
Smeagol: a “specific-to-general” Semantic Web
query interface paradigm for novices

Aaron Clemmer, Stephen Davies

University of Mary Washington, Fredericksburg, VA 22401, USA
aclemmer@umw.edu, stephen@umw.edu

Abstract. Most Semantic Web query interfaces let the user give an
abstract specification of the desired results (perhaps using facets, or a
natural language query.) We introduce the Smeagol visual query interface
which, by contrast, guides the user from a specific example to a general
result set. Users begin the query process with navigation and exploration
activities, building a concrete subgraph of interest from the larger data
set. They then generalize this subgraph to find other subgraphs similar in
some way to the one identified. Among other advantages, this approach
also lends itself quite naturally to querying on instance-based data; i.e.,
triples in which the predicate is not part of a defined ontology. We pro-
vide an analysis of this specific-to-general approach, contrasting it with
existing systems. We also present the results of a usability experiment
comparing novices’ use of Smeagol with that of a standard Linked Data
browser.

Keywords: Semantic Web, linked data, user interface, query building,
pivot operation, graph visualization

1 Introduction

In the last few years, Semantic Web researchers have begun to produce interfaces
that enable novices to pose queries without the use of a formal query language.
Some of these applications accept natural language queries; others let the user
directly manipulate a graphical representation.

One thing these diverse systems share is an interface paradigm that progresses
from the general to the specific. Users give an abstract specification of the desired
results, whether by using facets, natural language description, or some other
means. Although the mechanism used to express the query varies widely, the
user’s task is ultimately still to express some variation of the general formula
“find resources that satisfy these criteria.”

A subtle problem is that this approach often does not mimic the user’s
thought process. Sometimes the user may begin with an abstract question in
mind, but often he does not. Instead of knowing at the outset that he wants
to ask “Who are all the famous athletes who dated celebrities?” a user may be
browsing a David Beckham page, discover that Beckham dated Victoria Adams,
and think, “Interesting! I wonder what other athletes were similar?” Only after

2

asking that question, in those circumstances, will he discover that Derek Jeter
dated Mariah Carey. In other words, a user often does not even realize that he
has a question until an intriguing concrete example is found.

We believe there may be an advantage to an interface that explicitly enables
this process. With such a tool, users could roam and explore a Semantic Web
data set without regard to any possible future query. As they browse, they mark
out features of interest along the way, building a subgraph which illuminates
a small subset of resources and relationships. Then, they generalize from this
example in whatever way(s) they choose in order to see analogous resources.

Even when users do begin with a question, they may benefit from being able
to express that question by means of an example. Rather than having to begin
abstractly with a list of types and predicates, users can find a concrete example
of what they are looking for, and construct the query “in place.” This seems less
error-prone, since the user is directly working with the very predicates and graph
structure for which they want results, rather than having to describe the desired
instances in general terms. This approach also naturally supports querying on
any predicate, not merely those defined by an ontology. It is possible, of course
(see, e.g., VisiNav[6]) to design a faceted interface that exposes non-ontology-
based predicates, but it seems that the context in which one first discovered
the existence of a predicate is a quite natural place from which to select that
predicate and find other examples.

We define the term “general-to-specific” to refer to a query interface (like
Humboldt[12] or gFacet[7]) that allows the user to specify abstract criteria for
a result set. By contrast, we define “specific-to-general” to refer to an interface
that explicitly supports starting with an example and generalizing it to find other
similar examples. Put another way, a “general-to-specific” interface is based on
reduction: adding criteria to the query progressively narrows down the results
from the set of all resources to the desired set of answers. A“specific-to-general”
interface, on the other hand, is based on expansion: aspects of a concrete example
are progressively generalized to find other results that match a pattern.

To continue the above example, a general-to-specific interface would allow
a user to find the class of Footballers (or Professional Athletes) in a data set,
then choose from predicates like “dated,” “marriedTo,” or “inARelationship-
With.” The user could form a query based on such predicates, and add addi-
tional constraints, such as that the object of the triple must be of a certain
type (Celebrity.) This would allow the user to find both the Beckham-Adams
and Jeter-Carey query results, but only by beginning with (and knowing about)
the abstract types and predicates, and anticipating that there would be some
result(s) that satisfied them. By contrast, a specific-to-general interface would
allow the user to browse the data set, and upon reaching a subgraph reflect-
ing the Beckham-Adams relationship, immediately request to generalize that
relationship to others that followed the same pattern. No top-down selection
of classes, predicates, or desired subgraph patterns is required, since these are
directly under the user’s nose at the time the query is generated. There is also

3

no need for the user to guess what the “correct” predicates or classes are, since
the example immediately in front of the user already contains them.

This paper introduces Smeagol, a query interface that directly supports the
specific-to-general paradigm. In J.R.R. Tolkien’s mythology, Smeagol was a crea-
ture who found something of great value without deliberately setting out to
search for it. Similarly, our application allows the user to begin the query pro-
cess with navigation and exploration activities, building a concrete subgraph of
interest from the larger data set. They then generalize this subgraph to find
other subgraphs similar in some aspect(s) to the one identified. Our theory is
that ordinarily, a novice user’s “queries” arise in exactly this way: not as a quest
for general results satisfying some abstract criteria, but as a search for other
items analogous to a concrete particular.

Note that our work is about identifying, designing, and empirically evaluat-
ing a new user interface paradigm. There are many other open questions about
querying the Web of Linked Data which we do not address. These include: perfor-
mance and scalability of complex queries; evaluating queries that span multiple
data sets and hence require data integration to satisfy; and discovering relevant
data sets. These are all important open problems, and we are aware that others
are working on them. They are, however, outside the scope of our research. Our
focus is on enabling novice users to effectively pose complex queries against a
Semantic Web data set, a challenging task given the complex nature of graph-
based data and the difficulty many humans have visualizing and articulating
patterns in it.

2 Related Work

There are a variety of user interfaces that enable novices to query the Semantic
Web. These differ from search interfaces such as Sindice[16], Swoogle[5], and
Falcons[2], whose purpose is to find resources matching a keyword or property,
in that they enable the user to answer complex questions expressed as a graph
pattern, such as “Who are all of the authors of books published in Germany in
the year 1974?”

Within the domain of query interfaces, Natural Language Interface (NLI)
systems such as FREyA[4], PowerAqua[13], PANTO[17], and SerFR[1] focus on
helping the user find an answer to an a priori question, as opposed to supporting
an iterative process of domain discovery and query building.

Visual query builder (VQB) systems, such as iSPARQL[15], Semantic Crys-
tal[11], NIGHTLIGHT[14], and SPARQLinG[8], manifest the query as a graph
(as Smeagol does), but the top-down emphasis on constructing formal graph
patterns from an ontology expects significant knowledge of both the problem
domain and SPARQL. Neither NLIs nor top-down VQBs are oriented towards
scenarios where a formal ontology does not exist.

Faceted interfaces, such as Humboldt[12], Parallax[9], gFacet[7], and Visi-
Nav[6], are more oriented towards novices than VQB systems. Like Smeagol,
they enable novice users to both explore the problem domain and also itera-

4

tively build a query, particularly when they do not begin with a clear a priori
question. However, faceted interfaces are intrinsically general-to-specific, because
the user starts with a generalized set of resources (perhaps all resources of a given
type) that is reduced by selecting facets which filter the set. That is, facets are
abstract criteria that narrow the result set.

In addition to letting a user filter results on simple properties, Humboldt and
Parallax allow the user to “pivot” to properties of related objects (of different
types.) For example, a user querying for automobile manufacturers can pivot to
the set of automobiles manufactured by Toyota. This implementation of the pivot
concept is powerful, but has three important limitations. (1) Only a portion of
the query specification is visible to the user at any given time, due to the selected
facets only being displayed on the respective pages they were selected from. This
was noted by [7], and we believe that grouping the constraints of the entire query
together would place less cognitive burden on the user, since they could then
see a unified presentation of the query. (VisiNav[6] is an example of a faceted
interface which addresses this limitation.) (2) Not all types of queries (which we
term “query topologies”; see Section 5) are supported by these interfaces because
they utilize a linear history model (i.e. the past sequence of user pivots.) This
limitation was noted by [12] for Humboldt but applies to Parallax as well. An
example of a non-linear query that cannot be posed by these interfaces is “What
musicians contributed to a 2010 album, and also wrote a book of poetry?” which
requires a branching sequence of pivots to specify all relations and facets. (3)
When the user wants to view results across multiple pivots, he must visit each
relevant page in the history to assemble the results. That is, the user can only
view one column of the query results at a time. Smeagol addresses all three of
the above concerns by (1) manifesting the entire query in a single display, (2)
supporting arbitrary branching topologies, and (3) presenting all query results
as a set of tuples in a unified display.

gFacet[7] is a facet graph interface, and so uses the general-to-specific paradigm
as all faceted interfaces do. It is similar to Smeagol in that the user’s query is
represented visually as a graph, but there are several key differences. First, in
gFacet the facets are derived solely from ontology1, so it is not possible to express
queries involving arbitrary predicates. Second, it does not provide a facility for
viewing all statements made about a given resource, limiting the ability of the
user to explore the domain to discover what kinds of queries can be posed. Third,
like Humboldt and Parallax, the user cannot see a unified, assembled result set
across multiple pivots.2

1 For DBpedia, the facets are skos:subject objects of type skos:Concept, paired
with the predicates relating them back to the subject of the triple whose resources
have skos:subject as the current facet.

2 For example, suppose the user has a query graph with three facets: song titles
in the category Songs written by John Lennon, producers of those songs who are
LivingPeople, and record labels of those songs that are RockRecordLabels. If the
user wanted to know all songs produced by Yoko Ono and their respective record
labels, he would first have to select Ono from the list of LivingPeople. He would
then see the songs produced by Ono and the record labels of those songs, but the

5

The MashQL interface[10] is essentially a dynamic, hierarchical, form-based
query builder. It implements pivots and supports both ontology and arbitrary
properties, all composed in a tree-based view. The user progressively specifies
graph patterns using dynamically constructed dropdowns whose contents reflect
the current context (e.g. if a subject dropdown is set to a particular resource, the
predicate dropdown will contain all properties used by that subject). Pivots are
expressed through the hierarchical representation of the graph patterns, and the
user can then specify which elements will be returned in the results. MashQL
largely utilizes the general-to-specific paradigm, as the user specifies a general
pattern using subject classes as well as predicates, which may return many re-
sults. He may then reduce the results to a specific answer by either adding
further relations, or by specifying that a property’s subject or object has a par-
ticular value. Note that the interface also does support the specific-to-general
paradigm to a degree, as concrete concepts can be chosen from dropdowns rather
than from an ontology. However, the interface’s form-based query building en-
courages users to think from a top-down perspective, and it does not provide
a straightforward way to view all statements made about a particular resource,
limiting the exploration required to locate conrete resources.

In summary, these query interfaces comprise numerous powerful features that
enable users to pose queries in intuitive ways. However, none of them support
the specific-to-general paradigm in the way that Smeagol does.

3 The Smeagol user interface paradigm

Smeagol supports a threefold procedure for building queries. Each step is in-
tended to lead naturally to the next.

1. Exploration. Users begin by exploring the data graph, traversing from
resource to resource and seeing the statements made about each one. This is
similar to most Linked Data browsers, but different from most query interfaces.
It enables the user to begin with a familiar navigation task, traversing from
concrete resource to concrete resource. The user can inspect the triples involving
each resource of interest. During this process of inspection and traversal, the user
does not face a burdensome cost in terms of backtracking or reorientation when
pursuing casual exploration or encountering deadends.

2. Subgraph building. As the user begins to identify an area of interest,
he can select particular triples and add them to an “example subgraph.” This
is a connected subset of the overall Web of Data that reflects a user’s current
focus. It consists of a handful of specific resources and the relationships between
them. Building this subgraph serves two purposes: (1) it lets the user select
and highlight only the relevant subset of information out of the overwhelming
amount of data in the overall graph, and (2) it forms the basis for a future query.

two lists would not be correlated with each other. In order to correlate the two, the
user would need to click on each record label resource in turn to determine which
songs correspond to it.

6

We believe this step is particularly important as users transition from today’s
free-text-based Web to the Semantic Web. In the free-text Web, the content of
a single page contains so much context that visualizing its neighbors is not as
crucial. But when browsing Linked Data, where each node represents a suc-
cinct nugget of information, a user can quickly become disoriented if he cannot
visualize the contextually pertinent relationships around it.

3. Subgraph generalizing. Finally, the interface assists the user in gener-
alizing his specific example into a query, so that he may view the answer(s) to a
question he wants to pose. From the specific example, the user can express that
certain concrete subjects and objects are actually the resources that he wants to
generalize from; that is, they are the variables of the query. The properties and
remaining resources are considered to be the constraints.

Though presented here as a sequence, Smeagol users can naturally move back
and forth between these activities as they explore the data graph. Adding more
triples to the subgraph moves from activity 3 back to activity 2, and navigating
to a resource moves back to activity 1. In this way, queries can be modified,
expanded, and refined in an interactive process.

3.1 User Interface

In order to begin exploring a graph of Semantic Web data, the user must specify
a URI to use as his starting point. Smeagol provides a simple search interface
that utilizes DBpedia’s URI Lookup web service3. The user types one or more
keywords into a search box, which when submitted gives a list of suggested URIs
for consideration. The user must select the URI from which he wishes to begin
exploring; this URI becomes the first resource in his subgraph. Once the user
chooses, he is taken to the main Smeagol interface.

The Smeagol interface (Fig. 1) is divided into three sections. The inspector
pane (left) displays all triples involving the user’s current resource of interest
in an “infinite-scrolling” list. When the user decides to add a particular triple
to his subgraph of interest, he can identify it as such by selecting it in the list.
Conversely, if the user changes his mind, he can remove it from his subgraph by
unselecting it. Smeagol currently has no mechanism for intelligently limiting the
number of triples in the inspector; this is a difficult problem, and is a topic for
future work.

The query visualizer pane (top-right) displays the user’s current subgraph.
Selections and unselections made in the inspector pane immediately result in an
animated update of the visualization. The subgraph is depicted using a radial
layout algorithm. The advantage is one of locality: the resource in the center
of the visualization is the one currently most relevant to the user; it is also the
resource shown in the inspector pane. The distance from the center resource
to another resource reflects the degree of separation between them; a distant
resource is usually less important to the user than a direct relation. The user
may choose to shift his focus and inspect a more distant resource by clicking

3 http://lookup.dbpedia.org/

7

Fig. 1. The Smeagol User Interface.

on its name in the query visualizer; this moves that resource to the center. The
radial layout may be panned by clicking and dragging, which provides access to
resources too distant to be in immediate view.

A resource in the query visualizer pane can be removed from the subgraph,
or “wildcarded” (generalized) via a pop-up menu. Choosing to remove the re-
source from the query will remove it from the user’s subgraph, and also prune
the subgraph at that point. This behavior simplifies the process of trimming
unnecessary paths of exploration from the subgraph.

Fundamental to the subgraph building procedure, the user can generalize
his subgraph at any time by choosing to wildcard a resource; any number of
resources may be wildcarded. (When a wildcarded resource is displayed in the
inspector, its last associated concrete resource is shown.) The act of wildcarding
a resource results in a query being executed.

The results pane (bottom-right) displays a table of tuples corresponding to
the query results, which refreshes whenever the wildcarded state of a resource
in the query visualizer changes. This state change causes the subgraph to be
translated into a SPARQL query, where each variable in the query corresponds
to both a wildcarded resource in the query visualizer and a column in the results
pane.

There are two operations the user can perform from the results pane. Clicking
on a cell in the table replaces the corresponding wildcarded resource in the
subgraph with the cell’s value. This results in a new query being run and the
results pane being refreshed. Clicking on a row’s “Update All” button replaces

8

all wildcarded resources in the subgraph with the respective concrete resources in
that row of the results. This effectively replaces the entire query with a chosen
concrete example. The benefit of these operations is to aid in the explorative
process: if the user discovers an interesting resource in the results, he not only
can update the query to restrict on that resource, but can also inspect it and
modify the subgraph based on what is seen.

3.2 Example

To provide an example of the process of exploration, subgraph building, and
subgraph generalization with Smeagol, consider the following: Suppose the user
searches for the 1982 film E.T.: The Extra-Terrestrial, and after selecting it, he
is taken to the main Smeagol interface. At this point, the center resource in the
query visualizer pane would be E.T. (Fig. 2, A), and the inspector pane would
show all statements about the film. Browsing through the inspector, the user
notices that the film was directed by Steven Spielberg, the music was by John
Williams, and it starred Drew Barrymore. Each of these statements interests the
user, so he clicks on them in turn in the inspector pane to add them to the query
visualizer pane (Fig. 2, B).

Fig. 2. The query building process.

9

Deciding to explore Drew Barrymore, the user clicks on that resource in
the query visualizer pane, which causes the graph to move the resource to the
center and the inspector pane to load information about the actress. Browsing
through the inspector, the user sees that she is of type AmericanChildActors.
Recalling that Barrymore was quite young in E.T., a question occurs to the
user: did Stephen Spielberg direct any other films which starred an American
who at one time was a child actor? Moreover, did Spielberg and Williams col-
laborate on any such films? To answer this query, the user begins by adding
the AmericanChildActors resource to the query visualizer (Fig. 2, C). He then
chooses to wildcard both the E.T. and Drew Barrymore resources (Fig. 2, D), as
he wishes to see more films and actors meeting the above criteria. After doing
so, he is presented with the results as seen in Fig. 1.

4 Architecture

Smeagol is a Rich Internet Application (RIA) that communicates via REST web
services to a Java server application. The server application provides proxying to
SPARQL endpoints, query result caching, and persistence of users’ query graphs.

Smeagol has been tested against DBpedia’s SPARQL endpoint, but is not
architecturally limited to it. The SPARQL query used by the inspector makes no
assumptions about ontology or the presence of any DBpedia-specific resources:

SELECT DISTINCT ?subject ?predicate ?object WHERE {

{<resource> ?predicate ?object}

UNION

{?subject ?predicate <resource>}

FILTER (lang(?object) = "en" || lang(?object) = "")

} ORDER BY ?predicate ?subject

The SPARQL queries generated by the query builder from the user’s example
subgraph are similarly independent of DBpedia. Note that Smeagol could be
adapted to data sources other than SPARQL endpoints if those sources could
be accessed in a programmatic way, since the user does not deal explicitly with
SPARQL.

The query builder currently supports a subset of SPARQL syntax: the user
may specify triple patterns and bind variables. More advanced syntax was not
necessary for the initial validation of the specific-to-general query paradigm.

Performance of the application is determined by the responsiveness of the
SPARQL endpoint and the complexity of the queries the user chooses to con-
struct within the query visualizer. The inspector queries are simple, an advantage
afforded by the specific-to-general approach is a reduction in ontology-related
queries needed to drive user exploration and query formulation, compared to
general-to-specific interfaces. Finally, paging is used to manage large result sets
returned by inspector and user queries.

10

5 Query topologies

In order to identify which kinds of queries Smeagol confers an advantage for,
we define the notion of a query topology. A query topology describes the general
structure of a subgraph in terms of the nodes and the relationships between
them, including which of the nodes are wildcarded. It essentially characterizes a
certain class of triple patterns.

We depict query topologies visually as a graph of nodes, where “R” indicates
a particular concrete resource, and “*” indicates a wildcard. (See Fig. 3.) This
is similar to a SPARQL triple pattern – with R’s as URIs and *’s as variables –
except that we are generalizing from any particular pattern to a category of all
structurally similar patterns. Here is one query that conforms to this topology:

SELECT * WHERE {

:Kenneth_Branagh :starringIn ?film

?film :writer :J._K._Rowling

}

This query conforms to the topology since it contains one variable present in
two triples, each of which also contains one concrete resource. Note that a query
topology diagram is an undirected graph, since from a complexity standpoint
it turns out to be immaterial whether a given node in a triple is a subject or
an object. (True, the Semantic Web is a directed graph, since each triple has a
subject and object, but the queries “Spielberg directed ?x” and “?x directedBy
Spielberg” are equally difficult to pose and to evaluate, which is all we are
concerned with.)

R *

R

Fig. 3. A query topology.

We characterize a query topology by a three-numbered designation (n-w-l),
where n is the total number of nodes in the graph, w is the total number of
wildcards, and l is the length of the longest path of consecutively wildcarded
nodes, excluding branches. We choose these three measures, omitting other fea-
tures of the topology (for example, whether two R nodes are attached to the
same * node, or to different ones) because they represent likely elements of user
difficulty. The number of nodes, the number of generalized nodes, and the “den-
sity” with which the generalized nodes are glued together all represent different
aspects of a query’s complexity. We hypothesize that the third of these three
quantities will be particularly significant, since it essentially captures the num-

11

ber of pivots necessary to execute the query. The topology in Fig. 3 is of class
(3-1-1).

Further examples of query topologies, along with their topological designa-
tions, sample SPARQL queries, and sample English questions, are in Fig. 4.

R * R * * R

SELECT * WHERE {
 ?x :birthPlace :Paris
}
“Who was born in Paris?”

SELECT * WHERE {
 ?x :birthPlace :Paris
 ?x :attended ?y
 ?y :locatedIn :Austria
}
“Who was born in Paris
and attended an Austrian
school?”

R * * R

SELECT * WHERE {
 ?x :birthPlace :Paris
 ?x :type :Actor
 ?x :attended ?y
 ?y :locatedIn ?z
 ?z :memberOf :EuropeanUnion
 ?a :affliatedWith ?y
 ?a :type :Physicist
}

R

*

*

R

“What Parisian actors went to
a school in the EU whose
faculty has a famous physicist?”

(2-1-1) (4-2-2)

(8-4-3)

Fig. 4. Some query topologies, with designations, sample SPARQL queries, and sample
English questions.

6 Usability experiment

From a user’s perspective, Smeagol supports the same kind of open-ended ex-
ploration that a Semantic Web browser does, but adds the ability to naturally
transition to a query task. Hence, to test whether this added ability yields any
benefits, we conducted a usability experiment to compare novices’ performance
in using Smeagol with that of a Linked Data browser. Our goals were to de-
termine whether the Smeagol subgraph-building and wildcarding paradigm was
operable by novice users, and to identify which query topologies it gave an ad-
vantage for.

12

Our subject pool consisted of 43 undergraduate college students, ranging from
18 to 22 years of age and containing roughly an even split between genders. All
students were enrolled at the University of Mary Washington during the Fall
2010 semester and were of many diverse majors.

Participants took the one-hour experiment using the Firefox Internet browser
on a Windows workstation. They first received a ten-minute explanation of Se-
mantic Web concepts, and a demonstration of the particular navigation tool they
were to use (depending on the group; see below.) They then received a packet
of materials containing twelve timed query tasks, and were directed to a URL
to begin. Both navigation tools used the DBpedia SPARQL endpoint as the sole
data source.

Our control group used the Pubby Linked Data frontend[3], which provides
a simple HTML interface to the DBpedia SPARQL endpoint. Pubby’s interface
is similar to many Linked Data browsers in that it manifests each resource as a
page, and shows all triples that have that resource as either a subject or object.
This is nearly identical to Smeagol’s inspector pane, except that full URIs are
shown for each resource rather than just its label. Our experimental group used
the Smeagol application as described in Section 3.1.

Each item in the packet contained an English language question which the
participant was instructed to find the answer to. To begin, the participant was
directed to a certain resource that was one of many “answers” to the question.
For the control group, this was simply the Pubby page for the starting resource.
For the experimental group, the participants began by loading a stored Smeagol
subgraph with that node present. For example, item D asked “What famous
authors went to Harvard Law School?” and users began the item from the Barack
Obama Pubby page (control) or from a subgraph containing the Barack Obama
node (experimental). In this way, we hoped to simulate the process described
at the beginning of this paper: a user beginning with a concrete example and
wanting to generalize it to other examples.

The items were grouped into two sections. The first section contained “scripted”
items which explicitly provided the user with the required subgraph. In item D,
for example, the control group was told which predicates and resources were
relevant (:almaMater, :Harvard Law School, :occupation, and :Author) and
explicitly directed how to find them and what to click on. The experimental
group’s starting subgraph contained all of these nodes. The participant’s task,
then, was not to determine how to build the subgraph, but simply to general-
ize the subgraph: either by navigating and filtering (control) or by wildcarding
nodes and noting the results (experimental.)

The second section of the packet contained non-scripted items. For example,
item J asked “What U.S. Democrats who participated in World War II battles
went to a college in the Ivy League athletic conference?” and simply started
each participant on the John F. Kennedy page (control) or with a subgraph
containing only the John F. Kennedy node (experimental.)

Both sections featured items of various topological classes. Item D (above),
for instance, was of class (3-1-1), and item J was (5-2-2). Through this variety

13

we aimed to isolate the different cases and quantify how well Smeagol improved
user performance in various scenarios.

7 Results

The results for each item in our hour-long experiment are presented in Table 1.
The “control” column indicates how many users in the Pubby group got each
item correct in the time frame allotted (generally 4-6 minutes, depending on
item complexity) and the “exp” column shows the same for the Smeagol users.
An answer was deemed to be “correct” if its list of resources satisfactorily an-
swered the question for some reasonable choice of predicates. In some cases, more
than one reasonable choice existed (such as :sports and :affiliation for “Ivy
League” schools in question J), and so correct answers sometimes varied from
one another.

Item Topology class Scripted? control % exp % p-value

A (2-1-1) yes 17/23 73.9% 19/20 95.0% .100

B (2-1-1) yes 19/23 82.6% 20/20 100.0% .111

C (2-1-1) yes 19/23 82.6% 18/20 90.0% .669

D (3-1-1) yes 0/23 0.0% 17/20 85.0% <.0001

E (4-2-2) yes 0/23 0.0% 7/20 35.0% .002

F (2-1-1) no 17/23 73.9% 18/20 90.0% .250

G (2-1-1) no 20/23 87.0% 20/20 100.0% .236

H (3-1-1) no 0/23 0.0% 15/20 75.0% <.0001

I (3-1-1) no 4/23 17.4% 12/20 60.0% .005

J (5-2-2) no 0/23 0.0% 13/20 65.0% <.0001

Table 1. Results for each experimental item, including tallies and percentages for each
group (control and experimental) who correctly completed the item. Bold p-values
indicate statistically significant results (to α = .05 by two-tailed Fisher’s exact test.)

The first and most obvious finding is that the Smeagol group outperformed
the Pubby group on every item. However, this was statistically significant (using
Fisher’s exact test rather than χ2 due to small sample sizes) only for items in
which the number of nodes is greater than two. A simple thought experiment
reveals the likely reason for this. In a (2-1-1) topology – for instance, “Which
films did Tom Hanks produce?” (item C) – a Pubby user can navigate to a single
page (Tom Hanks) and examine the predicates to find a list of results. On the
other hand, in a (3-1-1) topology – for instance, “What famous authors went to
Harvard Law School” – a Pubby user faces a nearly hopeless navigation task.
Starting from either the “Author” page or the “Harvard Law School” page, they
can only identify a list of possible results. They must then manually navigate
to each author (or Harvard alumnus) to determine whether the other criterion

14

is satisfied. Smeagol, of course, makes such navigational legwork unnecessary
through the use of wildcards.

We suspect, but did not verify in this experiment, that the problem for Pubby
users would be exacerbated for queries involving a longer chain of wildcards
(i.e., those with a larger value of l in the (n-w-l) designation.) This effectively
multiplies the number of traversals exponentially. For instance, item E – “What
Chicago Bears football players went to college in the Big East?” – requires a
Pubby user to find players from the Chicago Bears page, but thereafter to face
a combinatorial explosion. Each player cannot simply be checked for a property;
rather, all schools that player was affiliated with must each be checked for a
property, requiring a second set of multiple traversals. The total size of the
problem varies with the average number of triples per predicate, of course, but
it quickly becomes unmanageable (to say nothing of time-consuming) even for a
disciplined user. We plan to investigate this in future research.

8 Conclusions and Future Work

The specific-to-general query paradigm seems to be understandable by novices
and beneficial to them. Equipping users with the ability to identify a subgraph
and generalize it allows them to answer a much wider variety of questions than
they could with only a standard navigational browser. This appears to be par-
ticularly true for queries that reach a certain threshold of complexity, where
“complexity” involves both the number of nodes in a subgraph and the number
and arrangement of wildcard nodes. Also, there is a benefit to users explicitly
building and visualizing a concrete subgraph, so that they can better compre-
hend the immediate context of their inquiry.

Smeagol itself could be improved by enabling quantitative comparisons in
queries, and by expanding the set of logical primitives to include unions and
“ors.” Additionally, we believe there may be benefit to organizing the predicates
available for users to choose from by leveraging available ontology – this would
complement the strengths Smeagol has in supporting queries built from arbitrary
triples.

Having established a baseline against the standard Linked Data browser
model, we plan in future work to compare novices’ performance with Smeagol
versus general-to-specific query interfaces like gFacet[7]. This should help us un-
derstand which use cases have the greatest benefit from a specific-to-general
model; it is very possible that different sorts of user scenarios are better served
by different approaches.

Smeagol is completely open source under the GPL license and source code
is available at http://bitbucket.org/aclemmer/smeagol. A live demo of the
application can be accessed at http://rosemary.umw.edu/smeagol.

References

1. Al-Muhammed, M., Embley, D.: Ontology-based constraint recognition for free-
form service requests. In: Proceedings of the 23rd IEEE International Conference

15

on Data Engineering. pp. 366–375 (2007)
2. Cheng, G., Ge, W., Qu, Y.: Falcons: searching and browsing entities on the seman-

tic web. In: Proceedings of the 17th International Conference on World Wide Web
at WWW2008 (2008)

3. Cyganiak, R., Bizer, C.: Pubby – a linked data frontend for sparql endpoints. http:
//www4.wiwiss.fu-berlin.de/pubby/ (2007), http://www4.wiwiss.fu-berlin.

de/pubby/

4. Damljanovic, D., Agatonovic, M., Cunningham, H.: Natural language interfaces
to ontologies: Combining syntactic analysis and ontology-based lookup through
the user interaction. The Semantic Web: Research and Applications pp. 106–120
(2010)

5. Ding, L., Finin, T., Joshi, A., Pan, R., Cost, R.S., Peng, Y., Reddivari, P., Doshi,
V., Sachs, J.: Swoogle: a search and metadata engine for the semantic web. In:
Proceedings of the thirteenth ACM international conference on Information and
knowledge management. pp. 652–659 (2004)

6. Harth, A., Buitelaar, P.: Exploring Semantic Web Datasets with VisiNav. In: The
6th Annual European Semantic Web Conference (ESWC2009) (2009)

7. Heim, P., Ertl, T., Ziegler, J.: Facet graphs: Complex semantic querying made easy.
The Semantic Web: Research and Applications pp. 288–302 (2010)

8. Hogenboom, F., Milea, V., Frasincar, F., Kaymak, U.: RDF-GL: a SPARQL-Based
graphical query language for RDF. Emergent Web Intelligence: Advanced Infor-
mation Retrieval pp. 87–116 (2010)

9. Huynh, D., Karger, D.: Parallax and companion: Set-based browsing for the data
web (2009)

10. Jarrar, M., Dikaiakos, M.: A Data Mashup Language for the Data Web. In: Proc.
of Linked Data on the Web (LDOW2009) Workshop at WWW2009 (2009)

11. Kaufmann, E., Bernstein, A.: How useful are natural language interfaces to the
semantic web for casual end-users? In: Proceedings of the 6th international The
semantic web and 2nd Asian conference on Asian semantic web conference. pp.
281–294 (2007)

12. Kobilarov, G., Dickinson, I.: Humboldt: Exploring linked data. In: Proc. of Linked
Data on the Web (LDOW2008) Workshop at WWW2008 (2008)

13. Lopez, V., Motta, E., Uren, V.: Poweraqua: Fishing the semantic web. The Seman-
tic Web: Research and Applications pp. 393–410 (2006)

14. Smart, P., Russell, A., Braines, D., Kalfoglou, Y., Bao, J., Shadbolt, N.: A visual
approach to semantic query design using a web-based graphical query designer.
Knowledge Engineering: Practice and Patterns pp. 275–291 (2008)

15. Software, O.: OpenLink iSPARQL. http://demo.openlinksw.com/isparql/

(2010), http://demo.openlinksw.com/isparql/
16. Tummarello, G., Delbru, R., Oren, E.: Sindice.com: Weaving the open linked data.

In: Proceedings of the 6th international The semantic web and 2nd Asian confer-
ence on Asian semantic web conference. pp. 552–565 (2007)

17. Wang, C., Xiong, M., Zhou, Q., Yu, Y.: Panto: A portable natural language in-
terface to ontologies. The Semantic Web: Research and Applications pp. 473–487
(2007)

18. Zloof, M.M.: Query-by-example: a data base language. IBM Syst. J. 16(4), 324–
343 (1977), http://portal.acm.org.ezproxy.umw.edu:2048/citation.cfm?id=

1662134

