.

such that 2 || B; - £, || is minimized.
il. For each (7,£) pair, assign voice j a note with fundamental frequency
Q f; for interval W,
{In actuality, steps 5B and 6 can be combined, because both involve minimizing the

same expression for all well-behaved intervals. They are listed separately here
because conceptually, they are two different steps.)

7. We now attempt to extract the pitches from each poorly-behaved interval P, We
analyze each set IT;;, i=1,...,m, to see if it actually contains the "sum" of two or more
voices. If we determine it does, then we will attempt to divide the IT;; into new II sets
containing only one voice each, and include them in our set of IL;'s for this interval.
Note that we are only dealing with the intervals P, throughout step 7.

For each i=1,...,m,
A. Each voice j may appear in one of the IT;; sets, or in none of them. Let v,
for j=1,....) yax be a variable to indicate in which II set voice j appears in
interval P,, as explained in the definitions, above. We constrain the values of
the y;;'s in the following manner: V&, C=1,....J";, 3j, /=1,...  yax | W35 =G
Find the set of y;;, and n;, with each y;; ranging over 0,1,2,...,J’; and with each
n, ranging over 0,1,2,...,n,,,,, subject to the above constraint, such that the sum
over all IT sets of

| (- 2 (Eyng TL ) |, for all q where w;; =

is minimized. It is understood that the above summation notation represents
not an ordinary arithmetic sum, but the expected value of the amplitude of the
sums of frequency components, where the phase difference between any two
frequency components is assumed to be uniformly distributed on (0, 27).
B. When the y;; and n; which minimize the above expression have been found,
the pitches can be extracted from P, as follows. For each nonzero ;;, assign
voice j a note with fundamental frequency

for interval P;. For each y;;=0, assign voice j a rest for interval P;.

8. All voices have now been assigned either a rest or a pitch for all intervals. The
score may then be printed to the screen in the usual way.



CHAPTER IV
RECOGNITION OF SINUSOIDAL INSTRUMENTS WITH SQUARE ENVELOPES

Before testing the Score program on music obtained from "real" instruments, I
wanted to establish the validity of the algorithm by using inputs produced by a
simplified model. This way, it would be possible to postpone dealing with some of the
idiosyncrasies involved in real-world sound and instead concentrate on the meat of the
problem: designing an implementation of the general procedures described in the last

chapter to perform automated event detection and pitch extraction.

Choosing a Simplified Model

Recall the discussion in Chapter 2 regarding the general characteristics of
sound produced by musical instruments. The question before us is, what should the
features of our simplified model be such that the program can recognize the music
most easily? We want this pseudo-instrument to be at least a gross approximation of
real instruments, so that what it produces sounds like "music" to the human ear. This
way, our algorithm can use the same techniques on the model that it will later use on
more realistic sounds. Also, it will be convenient to describe 6ur model using the
same framework by which we will later describe real instruments, so that we can
pinpoint the trouble spots when we turn to them. At the same time, however, we want
the model to be as simplistic and manageable as possible, so that the testing of our
algorithm doesn't get bogged down in the details of one particular input.

Let us first consider the volume envelope; or more specifically, the four ADSR

parameters by which we have conveniently parametrized it. What should the values of
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A D, S, and R be so that musical recognition is simplified? As we mentioned earlier,
it is a basic property of the adaptive predictor that its error is large when it encounters
significant "surprises" in the input. A sudden burst of magnitude within a sea of
background noise will cause the predictor's error to jump much more dramatically than
will a slow crescendo up to the maximum intensity. And sudden rises in predictor
error are precisely what our event detection algorithm is keying on in order to find
note beginnings. Clearly, then, our program will best perform if its input has A=0, to
correspond to an instantaneous attack.

Since once the beginning of the note has been identified the only thing left to
do is to analyze the frequency domain, we cannot help our algorithm by allowing the
instrument to decay from its maximum intensity. A significant decay time would lead
to only two things: first, the linear predictor error would increase somewhat, having
been "surprised” by the decay as it was by the attack. This is undesirable, because we
are considering the beginning of the attack as the true starting point of the note; and
once that has been detected, we want the predictor error to be suppressed as much as
possible until the next "true" event. The second effect of a decay would be simply to
lessen the energy in the signal during the interval in which frequency domain
information 1s to be collected. This leads to a reduced signal-to-noise ratio, and
smaller frequency domain peaks that must be identified. In the ideal case, we would
rather have the spectral peaks stand out as much as possible from the surrounding
noise, so that they are more easily analyzed. For both of these reasons, then, we
would like this idealistic model to maintain its peak intensity all the way through the
notes it plays. Therefore, we set D=0 (no decay time) and S=100% (sustained level of
intensity is equal to the peak.)

We are faced with a dilemma in choosing the R parameter. On the one hand, if

R is too small, and the intensity of the note drops off too quickly, the linear predictor
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will be surprised by the sudden decrease in magnitude and will likely signal an event at
the end of the note in addition to the beginning. Therefore, it might be appropriate to
have the note's intensity dwindle to nothingness as slowly as possible, so that no false
alarms are registered. However, there is a limit to how slow this fade can be, because
if some intensity remains when the next note begins, we will see some residual
frequency components from the previous note in the melody when we do the spectral
analysis on the current note. Hence, we have two conflicting goals when we consider

the value of R.
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Figure 13. (a) A simple melody written by a composer. The figures
below show the waveforms for this piece if the performer played it in a
(b) staccato, (c) normal, and (d) legato style. The staves below the
waveforms show what the Score program might produce as it output
for this song; they are different for the three styles, but in each case a
perfectly accurate representation of the piece.

For simplicity, when I chose the values for the simplified model in my
experiments, I ruled entirely in favor of the second consideration and against the first.
The reasons for this are shown in Figure 13. When presented with a piece of music as

in Figure 13a, a performer is in some sense still free to choose the lengths of each of
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the notes. The beat of the song dictates that the beginning of each note in the
sequence fall in 2 certain place, of course, but there are still differences in how long the
intensity of a particular note will be sustained within the given interval. Figure 13b
shows what the waveform would look like if the musician played the piece in a
staccato style, and what the resulting score built from the output of the Score program
would be. The program's output is not identical to the original score: this is because
the program has detected "events" at the ends of the staccato notes and inserted rests
appropriately. The reason I chose R=0 for my simplified model, however, is because I
consider the music in Figure 13b to be a perfectly acceptable score of the piece. A
composer who wrote a staccato passage might place dots above the notes to indicate
that it should be played this way, but an alternative and equally valid way of expressing
the same thing would be to write each note as an eighth note followed by an eighth
rest instead of a lone quarter note. In some respects, then, the scores at the bottom of
Figure 13 are really more accurate than the original score. And in any case, it is a
simple matter to run the output through another procedure which will lengthen notes
and eliminate rests as the user desires.!? For these reasons, I do not consider an
output which detected “events" at the ends of notes, and inserted rests accordingly, to
be an invalid one. Hence, for simplicity, the model I used had a zero release time.
When we turn to the harmonic content of our model and ask what
characteristics would make it simplest to recognize correctly, we get a straightforward
answer. The only ambiguity in the frequency domain analysis of an interval comes
when some notes have a fundamental which coincides with the harmonic of another
note. Clearly, then, these problems are alleviated if we choose a model with #o
harmonic frequencies. The simplified model I used in my initial testing of Score was a
hypothetical instrument with only a fundamental frequency, and which appears in the

frequency domain as a single peak at the pitch of the note. The time domain
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waveform corresponding to a single frequency domain peak is a pure sinusoid, and the
resulting sound is much like that of a tuning fork - just an unwavering pure tone.
Figure 14, below, summarizes these characteristics of the simplified model: a

sinusoidal waveform with a rectangular volume envelope.

= ML |

| VYUY

@

(c)

Figure 14, Characteristics of the simplified model used in initial testing
of Score. (a) The volume envelope (rectangular.) (b) Waveform (pure
sinusoid.) (c) Frequency domain representation (single fundamental
peak, no harmonics.)

Results

After numerous laboratory trials, the success of the Score program in correctly
recognizing music played by this simplified instrument is impeccable, both with single-
part and multi-part songs.I Included on pages 68-72 are some example musical
phrases that were performed by the square-envelope sinusoid, recorded, and processed
by the program. As you can see, the resulting output is in nearly all cases identical io

the true score that was input.



Melody #1 from "My Heart Cried" - Sine voice, rect. envelope.
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********************************************i*************
**********************************************************

> S ¢ 0O R E ! *x
dek Stephen Davies - version 1.0 **
Thkdkdkkkk bk kkkddhokkkhd ok hkkkhddkdhkdhhhkkddkdkdkddhkhdd hd & dddkdkh
L % %
** Current system parameters: kil
* L2
** Filename of sound file to use: MUSIC.DAT *k
** Sampling frequency of sound file: 8000 Hz fald
** Tempo of song: 110 beats per minute **
*ox Minimum length of a note: 0.125 whole notes w*
ok Incremental FFT size: 1024 samples *k
e Trim threshold: 0.5 standard deviations il
** Gain of linear predictor: 10% of maximum *k
** Window size of linear predictor: 10 wk
*k Event detector STA window size: 10 *k
* Event detector LTA window size: 1000 ol
ok Event detector power ratio threshhold: 10 ok
*x Incremental FFT size: 2048 samples bl
*k FFT size tolerance: B80% of shortest note **
*k Pitch extraction cut-off factor: 1000 *
ok Pitch extraction dynamic range: 0.4 *
*k Reporting accidentals in: flats **
ok Instrument type: sine *k
el Score mode: brief il
¥ ke * %

Fhkdkhkhkddhddhkdhhkdhkdhhkdedkhkddhdhhkdhrhhhk bk khkhdhkhkhdh ik ki
dkdeddededkk ok dkdkokkhdhhkkk ko d ok frokdkk ko kA ko kk ko dokakdedk ke dedkok ke ok k&

Preparing song for analysis...
Loading sound file...
Removing DC bias...
Cancelling noise...

Trimming song...

Song now has 59766 samples.

Analyzing song to locate notes...
Compiling linear predictor error...
Analyzing linear predictor error for events...
Performing additional note detection heuristics...
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Determining score...

4 8th-note: G4 ( 398.4 Hz.)
5 Gth-note: G4 { 398.4 Hz.)
6 8th-note: F4 { 356.4 Hz.)
7 bthenote: G4 ( 398.4 Hz.)

9 8th-note: Ab4 ( 421.9 Hz.)
10 Sth-note: Abd ( 421.9 Hz.)
11 Bthonote: G4 ( 398.4 Hz.)
12 Sthenote: Abd ( 421.9 Hz.)
13 8thenote: Bbd ( 476.6 Hz.)

Results: 17 notes correct
0 notes incorrect

(Note: The output above was what was actually printed by the Score program.
In order to allow the reader to more easily compare inputs and outputs, however, in all
subsequent examples I will instead include musical notation representing the output
obtained. Observe that the Score program does not produce such a graphical
representation, but that it is a straightforward task to transform an output such as the

one above into a musical score.)
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Melody #2 from "My Heart Cried" - Sine voice, rect. envelope.
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Results: 24 notes correct
1 note incorrect due to false event
1 note incorrect due to wrong pitch



"How Great Thou Art" 3-part - Sine voice, rect. envelope.
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Output from Score version 1.0:
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Results: 33 notes correct
0 notes incorrect
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"A Mighty Fortress is Qur God" 3-part - Sine voice, rect. envelope.

baionie it

Output from Score wversion 1.0:
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Results: 28 notes correct
1 note incorrect due to missed event
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Considerations

During the process of testing inputs such as these, I uncovered a few issues
that are worth noting at this stage before we proceed to "real" instruments. First,
some of the program's parameters are fairly sensitive, and need to be fine-funed for the
algorithm to work successfully. These parameters include the number of weights and
the gain of the linear predictor, the threshold and the sizes of the windows for the
STA/LTA algorithm, the threshold for frequency domain peak detection, and others.
The linear predictor gain p, particularly, has an enormous impact on the ability to
detect events faithfully, especially when it is set too high. In this case, the predictor
adjusts so quickly to any change in input that its squared error g2 never rises to a
significant level where it can be monitored. When too low, it does not adjust very
quickly and the high error level remains even for hundreds of samples afier the “true"
event. However, the additional filter which enforces a minimum amount of time
between two successive events is very capable of eliminating false alarms in the period
immediately after a true note beginning, so that in practice it is much safer to err on
the low side when choosing the predictor’s gain.

The success of event detection is sensitive to the sizes of the windows in the
STA/LTA algorithm, too, particularly the length of the long-term window. In general,
best results are achieved when the window is quite long, so that much of the "low
error”" time in between events is factored into the long-term average. However, the
window should not be so long that it contains the peak in error from the previous
event when it reaches the next event. (See Figure 15). The best approach seemed to

be to base the length of the long-term window on the tempo information the user

specifies for the song, making it equal to a significant fraction of N
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Figure 15. Effect of the LTA window size in event detection. The top
graph shows the data signal from two successive notes, we assume that
these are two of the shortest notes in the song, such that the distance
between them is ~N;,. Below these notes is the value of the linear
predictor's squared error at each data point. When choosing the length
of the LTA window for the power ratio algorithm, it is preferable to
make it substantially longer than the STA window so that sudden rises
in squared error are easily detected. (As the LTA window shrinks, the
LTA power becomes closer and closer to the STA power, such that
nothing can be distinguished.) Hence, (1) is a poor choice for the LTA
window. On the other hand, the window should not be so long that the
peak in error from the previous note is included in its average, as (3);
such an effect blurs the ability to recognize sharp peaks at the current
note. The best compromise is to make the window large but not too
large - a significant fraction of N, as is (2).

Another interesting phenomenon I discovered while testing these simplified
inputs was the effect of noise cancellation. In the beginning, I assumed that applying a
simple low-pass filter to the input in order to remove high frequencies that weren't of
interest would be a desirable step in preparing the data for analysis. I soon discovered,
however, that my order-100 FIR filter was hampering the capability of the program to
perform accurate event detection. The reason is really rather simple: the linear

predictor's error, upon which event predictions are ultimately based, is greatest when
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the input experiences sudden, unexpected changes in amplitude. And these abrupt
changes are represented in the frequency domain as very high frequency components.
The use of a low-pass filter, consequently, will naturally suppress such changes and
smooth out the transitions from note to note. Applying such a filter is therefore
particularly undesirable for the Score program, and hence, all input data is analyzed
unfiltered.

Finally, it is worth commenting on a peculiarity of the outputs for multi-part
songs, as illustrated in the result on page 72. QObserve that there are times during the
song when two of the parts hold a longer note than the third part; an example would
be the third beat of the second measure, where the melody plays two eighth notes
while both the harmony parts hold out a quarter note. Upon examination of the Score
program's output (intervals 4-5), we find that it has instead recorded that all three of
the parts played two eighth notes, the harmonies simply repeating their notes at the
same pitch. The reason for this idiosyncrasy is that the event detection algorithm only
finds places in the song where some new note has begun, it is impossible to tell ow
many or which of the parts actually had a new attack at that time. One solution would
be to run the output through another procedure which would find repeated notes and
merge them into longer ones. However, this approach doesn't really solve the
problem, as it is perfectly possible for a piece of music to specify that repeated notes
be played, in which case the previous output would be correct and this new output
incorrect. For the time being, it must be conceded that this particular case illustrates
an ambiguity which the Score program is unable to resolve completely. In a fully-
featured product, the program would have to ask the user for assistance, giving them
the choice, for. instance; of- merging all repeated notes in a particular range of

measures, pitches, or parts.
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Figure 16. The ambiguity inherent in multiple part attacks. The top
staff contains a piece of music which was actually performed and used
as input to the Score program. After the event detection algorithm,
Score knows that four eighth-notes were played by some part, but 1s
unable to determine which note(s) had attacks and were responsible for
the event detected. From the program's point of view, all three parts
might have played eighth notes, or only one of them, or perhaps the top
instrument played two eighth-notes followed by a quarter, and the
bottom instruments played a quarter followed by two eighths, etc. The
only solution to this problem at the present time is to run the Score
output through another routine which will merge repeated notes at the
discretion of the user.

In conclusion, the Score program performs very encouragingly when the
instruments represented in the input are of this simplified, square-envelope sinusoid
variety. Once its parameters are adjusted, the algorithm can effectively recognize
notes with a high degree of success, whether its input is a single-part or multi-part
song. The only weakness seems to be the peculiar phenomenon of moving parts and
unmoving parts occurring simultaneously, in which case Score records the pitches
accurately but faces an event detection ambiguity whereby it has to guess which notes

were held through the event. Having established that the basic algorithm is competent
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to analyze simplified music, then, the next step is to move on to the domain of real-life

instruments.



CHAPTER V
RECOGNITION OF "REAL" INSTRUMENTS

There are two principal differences between songs produced from our
simplified model and songs containing synthesized waveforms which approximate real-
world instruments. The first is that we no longer have a perfectly sharp attack and
cut-off for the notes: each waveform contributed by a particular instrument will now
have a magnitude dictated by its (non-rectangular) volume envelope. Secondly, the
nstruments will no longer merely produce a single peak in the frequency domain.
Instead, we will find energy at an array of harmonically-related frequencies for each
note that is being played.

In practice, the first consideration is not too difficult to overcome. For the
instruments I chose to examine (two of which were striking, and one continuous) the
event detection algorithm given in Chapter 3 was able to identify the beginnings of
notes as it was for the simplified model, with only a slight decline in accuracy.
Interestingly, the biggest event detection problem comes not from exchanging a
perfectly rectangular envelope for a more realistic one, but from adding more voices to
the song. In other words, the program's performance did not degrade noticeably when
I moved from a single instrument with a rectangular envelope to a single violin.
However, when I added two or three other violins playing harmony with the first, the
true events became a bit harder to find. This, too, was surmountable, however, and in
most cases merely required a little more time in finding the right parameters for the

predictor gain, STA/LTA window sizes, eic.
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The complicated frequency spectra produced by real-world instruments,
however, give rise to quite formidable challenges in pitch extraction. For the
simplified model presented in Chapter 4, no real pitch extraction was necessary except
to identify peaks in the FFT's for each interval. We will also discover that in certain,
very restricted circumstances (namely, those without harmonic ambiguity) we will be
able to find similar easy ways to identify pitches of "real” songs. The assumptions
required in order to use these straightforward techniques, however, are far too limiting
to be of general use in the problem of automated musical recognition. Our only choice
when examining the vast majority of real musical performances will be to implement

the complexities of the pitch extraction algorithm detailed at the end of Chapter 3.

Choosing a Set of "Real" Instruments

In order to restrict the scope of this project to a manageable level, I decided to
select only a few types of real-world instruments to analyze. This way, I could
concentrate on a limited amount of data and hopefully achieve consistent results.

All of the "real" instruments analyzed were actually synthesized waveforms
from the Korg 03R/W sound module. Appendix B contains samples of the volume
envelopes and frequency content produced by a number of voices on the 03R/W. I
had the following criteria in selecting a set of them to examine:

1. The set should include both continuous and striking instruments, because
these two pgeneral classes are representative of (non-percussive) musical
instruments as a whole. Each of the two classes poses unique problems, and to
ignore either of them would be to leave a large portion of the problem space
untouched.

2. The frequency spectra of the instruments in the set should not have "too

many" upper harmonics present. This is primarily because the n_, parameter
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of the pitch extraction algorithm must be set high enough to include all the
relevant harmonics of the instruments in the song, and the processing time
required by the algorithm increases dramatically with n,,,.

3. The spectra of the instruments in the set should be sufficiently "different"
from one other to facilitate identification. The algorithm depends on the ability
to distinguish which voice is playing which note in a given interval, and it does
so based on the relative magnitudes of the harmonic peaks. We will likely
achieve better performance if the harmonic signatures of the voices present are
so unique that it is easier to tell them apart.

With these considerations in mind, I selected three instruments from those
represented in Appendix B to be used as input for the Score program. The first is the
harp, which features an unusually strong fundamental compared to its other
harmonics. In general, as we noted in Chapter 2, a harpist can control the quality of
the instrument's sound by plucking strings closer to the middle or to one of the ends of
the string. This yields a variety of standing wave patterns, and hence, a variety of
possible harmonic signatures. The Korg 03R/W, however, synthesizes a harp sound
using only one of these possible signatures; namely, the simplest, with a very strong
fundamental and virtually non-existent upper harmonics (see Appendix B). This
makes the synthesized harp appear in the frequency domain much like the simplified
model we analyzed in Chapter 3; however, the time domain characteristics are vastly
different, as the harp's notes exhibit the rapid attack and exponential decay typical of
striking instruments.

The second instrument I analyzed was the piano, though instead of looking at
the large number of simultaneous notes usually produced by a pianist, I examined only
a single voice. Also a striking instrument, the piano features time-domain qualities

similar to those of the harp: rapid attack and exponential decay. Two important
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characteristics make it significantly different, however. First, the piano has a much
smaller R parameter in its ADSR characterization; this is because once the player
releases the key, a damper quickly muffles the tone from that string. This is not the
case with the synthesized harp, where the tone continues to resonate for some time
after the interval in which it was played was supposed to have "ended." (In reality, of
course, a live harpist could quiet the instrument's strings by stopping the vibration with
his/her hand, but the Korg does not simulate this, essentially playing everything
legato.) This feature makes the piano somewhat more "well-behaved" than the harp

from the viewpoint of automated musical recognition, because in interval I; there 1s
very little sound that continues to resonate from interval I, ;. In the frequency domain,
however, the synthesized piano exhibits a slightly more complex harmonic signature,
with its first swo harmonics quite strong and some other residual components at high
frequencies.

Finally, the continuous instrument I chose to include in my set was the violin,
both because of its widespread use in music and because its waveform characteristics
appeared challenging but not intractable. As is typical of continuous mstruments, it
has a much slower attack than would a harp or piano, and instead of exponential
decay, it holds its magnitude relatively constant throughout the interval in which it
plays. Harmonically, it is significanfly more complex than either of the other
instruments. As seen in Appendix B, the Korg's synthesized violin boasts substantial
peaks for at least the first eight harmonics, though the first three or four are usually the
strongest. Intuitively, however, this complexity ought to help rather than hinder the
pitch extraction algorithm if the other voices present are a harp and violin, because the
large number of harmonics should make the violin more easily distinguishable from the

others.
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Solo Instruments

Before we approach the complex topic of pitch extraction in the presence of
harmonic ambiguity, it is worthwhile to note that there exist a limited number of
situations where no complicated pitch extraction techniques are necessary.
Specifically, any song in which no harmonic ambiguity exists may be analyzed in
much the same way we analyzed songs that contained the simplified model. The only
difference is that instead of labelling each FFT peak as the fundamental frequency of a
note, we label the lowest frequency in each harmonically related set as a fundamental.

We can describe this quite simple procedure using the terminology of the more

advanced pitch extraction algorithm given in Chapter 3. For each interval I, we form
the spectrum S; of "real” frequency domain peaks and amplitudes. Then we form the
Q,; sets for /=1,...,.J'ax. I there is no harmonic ambiguity present in the song, it
follows that the lowest frequencies in each of these Q;; sets - namely, Q,jlf; for
7=1,...J max - represent the notes present in the interval I, This is essentially a
degenerate case of the advanced pitch extraction algorithm, where all intervals are
well-behaved: { L, } = { W; }. Any song in which no harmonic ambiguity exists could
be correctly analyzed in this way, though only the pitches of the notes in. each interval
have been identified, not which of the J';,x voices each of them corresponds to. (This
latter information could be derived by using the same kind of harmonic signature
comparison that the advanced algorithm makes use of, however, this step has been
omitted below.)

The simplest case of a song in which no harmonic ambiguity exists is that of a
solo instrument. Only one voice is present in such a song, and therefore, no ambiguity
could possibly occur. I used the straightforward algorithm described above to analyze
songs containing only one of the three instruments at at time. The results are shown

on pages 84-86. It is clear from the program's accuracy that solo melodies can be
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easily analyzed using this elementary procedure, even if the instruments are "real" and

not as simplistic as the rectangular-envelope, sinusoidal model.



"O Worship the King" - Harp solo
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Results: 23 notes correct

1 note incorrect due to wrong
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"0 Worship the King" - Piano solo
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Results: 24 notes correct
0 notes incorrect
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"0 Worship the King"™ - Vieclin solo
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Results: 24 notes correct

2 notes incorrect due to false events
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The "Sopranc-Alto Problem"

Another class of songs which contain no harmonic ambiguity are those in
which two or more instruments play simultaneously, but are never more than an octave
apart in pitch. This is common in songs featuring a melody with a closely associated
harmony or harmonies, such as a soprano-alto duet in choral music. The simple
procedure for pitch extraction outlined above can also be used to correctly derive the
score from such pieces, without having to employ the full pitch extraction algorithm
from Chapter 3.

Recall that the harmonics of a note are at integer multiples of its fundamental
frequency. This implies that the second harmonic of a given note is at twice the
fundamental, or a full octave above the note's true pitch. Therefore, the closest two
notes can be and still result in harmonic ambiguity is one octave apart. It follows that
any song in which all the parts are within an octave of each other will be free from
ambiguity, and can be analyzed using the simplified procedure. A number of these
"soprano-alto" performances were analyzed in this way, with the results on the

following pages.
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"Come Thou Alwmighty King" - Two piano duet
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Output from Score version 1.0:

O«

P T T

Results: 30 notes correct
1 notes incorrect due to wrong pitch (long decay)

(Observe that the Score version 1.0 output simply reports what notes were
present in which intervals, and makes no attempt to identify a sequence of notes with a
particular part. This is because this version of the program is not performing the pitch
extraction algorithm. Later on in this chapter, we will see the output for version 2.0,

which does perform this algorithm.)
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The Score analysis of a "duet" with two piano voices is shown on page 88.
Observe that the performance of the algorithm on this input is comparable to that with
the simplified model from Chapter 3. When we shift to a harp on the soprano voice
and a violin on the alto voice (results on page 91), we encounter a difficulty which
may or may not prove to be serious in the long haul. We saw before that the event
detection algorithm is very successful in identifying the true events when all parts are
playing the same rhythm - in other words, when all voices begin a new note at the
same time. It is more difficult, however, to identify one voice changing notes when
the other voices are all holding steady. Notice that on page 91 the program missed the
harp's D in measure 5, incorrectly merging the two eighth notes into a single quarter
note. The reason for this mistake is that the violin was holding an F# throughout the
interval, which made the harp's second eighth note harder for the linear predictor to
pick up. Overall, however, we see that the program's performance for this duet of real
instruments is quite accurate.

Pages 92-94 contain the results when a third voice is added. A comparison of
the two program outputs illustrates the principle described in Chapter 3 regarding the
position of the FFT within the interval. The first time the program was run (output on
page 92) the FFT's were centered within each interval; therefore, for longer intervals,
the samples fed to the FFT were further from the start of the note than for shorter
intervals. A result of this decision is that the spectra of continuous instruments (the
violin) overwhelm the spectra of striking instruments (harp and piano) in the longer
intervals. (For instance, notice the dotted half-notes in intervals 8 and 16. Only the
violin's note was picked up by the pitch extraction algorithm.) This phenomenon is
due to the fact that as the interval progresses, the continuous instruments are still at
full strength, while the amplitudes of the striking instruments have fallen off

dramatically. We can mostly fix this problem by using the approach given in Chapter



90

3. place the first sample of the FFT the same distance away from the start of the
interval regardless of the interval size. The outcome is shown on page 93, where all
three voices come through even in the longer intervals.

A final example of "soprano-alto" analysis is shown on page 94. In this piece,
the instruments were placed in a different orientation than in the piece we just
discussed (now the piano plays the descant, the violin the soprano melody, and the
harp the alto harmony.) This example was included to demonstrate that the algorithm
works regardless of which instrument is playing the highest and lowest parts. One last
observation we might make about these three-part songs is that in general, the
performance of the Score program seems to have degraded somewhat. It still tracks
the correct notes with reasonable accuracy, but we find that it makes a few more slip-
ups than in the two-instrument or solo cases. This is probably merely because there is
more going on in the song, and this larger amount of data to track yields a higher

probability of these minor errors.



"Come Thou Almighty King" - Harp-violin duet
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29 notes correct
2 notes incorrect due to missed event
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"Come Thou Almighty King" - Harp-piano-violin tric
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Output from Score version 1.0:
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Results: 38 notes correct
6 notes incorrect (missed) due to pitch extraction failure
2 notes incorrect due to false event
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“"Come Thou Almighty King" - Harp-piano-vielin trie
FFT's taken the same distance from the start of each interval,

regardless of interval size
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Output from Score version 1.0:
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Results: 42 notes correct
2 notes incorrect (missed) due to pitch extraction failure
1 note incorrect (falsely identified) due to pitch
extraction failure
2 notes incorrect due to false event



"Great is Thy Faithfulness" - Piano-vielin-harp trioc
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Results: 35 notes correct
1 note incorrect (falsely identified) due to pitch
extraction failure
1 note incorrect due to wrong pitch
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Recognition of Songs Containing Harmonic Ambiguity

We were able to avoid having to use the complicated pitch extraction
algorithm detailed in Chapter 3 when we analyzed songs in the two categories above.
Now, however, we have exhausted these possibilities, and we must face up to the fact
that most practical songs will contain harmonic ambiguity, and potentially lots of it. A
number of short songs that had intervals with this property were used as input to the
Score program, with results as shown below.

(Note: All of the preceding examples of Score output were from "Score
version 1.0," which implemented a subset of the entire automated musical recognition
algorithm, The examples below are obtained from "Score version 2.0." The former
differs from the latter in two important respects: (1) Version 1.0 treated each interval
individually, without concern for any of the others. Hence, it did not attempt to
associate a sequence of individual notes throughout the song with a particular voice,
but rather simply reported the notes that were found in each interval, without regard to
which voice produced them. (2) Version 1.0 did not treat the problem of harmonic
ambiguity. This actually follows directly from (1), because no mean harmonic
signatures can be formed with which to resolve the ambiguities if no attempt is made
to identify individual notes with voices.)

First, we will demonstrate the basic ability of the algorithm to determine which
notes belong to which voices. In the following sample output, the three parts of the
song "cross over" each other in pitch - each voice is the highest in some intervals, the
lowest in others, and the middle in others. From the resulting output we see that

Score has correctly determined which notes were associated with the same voice.
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Fhdkhdkkdkhdkdkhk kb bbb bbbk bhdbdbdhdhbhrhhAdhhkhhbhbrhkhhkhkdtrhhkhhkdhhdhii
FhdkhkkdhhkhkdkhkhkdkhkhkhhkhhrrhbdkhhbhbrdbhrhhdhbdhRhkhbhkhhbbrdbrhrdhh i h ks

>k S € O R E ! * %
** Stephen Davies - version 2.0 *
dkdkhkhkhkhhkhkhbhkhdrhkrhrkrArhdhddbdddddbdddrddbbhrhrdhddhbhrdbhrbhkdhkt
J % * &
e Current system parameters: *
* Filename of sound file to use: MUSIC.DAT ol
Hx Sampling frequency of sound file: 8000 Hz **
** Tempo of song: 120 beats per minute **
* ok Minimum length of a note: 1/ 4 whole notes * &
i Trim threshhold: 0.5 standard deviations *k
*k Gain of linear predictor: 10% of maximum * ok
*x Window size of linear predictor: 10 **
*k Event detector STA window size: 6 kil
* Event detector LTA window size: 500 *k
& Event detector power ratio threshhold: 4 k&
** Incremental FFT size: 2048 samples *k
** FFT size tolerance: 80% of shortest note *x
* ok Pitch extraction cut-off factor: 500 ¥k
** Pitch extraction dynamic range: 0.05 *ok
* ok Reporting accidentals in: sharps ok
** Instrument type: real *k
ok Score mode: verbose **
ek K

R b SRR S A AL LA ERE SRS EEEE AR LR SRR R R R R R
Fhhkdkhkhkdkdhhkdkhkhkdthhkdkhrrhkkddhhkd bk kddddk kbt hkhrdhdkddhbdhbhkh ot hbkkhht

Preparing song for analysis...
Leoading sound file...
Removing DC bias...

Trimming song...

Song now has 17811 samples.

Analyzing song to locate notes...
Compiling linear predictor error...
Analyzing linear predictor error for events...
Performing additional note detection heuristics...

Performing pitch extraction...
Computing FFT spectra...
Decomposing spectra into harmonically independent components...
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Identifying well-behaved and poorly-behaved intervals...
Computing mean harmonic signatures...
Analyzing poorly-behaved intervals...

The score is:

Voice 1:

4 dotted-quarter: F4 ( 351.6 Hz.)

Voice 3:

1 quarter-note: E4 ( 331.2 Hz.)
2 quarter-note: G5 ( 526.6 Hz.)
3 quarter-note: C#5 ( 557.8 Hz.)

4 dotted~quarter: E4 ( 332 Hz.)

Results: 12 notes correct

(As before, I will include a representation of Score's output in musical notation
for all of the following version 2.0 examples, rather than the text output as seen

above.)
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Recall that our definition of a pootly-behaved interval was one in which not all
parts of the song appear unambiguously. This can occur if the interval contains
harmonic ambiguity or simply if one of the parts has a rest during the interval. In the

following output, Score is seen to have correctly identified when the violin has a rest.

I3
L TH

(Poorly behaved interval marked with a "P".)

Output from Score version 2.0:

Part {

" 4
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Paet 2
0

ﬁisﬁi

Results: 8 notes correct

| 1N

W

The simplest example of an interval with harmonic ambiguity is one in which
two voices are playing in unison. The following output demonstrates the program's

ability to correctly detect voices playing the same pitch.



99

l|.|___
m

PMD
) —
B ==
SES S :
(Poorly behaved interval marked with a "P".)
Output from Score version 2.0:
Part 1
1 |
45— ] 3 I
: 2
Part 2
i
s 1 r o
! =
Part 3
4 ——
] 2 I
— =

Results: 12 notes correct

The closest two notes can be in pitch and still have harmonic ambiguity is one

octave. Score correctly identifies two notes an octave apart in the following output.
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{Poorly behaved interval marked with a "P".)
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Output from Score version 2.0:
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Results: 12 notes correct

Now that we have demonstrated the basic capabilities of the pitch extraction
algorithm to resolve resting voices and harmonic ambiguity, we proceed to test it on a
set of more "realistic" songs with several well-behaved and poorly-behaved intervals.
As is seen from the resulting outputs, the performance of the program is encouraging,
but less than perfect. It appears that the longer and more complex the song, the more
chances there are for something to go wrong. Nevertheless, with a modest amount of

"parameter tweaking," the following fairly acceptable results can be achieved.
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"Immortal, Invisible, God only Wise"
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Results: 30 notes correct
3 notes incorrect due to wrong pitch



"And the Glory of the Lord" - (from Handel's Messiah)
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Output from Score version 2.0:

Pmﬁlﬂ_ | |

T 1 = i | T

[ -+
Part 2

;.gfﬂﬂ I [ [ | | I ] !

E'I-l & 1 1 17 - | | [ 1
% e e e e e
-

2 el o of e P o o0
s = 1
Part 1

act Y] L1 ql'—‘. |
| I I | 1 | | F
11 | 1 ~ - 1 [
i.l | I |
Part 2
i o i e : —
5 o e — - 2 = =
Part 3
X . » olp el  »
GEISSE==S s =

102



103

notes correct

note incorrect due to false event
notes incorrect due to wrong pitch
notes incorrect due to missed events

Results: 5

N -JRF W

For completeness, here is the actual text output from the Score program for

this example:

kdkdkkhkdhkdhkdhhkdhdhhkkddhhkdhhkhbhbhbhkhkdbrhbrdhddhdkdddkdrddthdthhhkdhk bk,
kikkhkkhhkhkdhkithkhkrhkrrhkhhhhhhhhkhhkdhkddhkdhhbrhkhkhhrdbdtrhhhrhrhtihhkikn

o S C 0O R E ! >k
ol Stephen Davies - version 2.0 %
dkkhkkkdhkkhkhkdkdthkkdbthitthkhrhthkbhkhhhhhdhkhdkhdkdkhkdhkddhbidhdthdhrhhkihhik
* & * %
ok Current system parameters: ek
** Filename of sound file to use: MUSIC.DAT *x
ok Sampling frequency of sound file: 8000 Hz *k
*k Tempo of song: 120 beats per minute *k
** Minimum length of a note: 1/ 8 whole notes *
* Trim threshhold: 0.5 standard deviations el
** Gain of linear predictor: 11% of maximum *
** Window size of linear predictor: 10 *
ok Event detector STA window size: 6 ¥k
*x Event detector LTA window size: 500 ok
* & Event detector power ratio threshhold: 5 *
* Incremental FFT size: 2048 samples **
* ok FFT size tolerance: 80% of shortest note kil
i Pitch extraction cut-off factor: 1100 *
*x Pitch extraction dynamic range: 0.05 *k
falad Reporting accidentals in: sharps e
koK Instrument type: real *k
il Score mode: brief ok
* K ek

Fdhkhkdkhhkbkhhkbhhhkhhdhbhhkdhbhkdkhbhhdhkhodkdtrdbrdrrdhrhbhbhhkthhkddkddbdd
*hkkdrhkhkhkkdkhkdrhkhdbhkdhbhhbdkddrbhkdhbhhbhdrhkhrhkhkrthrhkrrddhkhkhhkhkhkhhkdx bk ki k

Preparing song for analysis...
Loading sound file...
Removing DC bias...
Trimming song...

Note: specified FFT size 2048 is greater than 80% of the
minimum number of samples per note, 2000. Resampling
original signal appropriately.

Song now has 129998 samples.
Analyzing song to locate notes...

Performing pitch extraction...
Computing FFT spectra...
Decompesing spectra into harmonically independent components...
Identifying well-behaved and poorly-behaved intervals...
Intervals 2, 3, 4, 5, 6, 10, 13, 15, 16, 18, 19, 20, 21, 22, 24,
are well-behaved.
Intervals 1, 7, 8, 9, 11, 12, 14, 17, 23, are poorly-behaved.
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Computing mean harmonic signatures..
Biasing signatures with interval 18..
Analyzing poorly-behaved intervals...

The score is:

Volce 1:

4 8th-note: <C#4 ( 278.9 Hz.)
5 sth-note: D#d ( 314.1 Hz.)
6 sth-note: D#d ( 312.9 Hz.)
7 quarter-note: E4 ( 331.6 Hz.)
8 quarter-note: B3 ( 248.4 Hz.)

13 8th-note: C#4 ( 278.9 Hz.)
14 Bthomote: B3 ( 248.4 Hz.)
15 quarter-note: A#3 ( 234.4 Hz.)
16 quarter-note: B3 ( 248.4 Hz.)




1 quarter-note: B3 ( 248.4 Hz.)

4 8th-note: F#4 ( 371.5 Hz.)
5 Sth-note: B3 ( 248.4 Hz.)
6 Bth-note: B3 ( 248.4 Hz.)
7 quarter-mote: (Rest.)
8 quarter-mote: (Rest.)
9 quarter-note: F#4 ( 371.5 Hz.)

12 quarter—-note: B4 ( 495.7 Hz.)
13 8th-note: A#4 ( 466.4 Hz.)
14 8th-note: G#4 ( 418.4 Hz.)

105



106

5 8th-note: F#4 ( 371.5 Hz.)
"6 oth-note: F#d ( 371.5 Hz.)
7 quarter-mote: B4 ( 494.5 Hz.)
8 quarter-note: E4 ( 331.6 Hz.)
"9 quarter-note: (Rest.)
10 quarter-note: D#5 ( 624.6 Hz.)
11 quarter-note: B3 ( 248.4 Hz.)
12 quarter-mote: (Rest.)
13 8th-mote: D#7 ( 2549 Hz.)
14 Bth-note: B3 ( 248.4 Hz.)

18 quarter—-ncte: A#4 ( 468.7 Hz.)
19 quarter-note: B4 ( 495.7 Hz.)
20 quarter-note: D#7 ( 2549 Hz.)
21 quarter-note: A#4 ( 466.4 Hz.)
22 quarter-mote: B4 ( 495.7 Hz.)

24 quarter-note: C#5 ( 556.6 Hz.)
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As we might have expected, the program's performance is at its worst during
the poorly-behaved intervals. Score seems to have very little trouble in identifying the
pitches and properiy associating notes with voices in the well-behaved intervals, but it
simply cannot maintain a very high level of consistency in the others. Most likely, this
is due principally to three factors: (1) the mean harmonic signatures may not perfectly
reflect the "real" signatures for the voices involved, due to upper harmonic ambiguity
in the well-behaved intervals. (2) The additions of signatures to form "guesses" in the
poorly-behaved intervals may not be accurate. This could be because we are
eliminating the deterministic phase shifts between peaks in the same signature and just
taking the expected value with respect to all phases, which we assume are uniformly
distributed. (3) The harmonic signatures of instruments from note to note may simply
be too unstable to track with a high enough degree of accuracy.

It remains to be seen which of the three factors above is most responsible for
the performance degradation in the poorly-behaved intervais: this could be a topic of
future investigation. If (1) and/or (2) are the chief causes, then we might be able to
devise a sirategy for counteracting them. For instance, suppose it turns out that upper
harmonic ambiguity in the well-behaved intervals causes the mean harmonic signatures
to lose too much resolution. We could develop a method by which the well-behaved
intervals that "poorly fit" the others (ie., those intervals that had significant error with
respect to the mean harmonic signatures before they were averaged in) would be
assumed to contain significant upper harmonic ambiguity. Then, a methodology
similar to the one described in chapter 3 for the poorly-behaved intervals could be used
for these well-behaved intervals, with the only difference being that we know no
fundamental frequency has been obscured by a harmonic.

Or, suppose that (2) is the main problem: by taking the expected value of the

amplitude over all possible phase differences when we add two sinusoids, we obtain an
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unsatisfactory approximation to the true amplitude. The next logical step would be to
use the phase information as well as the magnitude information of the harmonic
signatures. In other words, when a particular instrument plays a sequence of notes, we
would not only expect that the ratios of the magnitudes of the harmonic peaks to be
roughly constant from note to note, but that the phase differences between peaks
would be roughly constant. This is because the phases of the various frequency
domain peaks have a huge impact on what the resulting time-domain waveform looks
like, and it is really this time-domain waveform which we presume will remain
reasonably constant. By ignoring this dependable characteristic of each instrument's
frequency spectrum, we are really throwing away information which could be put to
use. A more sophisticated approach would be to maintain complex-valued harmonic
signatures, using the absolute phase difference between two simultaneous voices as
another degree of freedom in our series of pitch extraction "guesses."

The only circumstance in which we will have run into a genuine dead end is if
(3) turns out to be the foremost difficulty. If the harmonic signatures of instruments
produced by an electronic synthesizer - let alone those produced by live acoustical
instruments played with "feeling" and "interpretation" - are not sufficiently stable to
track from note to note, then the entire approach to pitch extraction outlined in
Chapter 3 is doomed to failure. Intuitively, we would not expect this to be the case.
A human being can accurately discern between a trumpet and an oboe playing a duet
on a radio station, and the only information he/she receives in this case is the same
waveform the program receives. This tells us that conceptually, there is enough
information present in the signal to make this determination relisbly. No doubt a
listener makes use of the time domain characteristics of instruments discussed in

Chapter 2 as well as frequency domain information, but this author would hope - and
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suspect - that frequency qualities alone would be sufficient to distinguish two voices, if

only they were analyzed in the proper manner.



CHAPTER V1
CONCLUSION

Whatever else we may have learned from this study, it is clear that the human
brain is a marvelously powerful organ. Given only a sound waveform and a few other
audio clues which the stereo nature of the ears can make use of, a musically competent
human can identify and describe the musical information present therein with a
tremendous degree of accuracy. This appears to be true of a wide spectrum of
different kinds of instruments, regardless of the genre of music being played, the
acoustical characteristics of the performance environment, or the presence of noise and
other audio distractions. A computer, on the other hand, given an identical waveform
and programmed to employ a large number of quite sophisticated signal processing
algorithms, can only match the human's performance under the best of circumstances.
As an engineer, it is truly humbling to realize that despite one's most earnest attempts
to mimic the activities of the human brain, one seems to consistently fall short of what
simply "comes naturally" to multitudes of people ignorant of signal processing basics.

Nonetheless, we have gained some ground. The techniques for automated
musical recognition described in this thesis appear to be somewhat successful in
analyzing a small set of simple songs, even when the most daunting challenge to the
endeavor - the presence of harmonic ambiguity - is present. At the very least, we have
succeeded in precisely characterizing the nature of musical waveforms to the point
where even more sophisticated approaches might be attempted. At most, we have laid
a basic framework which might be combined with additional heuristics to provide a

realizeable solution to the problem of automated musical recognition.
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Whether the outputs given at the end of Chapter 5 would be considered
"satisfactory” depend on the nature of one's application. Certainly, if they were played
for a human listener, he/she could to identify the song, even though a few notes might
be incorrect. If the goal was to produce a written score which could be used as a
performance guideline, an experienced musician would surely be able to recognize the
errors and add their own improvisation. And if an instrumentalist, who was not
particularly adept at transcribing to musical notation, were to use the program on a
"jam session" recording, he/she would be able to avoid much of the tedium of putting
things down on paper, and instead merely fix a few erroneous notes. So clearly, there
exist a number of applications where even the performance level achieved by the Score
prototype would be acceptable and helpful.

To faithfully and dependably produce musical scores for publishing purposes,
however, we must have loftier goals. The results produced by Score do not appear to
be consistently accurate enough to simply accept without some amount of editing.
The most realistic solution seems to be to fall back on a joint computer/human
approach, whereby the program cranks out an "approximation" to the true score, and
the human then analyzes this and corrects errors. One could even envision this
correction being done aurally, with the computer playing the original song along with
the notes of the approximation so that differences might easily stand out to the
listener. It might also be possible to add yet another layer of automated processing to
the program's output, such that "musically unlikely" outcomes could be rejected and
others tried. For instance, on the output on page 101, a routine might notice voice 3's
tremendous jumps down to C#4 and D4 in measures 3 and 4 and reject them on the
grounds of musical implausibility. It could then send feedback to the original program,
which would re-examine these intervals and weigh the more likely resuits more

heavily.
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For now, we simply remark that the language of music is extremely intricate,
diverse, and not even fully understood. The distinction between different kinds of
musical events (quarter-note, or eighth-note/eighth-rest? F#, or F? Piccolo voice, or
flute voice?) can easily become blurry to the point where the decision between them is
as much a product of subjective opinion as of anything else. Given such an inherently
"fuzzy" input, then, we should not be surprised that any rigorously concrete algorithm
will produce some number of errors. Qur best hope is that we can nail down the
problem space to something we can get handles on, and devise a general solution to
approximate what happens in the listener's mind under ideal circumstances. Perhaps as
more is understood about musical phenomena and human perception of them, we will
be able to apply additional methods to these basic techniques and yield a system with

true human-like performance.



CHAPTER VII
FUTURE AREAS OF INVESTIGATION

Most future research topics in this area would center around finding ways to
improve the system's accuracy. Under what circumstances does the program perform
poorly, and what can be done to correct the resulting errors?

Since the least dependable part of the program is clearly the pitch extraction in
poorly-behaved intervals, we would do best to begin there. It would certainly be
prudent to investigate the possibilities of maintaining complex harmonic signatures for
the various voices, since intuitively this is information which can and should be
exploited. It is unknown at this time whether this would result in a substantial
performance increase. Also, a study into the effects of upper harmonic ambiguity on
the mean harmonic signature computations is in order. If it turns out that the reason
for performance degradation is unreliable X;'s, techniques as described at the end of
Chapter 5 might be employed to improve this reliability.

It is also probably worth searching for a more sophisticated parameter
selection process. Most of the outputs presented in this thesis were obtained only
after a few minutes of adjusting the linear predictor gain, frequency peak detection
threshhold, FFT window sizes, and other parameters. This was done with a priori
knowledge about what the output should be, which calls into question the program's
utility for the general user who will usually not, of course, have previous knowledge of
the score. It is possible that an adaptive mechanism could be added to provide
feedback to the program about parameter adjustment. For instance, if only a small
number of events are detected, then the linear predictor might need adjustment; if all

the mean harmonic signatures look alike, the peak detection threshhold needs to be
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lowered, etc. Hopefully, this process could be fully automated so that these details of
the algorithm's operation can be hidden from the user.

If the program is given additional information about what it is likely to see, it is
possible that performance might be dramatically improved. The situations under which
this is likely to occur would be an appropriate topic for further research. For example,
suppose that Score is given a library of harmonic signatures for certain instruments
under particular conditions, and informed which instruments will be present in the
recording. This would eliminate the need to acquire mean harmonic sigqatures, since
perfectly accurate ones would be provided at the outset. As we noted in Chapter 2,
every individual violin, piano, etc. has its own unique characteristics, but we might
even eliminate this variance by including a "training" session before the main
algorithm. Each instrument to be included in the recording could play a scale through
its entire pitch range so that the program could "lock on" to that particular instrument
rather than to some global notion of "the violin signature for all violins." Similarly, we
might see how the program performed if it were first trained on a different song, but
with the same instruments playing. If successful, this would be useful in situations
where scores were periodically desired from a particular orchestra or band, using the
same instruments. After "warming up" on a couple of symphontes, the program might
know enough to accurately identify the notes of future performances.

Finally, for the algorithm as described in Chapter 3 to work "as is," we
presumed that every song would have at least one well-behaved interval. This is
virtually the only assumption we made, but for completeness we should explore under
what situations it is true. It would be worthwhile to conduct an investigation into the
annats of music history to determine what genres of music tend to fulfill this
requirement, and which, if any, do not. For those pieces which featured only poorly-

behaved intervals, the kind of mean harmonic signature computations described earlier
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would be impossible. We would have to modify our approach once again for these
inputs, perhaps using the kinds of training techniques described above to avoid having

to compute the signatures from the piece itself.
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1Exceptions to this rule occur during short periods when some instruments are just
entering their pure tones; for instance, the "breathy" sound a flautist makes during the
attack of a note, or the somewhat noisy component of a violin bow "catching" the
string on initial contact. These effects are typically brief and have little impact on the
overall spectral content of the instrument.

2 The subtle distinction between the fundamental frequency of vibration and the
perceived "pitch" of a note has given rise to quite a debate in the literature. For
purposes of this thesis, however, I will ignore such nuances and use the fundamental to
measure pitches directly.

3 Musical Acoustics, Charles A. Culver, McGraw-Hill, 1956, p.172.
4 Disregarding percussive and noisy instruments, of course.

5 These predictions were borne out clearly in the laboratory, where the division
algorithm performed very poorly. For extremely short songs - say, eight or fewer
notes - it can function fairly well provided the threshhold for song trimming is set
adequately. But for anything longer, the relationship between the segments and the
song's actual notes becomes blurry and nonexistent.

6 The vector of weights is defined on the real numbers, provided that the input data is
also real. The digitized music data analyzed by the Score program are all real.

7 As an aside, though the focus of this thesis was not to optimize the program's
calculations to produce its output most efficiently, it should be noted that the most
time-consuming part of the entire Score algorithm by far is the process of computing
the linear predictor's error vector. Such a consideration speaks even more strongly in
favor of using the LMS algorithm, a relatively speedy procedure.

8 Earlier, we noted that forcing the user to accurately specify the tempo of the song
was requiring them "to do some of the work that the program ought to be doing."
However, it should be clear that the use of the tempo T described here is not the same,
because no great accuracy is required. In order to suppress false events that occur
immediately after true ones, we require only a very rough approximation of the tempo
so that we have an idea of how long after each accepted event we should disallow
others.

? The straightforward Discrete Fourier Transform of N data points requires

approximately N2 complex operations, while the FFT requires only N logy N.

10 The Score program requires a minimum resolution in the frequency domain in order
to distinguish adjacent pitches. If not enough samples are available in the shortest
note's interval to provide this resolution, it automatically uses interpolation to increase
the sampling rate of the signal so that the criteria is met.

1 practice, the N, is again subject to a relaxation factor to relieve the user of
having to specify the song's tempo precisely. This relaxation factor is, in general,
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different from the relaxation factor described in the event detection section of this
chapter.

12 The Midisoft Studio sequencer has a built in feature which will do exactly this. The
underlying sound of the music remains the same while the user can request that certain
aspects of the displayed score be modified. Straightforward techniques are available
for implementing this.

13 1 use the term "single-part" to refer to a song in which only one instrument is
playing at any given time. "Multi-part" songs are those in which more than one
instrument is playing simuitaneously; ie., those with harmony.
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