
THE EFFICACY OF

PERSONAL KNOWLEDGE BASES FOR

MATERIALIZING MENTAL IMPRESSIONS

by

STEPHEN C. DAVIES

B.S. Rice University, 1992

M.S. University of Colorado, 1996

A thesis submitted to the

Faculty of the Graduate School of the

University of Colorado in partial fulfillment

of the requirement for the degree of

Doctor of Philosophy

Department of Computer Science

2005

This thesis entitled:
The Efficacy of Personal Knowledge Bases for Materializing Mental Impressions

written by Stephen C. Davies
has been approved for the Department of Computer Science

Dr. Roger A. King, Committee Chairman

Dr. Clayton H. Lewis, Committee Member

 Date _____________

The final copy of this thesis has been examined by the signatories, and we find that
both the content and the form meet acceptable presentation standards of scholarly

work in the above mentioned discipline.

HRC protocol # 0705.13

 iii

Davies, Stephen C. (Ph D., Department of Computer Science)

The Efficacy of Personal Knowledge Bases for Materializing Mental Impressions

Thesis directed by Professor Roger A. King

Software tools abound for managing documents and other information

sources, but are rarely used to store the mental knowledge readers glean from reading

them. Hence our conceptual understanding – perhaps our most precious commodity

in the so-called “information age” – is normally left subject to the whims of our

erratic memories.

This thesis explores the concept of a personal knowledge base: an

experimental database and interface designed to store and retrieve a user’s

accumulated personal knowledge. It aims to let the user represent information in a

way that corresponds more naturally to their mental conceptions than textual notes

would. People naturally form mental models of the domains they explore and learn

about, and a personal knowledge base allows these to be expressed and archived

directly. They need not be converted first to text, a representation which is actually

alien to much of the human thought process. A personal knowledge base reflects a

user’s own subjective understanding of their world, permitting alternate views of the

same objective data. And just as each person has many ideas from different domains

tied together through perceived associations, it supports an integrated web of

knowledge, potentially mirroring the entire contents of its owner’s mind.

 After defining the notion of a personal knowledge base precisely, and

outlining its role in a user’s life and expected benefits, this thesis provides the design

 iv

rationale for a prototype application. It then presents the results of deploying it to

twenty volunteers who used it in real-world settings for extended periods of time.

The results suggest that such a tool can be an tremendous asset for a variety of

knowledge-related tasks, although commitment, discipline, and a willingness to alter

one’s habits are prerequisites for maximum success. It also sheds some light on the

ways people typically work with knowledge, and suggests that unless these patterns

are changed, they may ultimately form limitations on the effectiveness of such a tool,

and indeed on our use of knowledge in general.

DEDICATION

This thesis is dedicated to my Lord and Savior Jesus Christ, Who was its inspiration,

power, and hope; and to my devoted wife, Rae, whose patience and encouragement

throughout these long, dark years was invaluable.

 vi

ACKNOWLEDGMENTS

I am immeasurably grateful for the contributions of Scotty Allen, Jon Raphaelson,

Emil Meng, Jake Engleman, Javier Velez-Morales, Edwin Eng, and Nick Terkay to

many aspects of this thesis. Their formative feedback, design insights, and just plain

hard work were amazingly beneficial to me.

 vii

CONTENTS

Dedication .. v

Acknowledgments .. vi

Contents ... vii

List of Tables ... x

List of Figures... xi

Chapter 1 Introduction ... 1

Information vs. Knowledge.. 2

Attempts to automate the process ... 5

An example scenario ... 8

Towards a solution.. 18

Chapter 2 Defining the Personal Knowledge Base .. 21

Three essential components of a PKB... 24

Benefits of PKBs.. 26

Chapter 3 Literature review .. 31

 viii

Bush’s dream... 31

Four contributing bodies of research.. 33

Data models ... 47

Architecture... 78

Supplementary features.. 85

Summary and critique.. 93

Chapter 4 Popcorn: a prototype personal knowledge base 99

Design goals ... 99

The Popcorn data model .. 104

The Popcorn interface .. 109

Architecture and implementation ... 121

Evaluation of design goals .. 124

Chapter 5 User testing results.. 128

Quantitative analysis .. 130

Qualitative impressions .. 144

Summary.. 168

Chapter 6 Conclusion: knowledge as a commodity... 170

 ix

Bibliography .. 175

Appendix A - Database schema for Popcorn prototype 193

 x

LIST OF TABLES

Table 1: Terminology employed by a sampling of graph-based knowledge

management tools. ...51

Table 2: Summary of knowledge base characteristics across the test group131

Table 3: Interview questions to determine why people use Popcorn........................146

Table 4. Interview questions to determine why people don’t use Popcorn.148

 xi

LIST OF FIGURES

Figure 1. A rendering of a hypothetical “mental impression”9

Figure 2. The same mental impression after time has passed......................................12

Figure 3. MindManager, a mind map creation tool ...35

Figure 4. CMap, a concept map creation tool. ...36

Figure 5. Decision Explorer, a cognitive map creation tool.38

Figure 6. The NoteCards knowledge management environment.................................40

Figure 7. AquaMinds NoteTaker, a hierarchically-based note-taking application.42

Figure 8. The TreePad outliner ..44

Figure 9. VIKI, one of the first spatial hypertext systems ..55

Figure 10. The Presto category-based browser, also known as “Vista”57

Figure 11. Personal Knowbase, a note-taking system based on the category structural

framework ..59

Figure 12. Lifestreams, an exclusively chronologically-based information

management system...64

Figure 13. The Aquanet data model..66

Figure 14. YellowPen, which allows snippets of textual or graphical content to be

captured from the web ...69

Figure 15. The Popcorn user interface..110

Figure 16. Confirmation dialog box for permanent kernel deletion.112

Figure 17. Popcorn’s “quicksearch” facility for switching contexts115

 xii

Figure 18. Histogram of the percentage of a user’s notes that were assimilated from

Firefox..132

Figure 19. Histogram of the percentage of a user’s relationships that were given

types (names) ...134

Figure 20. Histogram of the average number of relationships per kernel.134

Figure 21. Histogram of the average number of relationships per type.....................135

Figure 22. Histogram of the note-to-kernel ratio. ...136

Figure 23. Histogram of the percentage of empty kernels..136

Figure 24. Histogram of the average number of objects per view............................137

Figure 25. Histograms of the percentage of kernels that had parents, children, and

both parents and children. ..138

Figure 26. Histogram of the percentage of kernels that had two or more parents....139

Figure 27. Histogram of the percentage of the knowledge base occupied by the

largest island. ...142

Figure 28. Histogram of users’ average number of kernels per island.142

Figure 29. Usage over the trial period ..143

Figure 30. Testers’ usage load by day of week...144

Figure 31. Average responses to the questions given in Table 3..............................146

Figure 32. Average responses to the questions given in Table 4..............................149

 1

CHAPTER 1

INTRODUCTION

 It has become cliché to refer to our era as “the information age” – cliché

because it is so obvious. Personally and professionally, modern man is simply

bombarded with information on all sides, whether physical books, magazines, and

newspapers, or electronic documents, Web pages, and e-mail messages. The flow is

constant and unremitting, partially a product of the astonishing rate of new truths

being discovered, and partially of the ever-growing number of opinions that are

expressed. It is one of the individual’s primary tasks, it seems, to cope with this

onslaught; to filter it and to leverage it to its maximum utility.

 For decades, the field of computer science – or “information science,” a

closely related discipline that now often passes as an exact synonym – has been

largely focused on better equipping users to deal with the information they must

manage. Information retrieval techniques help researchers find relevant needles of

knowledge in the exponentially-growing haystacks. The advent of the World Wide

Web has put billions of documents at our fingertips, and also empowered the

individual to easily broadcast their own personal voice. The twin fields of data

mining and machine learning seek to ferret out the essential truths from large

quantities of otherwise impenetrable information. Even the operating systems of

personal computers have been optimized to store more and more information and to

selectively retrieve it faster. Keeping pace with the rate of information growth and

 2

trying desperately to keep the user in control of it: these are the threads that tie

together the majority of our diverse technologies.

 It is worthwhile to pause and reflect, however, on what the ultimate purpose

of all this information actually is. We evidently care a great deal about these sources

of information, but what do we ultimately do with them?

Granted, in a few cases, they serve as inputs to automated processes that do

useful work for us: for example, portal Web pages that “screen scrape” various

commercial sites in search of the best price for a particular item. But because the

bulk of the information that we encounter daily is expressed in natural language,

rather than a rigidly coded form amenable to machine processing, such efforts are

fairly rare. Indeed, despite all of the intervening technologies for improving access to

information, the vast majority of documents are still authored by humans, and

intended solely for human consumption. And therein lies the motivation for this

thesis.

Information vs. Knowledge

 The phenomenon whereby humans encounter and process natural language

text can be seen as a process in which an input – information – is transformed into a

result – knowledge. The related terms “data,” “information,” and “knowledge” have

been variously defined in an attempt to draw distinctions between them. In this

thesis, I will use the following definitions:

data – a series of symbols whose meaning is uninterpreted and unknown. It
may be a meaningless bit stream like “1110010100” or a suggestive sequence
like “(303)555-1212” or “Claims Office.” At any rate, it cannot be used
meaningfully in its present form. It is potentially information, if only there

 3

was a standard language, context, and conventions by which its semantics
could be derived.

information – material that intentionally expresses something meaningful,
and which, if read, could impart assertions of truth or opinion. It is potentially
knowledge, if only someone took the time to perceive it, parse it, and
comprehend it.

knowledge – true meaning that has been internalized inside one’s mind. It
can be analyzed, expressed, acted upon, and related to other knowledge.

The difference between information and knowledge, then, is that the former is

processible and the latter has already been processed.1 Hence the owner of a large

textbook could rightfully claim that it contained “a lot of information.” But it does

not properly contain knowledge until someone reads it, interprets it, and grasps the

points it contains and their implications. Knowledge is thus the result of assimilating

and digesting an information source so that it can be understood and used. Until

knowledge comes into being, the information itself is merely an assortment of

tantalizing but ultimately unproductive symbols and grammatical structure.

Knowledge is the only means by which it can have any value whatsoever in the end.

 Numerous psychological studies have confirmed that the knowledge humans

store and make use of in their heads is almost never identical to the information from

which they originally acquired it. [257, 259, 325] Instead, knowledge can be seen as

the formation of a mental model in one’s own mind that corresponds to a subjective

understanding of the information encountered.[16, 135, 174, 298]. This is easily

demonstrated: if an ordinary literate individual is presented with a newspaper article

describing some recent occurrence, they will normally have no trouble at all reading

1 This distinction can also be seen in the lexical breakdown of the terms themselves: information has
the potential to inform whoever reads it, whereas knowledge is what someone actually knows.

 4

it, understanding it, and remembering its contents a moment later. Shortly after

destroying the article, in fact, they can answer questions about it with a good deal of

accuracy, recollecting many of the names and events it contained, the main thrust of

the article, the flow of the narrative, etc. Yet they will usually be unable to remember

even a single verbatim sentence.[259] This tells us that the reader has mentally stored

not the article’s external form, but rather the gist or meaning of it. Indeed, the

original sentences themselves would be an awkward and restrictive medium for

thought, deduction, and extrapolation to operate on. What a person needs is a fluid

representation reflective of the article’s true semantics, so that it can be mulled over,

related to other knowledge, and applied in different settings. We will return to

speculate upon the precise nature of this representation in a later chapter. For now, I

intend only to establish that the result of processing information is something very

different from the information itself. It is an unwinding and a decoding, often very

dependent on the background knowledge and biases of the individual recipient (an

important point to which we shall return later.) And this is what produces the proper

fuel for the mind’s machinery to be effective.

 As an aside, and at the risk of overstating the matter, one could argue that

acquiring and managing such internal knowledge is a human being’s primary value

add in our society. Over a century ago, perhaps, the critical ingredients for a person’s

success were the amount of land they owned, or else their raw materials, physical

strength, or control over the means of production. But in our age it seems that an

individual’s most precious commodity is what they know. When one seeks out an

expert for advice, it is not because that expert has a large collection of physical books

 5

in their office. It is because they have read and understood many of those books (and

other things besides), and this patient study has given rise to an accumulated,

integrated arrangement of knowledge which that expert can bring to bear on new

problems and situations. This is primarily what we do, especially in the white collar

strata: we probe, we learn, we understand, and we apply. The knowledge we form

gives us the ability to gain mastery over a domain, and hence the power, prestige, and

skills necessary to achieve success by virtually any measure.

 We can look at this in another way. Consider that everything a person knows

or believes was originally perceived through their five senses. And everything they

eventually communicate to others is either the verbatim regurgitation of this

information (which is rather rare) or else the result of some process that went on

internally in their mind. Clearly, then, there is an incredible amount of analysis that

takes place inside a person’s head, that results in something quite distinct from the

isolated, unprocessed information sources to which they have been exposed. The

mind compares and contrasts these sources, synthesizes them, draws conclusions,

identifies patterns, and forms a foundational understanding which is imperative for

the individual’s effectiveness and even for survival. It is this phenomenon of

personal knowledge that allows each person to make their own unique contribution to

their world.

Attempts to automate the process

 Recognizing that natural language is a clumsy tool with which to work,

various researchers have tried to devise means for automatically turning a text into a

 6

representation more like that which the human mind might actually use. It is difficult

work. Owing partially to the inherent ambiguity in natural language, automatically

deriving its semantics is fraught with peril. Great effort has been invested in

constructing parsers that can operate on streams of text and produce conceptual

structures of its meaning; in some cases, programs that can translate from one

language to another have been written which are roughly satisfactory in limited

domains. But generally speaking, attempts to pre-process natural language so that

humans can avoid doing the reading themselves have not been successful.

 There are several reasons for this. For one, people are accustomed to natural

language, and would likely be hindered rather than assisted if offered some alternate

foreign representation generated by a machine. Also, when people read a text, they

do not assimilate and remember every detail, nor do they intend to; rather, some

subset of the information will stand out to them, and be deemed important enough (or

unusual enough) to file away for later use. And this leads to a third and most

important reason: that the knowledge gleaned from a source of information depends

very much upon the individual reader. There is a highly subjective element to our

processing of information. Different things will stand out to different people. Claims

will be accepted by some, but questioned or outright rejected by others. Distinctive

parallels and comparisons will come to mind depending on the individual’s

background knowledge, and so forth. This must be so: otherwise, any two people

reading the same text would have the same reaction to it and emerge with identical

understanding. But we know this is not the case, else we could hardly account for the

alternative theories and fierce debate generated as ideas are discussed in the public

 7

sphere. We are individuals, not automatons; and as far as we can tell, each person has

their own unique set of experiences, presuppositions, known facts, and outlook on

life. Hence it appears that for the foreseeable future, turning information into deep

and useful knowledge will remain almost exclusively a human endeavor.

 The principal difficulty, however, is that this manual process of knowledge

accumulation relies heavily on one thing that humans are quite poor at: retention. It

hardly needs to be said that our memories fade over time, and that a subject we are

intimately familiar with today will be hazy and unreliable six months from now, if not

completely forgotten. This varies from person to person, of course, but it is rare

indeed to find someone who can conjure up all the details of a past project on

demand, without the need to re-familiarize themselves with the material.

Contrast this with electronic repositories, which can be protected, copied,

backed up, and even stored on redundant disk arrays so that they are not only

persistent but virtually indestructible. Computers, it seems, excel at the one part of

the knowledge building process that humans do not: the permanent storage and

retrieval of data over indefinite periods of time, without loss or modification.

This suggests that great gains might be realized from an environment in which

each component – human and computer – can contribute what they do best. Humans

peruse information, analyzing and interpreting it to produce valuable – though fragile

and transient – knowledge in their minds. They then express this to a computer

application in some form that is faithful to their thought process, at which point it is

instantly and permanently archived. If such a process could be made natural and

convenient, it could increase a user’s effectiveness manyfold. They would have

 8

instant and reliable access not only to their recent thoughts and ideas, but to any they

had ever formed in the past. Over time, the application would be accumulating an

ever-growing replica of the user’s own memory, so that months or even years from

the time it was recorded, it could be faithfully reproduced. And all this without

requiring the user to track down the original information source(s) to re-read, re-

parse, and re-interpret them.

An example scenario

 The need for a computer tool like this is best illustrated by example. Consider

the situation of John, a fictitious but not atypical academic researcher. He is

constantly busy keeping up with a quickly-changing engineering discipline, but he is

also interested in philosophy and history. In his spare time (such as it is) he likes to

read all he can on these subjects, from a wide variety of authors and periods.

 Lately John has been doing some reading on ancient Greek philosophy, trying

to make sense of it and relate it to what else he knows. It occurs to him that even

though millennia have passed, the basic ideas of the famous Greek philosophical

schools are still central to much of Western thinking. They have influence, he feels,

that permeates even the postmodern mind to varying degrees, and he finds it useful to

trace some of today’s prevalent presuppositions and value judgments back to their

root.

 One night he picks up his copy of a “Survey of Western Civilization” book

that he’s been reading before bed. The current passage is describing the prominent

philosophers of the Hellenistic period, post-Aristotle. It not only names many of the

 9

great thinkers and gives capsules of their thought, but also contains historical

interludes, anecdotes, etc.

 After reading this passage and considering its contents, he finds that he has

formed a tenuous framework in his mind. It is a mental impression that relates the

basic facts, stripped of most of the details that the passage includes. Oddly enough, it

seems to be geometrical, as though it could be depicted on a two-dimensional canvas.

It might look like this if materialized:

Cynics
key thinkers: Antisthenes,

Diogenes

virtue
anti-materialism, fraud

Sceptics
key thinker: Pyrrho

truth cannot be known

Epicureans
key thinker: Epicurus

pleasure

Stoics
key thinker: Zeno

brotherhood of mankind
conformity to nature =

peace

Greek philosophy - Hellenistic period (200's B.C.)

postmodernism

hippies (1960's)

materialism (1980's)

Hume Jim’s dad

Plato & Aristotle

New Age

Brian (high school)

Figure 1. A rendering of a hypothetical “mental impression” as perceived by a reader of
a history book on Greek philosophy.

 Note several things about this mental impression:

 10

1. It is a distilled version of what John has read. Dropped are most of the

details of the narrative, including nearly all of the examples, stories, descriptions, and

the writer’s poetic style. This is because while those elements were enjoyable to read,

they are not what John aims to retain for the long-term. One of the main reasons he

chose this book was to acquire the kind of condensed view of this historical period

that he can easily apply and relate to other knowledge.[174]

2. His mind seems to perceive it as spatial. Granted, the particulars of the

boxes (shadows, rounded corners, etc.) may not be crystal clear in his mental image.

They are present only because after all some actual shape must be used in a diagram.

But what is important is that the mental conception he has is not made up of text

sentences of numbered outlines. Rather, John can actually picture the “upper-left

corner” of the “Hellenistic philosophy” box, and feel quite comfortable with an

element called “Cynics” residing there.

3. The topic at hand relates to other knowledge in his mind. When he read the

author’s description of the Sceptics, John immediately thought of David Hume, and

of the influence that he and others have had on the so-called “postmodern” worldview

prevalent today. That perceived connection was so strong that it is hard for John to

imagine severing it and leaving the “Hellenistic philosophy” box in isolation.

Already, it has been woven into the fabric of his understanding as a whole.[23]

4. It is inherently subjective. This diagram represents John’s own mental

impression, and no one else’s. He created it because it was helpful to him. It cannot

(and should not) be replaced by an attempt to objectively catalog the “correct” view

of the domain. It contains judgments and patterns that others may disagree with, and

 11

in places it may actually be provably wrong. It includes elements that are unique to

his own experience, like the arrows to “Brian” and “Jim’s dad,” who are

acquaintances in his own personal sphere. John could articulate his mental

impression to others, if they were willing to listen, and they might learn something

from it. But that would be by means of adjusting and massaging his framework to

intersect with and influence their own. They probably wouldn’t be able (or willing)

to simply copy it “as is” into their own brain.

As time goes by

This knowledge is useful to John, else he would hardly have invested the time

to acquire it. Hence his desire is to retain it. He would like these facts that he has

learned and the mental structure he created in order to integrate them to become a

permanent part of his memory and understanding, so that he can make use of them to

interpret his world.

Now if John were working full-time as a historian in this field, he would

probably be constantly exercising this portion of his memory: fitting other facts into

it, refining it, forming theories and drawing conclusions. But that is not the case.

Philosophy for John is only a hobby, and he is very often forced to drop it for

extended periods of time in order to attend to more urgent matters. When he returns

to the “Survey” book after a week or two, and tries to reset the context and conjure up

his mental impression so he can continue reading, he finds that it now looks like this:

 12

? ?

Epicureans
key thinker: Epicurus

pleasure

Stoics

conformity to nature =
peace

Greek philosophy - Hellenistic period (?)

postmodernism

hippies (1960's)

materialism (1980's)

Jim’s dad

Plato & Aristotle (?)

?
?

Figure 2. The same mental impression after time has passed, with many of the details
forgotten or confused.

 John’s memory has faded considerably. He remembers that he read a passage

about the Hellenistic philosophers, and he has a vague recollection that there were

four important schools mentioned, but many of the details and even the very identities

of some of these schools have been lost. The Epicureans and the Stoics stuck in his

mind for some reason (perhaps a particularly memorable story, or the curious sound

of the name itself, or that his concentration happened to have been more focused

when he read those paragraphs) but that is all. The other two are simply empty boxes

without even a label he could look up in an index or on the Web. He recalls only a

handful of the other topics that had occurred to him when he read the passage, and of

 13

these, the specifics of how he perceived them to be connected remain for only two.

And to his embarrassment, he has even forgotten whether this entire philosophical

period was before Plato and Aristotle, or after!

 It appears that in order to get back to the mental frame of mind he had when

he last put down the book, John will have to reread the passage and recreate the

original mental impression. It will probably be quicker the second time, since he has

already done some analysis and the details should spring to mind more quickly as he

encounters familiar text. But that is not very encouraging. John wants knowledge

that will last, not knowledge that he has to regenerate from its original sources each

time he needs it. And if this is what his mental impression looks like after a week or

two, what will it look like in a year or two?

 The act of reading the book was entertaining and relaxing, but John will feel

deflated if the only effect turns out to be a transient and experimental one. He did not

pick up the book merely to pass the time, but to better his understanding of the world

for the long-term. And it is beginning to look as though the intrinsic limitations of his

mind will prevent him from ever accumulating the kind of focused, systematic

knowledge he hopes to acquire for anything other than the field he is daily and

intensely engaged in.

The state of the art

 Without a tool like the one this thesis describes, John has a number of options

for remedying this dilemma, none of them ideal:

• He could spend more time and effort drilling the facts into his mind in the

hopes that rote memory will suffice. But this process is not enjoyable,

 14

especially because he is aware that no matter how much time he spends

“cramming,” it is likely that much or most of the mental impression will

inevitably crumble. This approach is also impractical for anything more than

a very small number of topic areas.

• He could mark up the book with a highlighter and his personal annotations,

drawing attention to the key facts and their relationships. This gives easy

access to the author’s elaborations should he need to delve further. And it

ideally requires very little writing, if he can simply highlight select phrases

already provided by the author. But his mental impression is no longer easily

at hand, being stored on his bookshelf in a particular location that may not

always be available to him. If the book is lost, destroyed, or loaned out, so is

his access to his own mental impression. Also, more subtly, John’s

knowledge is now intimately tied to the book itself. This is quite artificial –

presumably he read this sort of book because it contains transcendent

knowledge that many experts agree on and which is applicable in a variety of

settings. He wants to remember the Stoics and the Sceptics, not a particular

bit of writing by the particular author William McNeill. The knowledge itself

should be severed from that tome and stand on its own, yet with this solution

that is impossible. Finally, there is no easy way to “link” to other knowledge

he possesses. The best he could do is scribble a note like “reminds me of

Jim’s dad” or “see chapter 5 of Durant’s ‘Story of Philosophy’” which

requires a good deal of anticipation, recall, and elbow grease to make

profitable. And besides, these sorts of links are only “one way.” They enable

 15

him to answer the question, “now what were the things that the Stoics

reminded me of?” by looking up his notes in the book, but if he wonders,

“now what were the things I thought might have influenced Jim’s dad?” he is

at an impasse.

• He could use pencil and paper to transcribe his mental framework into a

notebook. This is fluid, adaptable, familiar, low cost, and free form. The

notes will stand on their own (apart from the book), and can freely combine

both text and diagrams. However, this choice gives none of the advantages

that electronic representations do. Like book highlighting, the physical paper

can be only in one place at a time. It cannot be backed up, copied, or searched

(except by hand.) It cannot be rearranged except at the painful expense of

erasing, crossing out, or copying sentences by hand to a new piece of paper. It

cannot “link” to any particular document except by naming it (as above), nor

can it reference another conceptual entity (like “Aristotle,” “postmodernism”

or “Jim’s dad”) except by naming. This puts all the burden on the John’s own

interpretation and footwork, rather than using machines to automate those

kinds of tasks.

• He could create an electronic text document (with, for instance, Microsoft

Notepad) to jot down notes. This would allow them to be backed up for

safekeeping, mailed to a friend, copied to a laptop or PDA, and (syntactically)

searched using common tools. However, as mentioned above, John’s mental

impression is not most naturally representable in ASCII text, but in a

nonlinear arrangement of elements. Hence it is at best awkward to reduce it to

 16

text, and he may in fact lose valuable information that way. In any event,

when he brings up his notes a year later to recollect his mental impression, he

will in fact have to recreate it after interpreting his comments. And this

solution has the same difficulties with “linking” that a paper document does.

• He could use Mozilla Firefox to create a page of notes with embedded

markup. This solves the “link problem,” since John could create an entire

series of web pages on the topics he has studied, and then create links between

pages representing the mental relationships he perceives among knowledge

elements. However, it’s still represented as text, which is not the natural

medium of his mental impression. He could use structuring elements and

visual cues (such as font, color, outline headings, tables, etc.) to give more

richness to the words, but then he would be mixing formatting and

presentation information with the true semantics of what his knowledge

means. Also, this solution requires a fair amount of overhead that would be

an obstacle to average users. The tools are more complex, editors and readers

tend to be different, etc. Finally, the only thing John can link to is a page (or

part of a page) which is different than a conceptual entity. This approach

encourages one to use a paragraph of text as a stand-in for a real-world entity

(like a person, movement, or time period), which is not the truest way to

model one’s understanding. (In his mind, for instance, John doesn’t have “a

paragraph describing Epicureanism” related to “a web page that discusses the

culture of materialism in the 1980’s,” but rather “the philosophy of

Epicureanism” related to “the phenomenon of materialism.”)

 17

• He could use a drawing tool like Microsoft Visio to create a drawing

consisting of elements that represent his mental impression. This casts the

knowledge in a form that is truer to its actual nature. And since “a picture is

worth a thousand words,” when John returns again to his diagram the richness

of the visual presentation is likely to jog his memory more quickly and

effectively than a paragraph of text would. However, although stored

electronically, this diagram is virtually opaque to the computer. John cannot

easily search for elements within a diagram, nor can he link to them from

other diagrams. If he wanted to store lots of knowledge in this way, he would

have no way to search his knowledge base except by the filenames of the

Visio documents. Also, each element in a diagram is a separate entity.

Though it may have the name “Stoics” in it, it does not really represent “the

Stoic philosophers” except by one’s interpretation. In actuality, it is simply a

rectangle. If John were to create another diagram and add another rectangle to

it with the word “Stoics” in it, this would simply be another rectangle on

another diagram. It would have no semantic connection to the other rectangle

except by his own inference. This is error-prone, since a box labeled “Brian”

could certainly mean two different things on two different diagrams. And

there is no easy way to ask, “show me all Visio diagrams that have a ‘Brian’

rectangle on them.” The major problem here is that pictorial representations

are being used to imply semantics for human viewers, without the

unambiguous foundation behind them that would permit machines to leverage

that same information.

 18

As is readily apparent, these “solutions” are far from adequate.2 They do not

address the real problem, which is to externalize and make permanent the abstract

web of interrelated knowledge that John has in his mind. They use various tools,

built for entirely different purposes, to only crudely approximate what John needs

them to do. And so the alternative he will most likely choose is to rely on his own

capricious and leaky memory. He will probably be frustrated that so much

knowledge that he has gained seems to disappear so quickly, and that what he learns

today he can be almost certain he will not know tomorrow. But such is the status quo

today. He will resign himself to an unreliable and randomly vanishing knowledge

collection. The result is that as he moves through life, instead of gaining more and

more understanding, he simply acquires different understanding: he normally does not

succeed in adding to, but rather in replacing, his previous knowledge. John’s mind

seems to only retain what is fresh and active, with all else being relegated to the trash

heap of “things he once knew.”

Towards a solution

 If our greatest asset is in fact the knowledge we have worked so hard to build,

why would we be content to manage it with inadequate tools, or worse yet, to never

record it at all? Surely there is more in our heads worthwhile to manage than just

contact information and a calendar. What about all the books we’ve read, all the

lectures we’ve attended, all the Web pages we’ve browsed? We once spent

2 I omit commercial note-taking applications from this “state of the art” list because this body of
software is analyzed in great detail in chapter 3. There, the advantages and limitations will be
discussed, and it will be shown why even these kinds of tools fall short of what John needs.

 19

significant time attending to each of them, ferreting out the knowledge therein and

incorporating it into our own understanding. And the reason we did it was because

that hard work was the only way to make use of the material we absorbed. Are we

really content to let all of that pass away according to the whims of time?

 The purpose of this thesis is to investigate the feasibility of designing a

“personal knowledge base” (PKB); that is, a computer system that will supplement a

user’s own memory. Such an application would allow John to quickly and easily

record his thoughts in a representation that is faithful to what he actually “sees” in his

mind. It would accommodate varying levels of precision. It would allow him to

focus on a particular area of knowledge (like “Hellenistic philosophy”), but also to

connect the things he learned in one area to those in other areas. The end result of all

this record-keeping would be a sort of “surrogate brain,” to which he could always

return to refresh his erratic and unreliable biological memory. If used correctly and

consistently, it would allow him to leverage all the knowledge he has ever gained to

its maximum potential.

 The rest of this thesis is organized as follows. In the next chapter, I will

define several important terms and then describe the characteristics of a personal

knowledge base, including the benefits and limitations we might expect from one.

Then, I will provide a thorough review of the relevant academic literature and

commercial systems that have thus far attempted at least a partial solution to this

problem. In chapter 4, I will introduce “Popcorn,” a prototype PKB software

application that forms the cornerstone of this thesis. I will describe the philosophy

behind its design, a summary of its architecture and implementation, and a description

 20

of how it is intended to be used in practice. The following chapter will contain a

broad summary of results from testing Popcorn on a number of real-world users,

identifying both strengths and weaknesses of the approach. Finally, I will conclude

with a big-picture analysis of this data, draw conclusions about Popcorn’s efficacy,

and speculate about the possible future of PKB systems in light of what this study has

revealed.

 21

CHAPTER 2

DEFINING THE PERSONAL KNOWLEDGE BASE

 The scenario from the previous chapter mentioned that today’s user is often

forced to adapt existing tools, which were designed for very different tasks, to the job

of maintaining a store of personal knowledge. Word processing documents,

spreadsheets, drawing applications, and personal websites all store information of

sorts, and so they could theoretically be used as makeshift personal knowledge bases

by the courageous. I have already alluded to the limitations of these approaches,

however, which are so obvious they are hardly worth mentioning. But this gives rise

to another question. What exactly is a PKB? What are its key characteristics that set

it apart from other applications? How do we know one when we see it? And what

are the benefits we should expect them to provide?

 Before I offer a precise definition, I need to introduce a few other terms to

help frame the discussion. The first is the distinction between data, information, and

knowledge, which was covered in the introduction. The second is the notion of what

I will term the “objective” and “subjective” realms. To wit:

the objective realm – the set of electronic documents and other information
that are available to a group at large. This is often the entire public domain, as
with the World Wide Web, but sometimes it may be communicated only
internally with an organization. The key factor is that it consists of materials
everyone within a large group has access to, and views identically (ie., a given
text appears the same to everyone.)

a subjective realm – the viewpoints, interpretations, classifications, and
relationships that an individual perceives when examining the objective realm.
This set of elements is unique to each observer. It represents the ongoing
accumulation of knowledge each person builds as they browse and learn from

 22

objective sources. It need not consist solely of elements from the objective
realm, as the observer will also bring in their own background knowledge and
biases, but it is most often primarily comprised of such objective elements,
organized and arranged according to the user’s understanding.

Note that in most cases, a person’s subjective realm is never materialized; it

remains ethereal, only a product of the mind. The observer is not normally aware of

its existence, in fact: it is only the lens through which they filter and interpret

objective information. Examples where a user does materialize their subjective realm

would include the activities of note-taking (electronically or on paper), giving

structure to a set of documents by assigning them to filesystem folders, or arranging

website bookmarks in a “favorites” hierarchy. I will argue that the primary job of a

PKB is to allow a user to express their subjective realm in a tangible way so that it

can be stored and retrieved later.

Subjective observations cover a wide spectrum. At one end is the freeform

recording of a person’s “idea”; whether that be in the form of a textual note, or some

sort of graphical representation. Here the user is expressing an idea in its entirety:

there is a great deal of substance to what they have personally perceived, and that

idea, rather than the objective elements to which it may refer, constitutes its main

value. On the other end is the simple identification of relationships between existing

objective sources. Here the user does not have in mind any complex theory, but

simply observes some similarity or “link” between two elements of the objective

realm. Note, however, that at any point on this continuum, the subjective knowledge

is in addition to, and not merely present within, the objective sources. It expresses

further interpretations, relationships, and assertions that are not present in the

 23

information itself, and hence it is real added value. And this is true whether it is

materialized or not.

To avoid confusion, note that the word “objective” here does not imply

“correct” or “without bias.” Indeed, many of the elements in the objective realm will

almost certainly express opinions or contain errors; consider the World Wide Web!

By “objective” I simply mean “open and available for all to consider,” rather than

private.

Note also that the distinction between these realms may become blurred over

time in collaborative settings, since one might express one’s interpretations or

organization of some objective information and then publish those interpretations in

an objective document. The objective realm, in this case, would then contain “base-

level information” in addition to published commentary on that information, which

then also becomes “objective.” Our definitions will still hold, however, if we simply

consider the time of publication to be a transition point between the subjective and

objective realms. Once a user takes their own private perceptions, articulated in a

tangible form, and intentionally publishes them, these perceptions have now been

transferred out of the subjective realm and placed into the objective.

Finally, these terms have an important correspondence to those of

“information” and “knowledge” as previously defined. Simply put, the objective

realm is normally composed of information sources, while the subjective realm is

made up of knowledge representations. This is because the objective realm contains

material, nearly always expressed in natural language, that can be browsed and

examined. Only when someone takes the time to read some of it, understand it, and

 24

incorporate it into their understanding does knowledge arise, which is always

subjective because it is personally perceived.

Three essential components of a PKB

 I am now in a position to offer a definition for a “personal knowledge base.”

As the term has three words, so the definition has three components: a PKB must be

personal, it must contain knowledge, and it must be a base, or integrated foundation.

personal: Like the system that John yearned for in the previous chapter, a
PKB is intended for private use, and its contents are custom-tailored to the
individual. It is a manifestation of a user’s subjective realm. It contains
trends, relationships, categories, and personal observations that its owner sees
but which no one else may agree with. It can be shared, just as one can
explain one’s own opinion to a hearer, but it is not jointly owned by anyone
else any more than explaining my opinion to you causes you to own my brain.

knowledge: A PKB primarily contains knowledge, not information. Its
purpose is not simply to aggregate all the information sources the user has
seen, but to preserve the knowledge that they have learned from those
sources. When John returns to his PKB to retrieve some knowledge that he
has stored, he doesn’t want to be merely pointed back to the original
documents again, so that he has to re-locate, re-read, re-parse, and re-learn the
relevant passages. Instead, he wants to return to the distilled version of the
particular truth he is seeking, so that the mental model he once had in mind
can be easily reformed.

base: A PKB is a consolidated, integrated knowledge store. It is a reflection
of the user’s own memory, which, as has been observed from antiquity, can
freely associate any two thoughts together, without restriction. Hence a PKB
is defeated at the outset if it attempts to partition a user’s field of knowledge
into multiple segments (for instance, isolated files or directories) that cannot
reference or interrelate with each other. Just as John has only one mind, and
he can connect any of his ideas together without regard for artificial
boundaries, so a PKB must act as a single, unified whole.

 25

Before continuing, it is worthwhile to enumerate several classes of systems

that cannot be classified as PKBs because they fail to meet one or more of the above

criteria:

• Collaborative efforts to build a universal objective space. The World Wide

Web itself is in this category, as were its predecessors HyperTIES[278] and

Xanadu[229], Web categorization systems like the Open Directory

Project[232], and collaborative information collections like Wikipedia.[324]

Such systems distribute public information to be shared; they are ill-equipped

to deal with the fluid needs of the personal.

• Search systems like Enfish[106], Clarity[264] and the Stuff I’ve Seen

project[103] that simply index and search one’s information sources on

demand, rather than giving the user the ability to craft and express knowledge.

• Tools whose information domain is mostly limited to time management tasks

(calendars, action items, contacts, etc.) rather than to “general knowledge.”

Blandford and Green[43] and Palen[249] give excellent surveys; common

commercial examples would be Microsoft Outlook[216], Lotus Notes[161],

and Novell Evolution[238]. These tools are custom-tailored to specific kinds

of structured information, not to knowledge.

• Similarly, tools developed for a specific domain, such as bibliographic

research (e.g., [163], [317],[240]), rather than for “general knowledge.”

• Systems that focus on capturing transient information, rather than archiving

knowledge that has long-term and enduring value. Examples would be Web

logs[139] and e-diaries [178]. Hence, although they accumulate a

 26

chronological transcript of observations, they are not designed to be easily

consulted as a knowledge base in the way I am describing.

• Tools whose goal is to produce a design artifact rather than to maintain

knowledge for its own sake. Systems like ART[226] and Writing

Environment[297] use intermediate knowledge representations as a means to

an end, abandoning them once a final artifact has been produced. Hence they

do not concern themselves with maintaining on ongoing knowledge base.

Again, by bending these tools to new purposes and adapting supportive

processes to cover their deficiencies, one could use some of them to approximate

crude PKBs. But since personal knowledge management was not their objective, they

will be lacking several crucial features that I will discuss in later chapters. For

purposes of this thesis, they lay outside the bounds of candidate PKB systems.

Benefits of PKBs

 In the following chapter I will provide a lengthy review of both academic and

commercial efforts to create personal knowledge bases. But before classifying and

dissecting them, it is interesting to simply examine the different ways such systems

are “pitched” to the public. This sheds some light on the advantages that PKB’s

should supposedly provide. And we can see that PKB systems aim to meet a number

of related but distinct needs, including:

Knowledge generation and formulation. Here the emphasis is on procedure,

not persistence; it is the act of simply using the tool to express one’s knowledge that

helps, rather than the ability to retrieve it later. Systems boast that they can “convert

 27

random thoughts generated while you are the most creative into the linear thoughts

needed most when communicating,” “help you relate and arrange random ideas,” and

“stimulate your brain.”[48] In an educational setting, they “make it easier for

students to grasp concepts and ideas” [296] and “strengthen critical thinking,

comprehension, and writing skills.”[162] In a business setting, one can “capture in

detail thoughts and ideas, to explore them, and gain new understanding and

insight.”[28]

It is interesting to note that many of these systems make direct appeals to

human psychology in their literature. Product names like “PersonalBrain”[311],

“Axon Idea Processor”[45] and “Mind Manager”[220] are certainly suggestive, and

one product calls itself “a trusted thought container.”[157] Another claims to be

“…an application that’s actually designed to help you think. It’s like having an extra

brain.”[244] A research system claims to “actively model the user’s own

memory”[169], and one commercial product’s testimonial says flatly, “I now feel like

my computer is an extension of my brain.”[215] Clearly, the connection between

knowledge expression and the mechanics of the mind is one that numerous system

designers are anxious to draw, a point to which we will return later.

 Knowledge capture. PKBs do not merely allow one to express knowledge,

but also to capture it before it elusively disappears. Often the emphasis is on a

streamlined user interface, with few distractions and little encumbrance. The point is

to lower the burden of jotting down one’s thoughts so that neither task nor thought

process is interrupted. One system speaks for many when it describes its user

interface philosophy as “low threshold, high ceiling”; the interface was “designed to

 28

be nonintrusive, allowing the user to concentrate on the task…”[60] Another product

asserts that “it is very quick to open a…document and within seconds record the

essence of that new idea without distractions, while your mind is focused on it and

without disturbing the flow of your current work.”[305]

Knowledge organization. A recent short study on note-taking habits finds that

“better organization” was the most commonly desired improvement in people’s own

information recording practices.[151] PKB systems profess to answer this need,

allowing one to “organize personal information”, claiming to be “a more productive

way to stay organized”[20] and that “you will finally be able to organize all your

random information.”[215] And clearly this organization is personal and subjective;

one tool brags that it “complements individual styles for capturing and organizing

thoughts.”[217]

 Parenthetically, it is easy to see why organizing knowledge is helpful: it

greatly enhances our ability to process and remember it. Indeed, studies have shown

that imposing structure on even random information makes later recall attempts more

successful and efficient.[49], [174] p.243. And even though objectively organized

material is more easily learned and remembered, when a subject encounters

unorganized material they will naturally impose their own organization upon it to

facilitate learning. Long-term recall, in fact, presupposes a personalized organization

of the material.[174] pp. 254-261, p. 266.

Knowledge management and retrieval. Perhaps the most critical aspect of a

PKB is that the knowledge it stores is permanent and accessible, ready to be retrieved

at any later time. Accordingly, systems support “the longer term management

 29

of…information”[77] and “a structure for organizing, storing, and retrieving

information.”[146] Products will “give you a place to stash all those stray snips of

knowledge where they can be quickly recalled when you need them”[42] and let you

“find any data in an instant, no matter where or how you entered it.”[215]

 Integrating heterogeneous sources. Finally, recognizing that the knowledge

we form comes from a variety of different places, many PKB systems emphasize that

the information from diverse sources and of different types can be integrated into a

single database and interface.3 This makes it possible to “capture all your information

in one place”[217] and “capture, analyze, and repurpose information from a variety of

sources.”[220] One system’s “universal data access layer allows you to connect all

your existing information into the system, giving…one interface to everything and the

ability to connect all types of information”[311], and another “eliminates this

partition (between heterogeneous applications and data types) so that individuals can

work with their information in a unified fashion.”[9]

The features here identified are all tightly interrelated, of course, and most of

them would be incomplete without several of the others. Perhaps this is why some

designers have had trouble communicating exactly what their system is, resorting to

blanket statements that it “can be used for everything from keeping a to-do list to

writing a book”[157], or that “it’s a notepad, outliner, scrapbook manager,

information manager, freeform database, archive, bookmark manager and image

database – all in one integrated application.”[97] If nothing else, this illustrates that

the potential uses of PKBs are vast. Certainly acquiring, integrating, maintaining, and

3 Note that this feature pertains primarily to the objective information sources that are brought in or
referred to by the tool, to be then combined with the user’s own subjective knowledge.

 30

using our personal knowledge is at the heart of what it means to be human, and for

this reason a PKB application’s power and utility could be almost unparalleled if used

effectively.

 We can see already, therefore, that personal knowledge management is a real

and pressing problem, and that many development efforts have arisen that make bold

claims. The purpose of this thesis is to investigate the truths behind those claims, to

pursue a promising alternative approach to PKB design, and to determine the extent

of its utility. But before I present this new paradigm, I will examine the work that has

been done in this area to date so that it will become apparent where a system like

Popcorn stands in the stream of personal knowledge management research.

 31

CHAPTER 3

LITERATURE REVIEW

Bush’s dream

 Although not explicitly described as such, the idea of a personal knowledge

base dates back as least as far as Vannevar Bush’s oft-quoted article “As We May

Think”[57] in the July 1945 Atlantic Monthly. In it, Bush, President Truman’s

Director of Scientific Research, surveyed the post-World-War-II landscape and laid

out what he viewed as the most important forthcoming challenges to humankind,

even speculating as to possible solutions. The prophetic article presaged many

technological changes, including the dawning of the information age. But

undoubtedly his most intriguing idea – and in the years since, the most hotly pursued

– was his vision of a hypothetical information storage device called the “Memex4.”

This system was envisioned to tackle the “information overload” problem, already a

formidable one in 1945. In Bush’s own words:

Consider a future device for individual use, which is a sort of mechanized
private file and library. It needs a name, and to coin one at random, “memex”
will do. A memex is a device in which an individual stores all his books,
records, and communications, and which is mechanized so that it may be
consulted with exceeding speed and flexibility. It is an enlarged intimate
supplement to his memory.

4 The word “memex” is thought to be an abbreviation for “memory extender,” though this is never
explained in the article.

 32

The Memex is often cited as the precursor to today’s hypertext systems

([277], [239]) and indeed Doug Engelbart and Ted Nelson, hypertext pioneers, have

both acknowledged their debt to it ([107], [229]). This is largely due to Bush’s

description of associative indexing, nearly identical to today’s Web hyperlinks,

through which the world’s documents could be joined into a large associative

network. Yet a careful reading of the article reveals a personalized dimension to the

Memex that is very different than the public and collaborative focus of most

hypertext efforts to date. Notice that the above quote specifies “individual use,” and a

“private file and library.” And Bush’s emphasis throughout the article was on

expanding our own powers of recollection: “Man needs to mechanize his record more

fully,” he says, if he is not to “become bogged down…by overtaxing his limited

memory.”

To be sure, Bush envisioned collaborative aspects as well, and even a world-

wide system that scientists could freely consult. But what is often ignored about his

vision is this intensely personal aspect. With the Memex, the user can “add marginal

notes and comments,” and “build a trail of his interest” through the larger information

space. He can share trails with friends, identify related works, and create personal

annotations. A lawyer would have “at his touch the associated opinions and decisions

of his whole experience,” and similarly a doctor the records of his patients. In short,

the Memex as Bush envisioned it would give each individual the ability to create,

categorize, classify, and relate his own set of information corresponding to his unique

personal viewpoint. Much of that information would in fact be comprised of bits and

pieces from public documents, just as the majority of the knowledge inside our own

 33

heads has been imbibed from what we read and hear. But a monolithic Web of public

documents is no substitute for the specialized recording of information that each

individual perceives and needs to retain. The idea of “supplementing our memory” is

not a one-size-fits-all proposition, since no two people have the same interests or

opinions (or memories): it demands rather a subjective expression of knowledge,

unique to each individual.

Four contributing bodies of research

In the sixty years since Bush published his vision, systems which might

qualify as PKBs have sprung primarily from four different fields of research. Many of

the essential problems have been approached by multiple of them, and often even in

the same way; yet the four grew up in distinct research communities, so it is

worthwhile to consider each in turn.

Graphical knowledge capture tools

Much fanfare has been generated in the last thirty years around pictorial

knowledge representations. Claims have been made, with varying degrees of

scientific justification, that drawing informal diagrams to represent abstract

knowledge is an excellent way to communicate complex ideas, enhance learning, and

even to “unlock the potential of the brain.”[58] Great emphasis is placed on the

pictorial nature of the knowledge diagrams; the use of spatial layout, color, and

images is said to strengthen understanding and promote creativity. The three primary

schools – mind mapping, concept mapping, and cognitive mapping – will be

considered briefly here. Each prescribes its own data model and procedures, and each

 34

boasts a number of software applications designed specifically to create compatible

diagrams.

 Mind mapping. Mind mapping was promoted by pop psychologist Tony

Buzan in the 1960’s, and commands the allegiance of an impressive number of

adherents worldwide. A mind map is essentially nothing more than a visual outline,

in which a central idea or topic is written in the center of the diagram, and subtopics

radiate outwards in increasing levels of specificity. (See Figure 3.) The primary

value is in the freeform, spatial layout (rather than a sequential, numbered outline),

the ability for a software application to hide or reveal select levels of detail, and as

mentioned above, graphical adornments. The basic data model is a tree, rather than a

graph, with all links implicitly labeled “supertopic/subtopic.” (This is discussed more

fully below.) The number of software tools available for constructing mind maps is

staggering; just a sampling would include [48], [127], [130], [72], [220], [237], [41],

[241], and [219], and there are many more.

 35

Figure 3. MindManager, a mind map creation tool. The structure of the diagram is
inherently hierarchical, with the unlabeled branches between elements implicitly
denoting “supertopic/ subtopic.” [221]

Concept mapping. Concept mapping is based on firmer psychological footing

than is mind mapping, but it is slightly more complex, which may account for its

second place in popularity. Concept maps were developed by Cornell Professor

Joseph Novak[235, 236], and based on David Ausubel’s assimilation theory of

learning.[23] An essential tenet is that newly encountered knowledge must be related

to one’s prior knowledge in order to be properly understood. Concept maps help

depict such connections graphically. Like mind maps, they feature evocative words

or phrases in boxes connected by lines. There are two principal differences, however:

first, a concept map is properly a graph, not a tree, permitting arbitrary links between

 36

nodes rather than only parent/child relationships5; and second, the links are labeled to

identify the nature of the inter-concept relationship, typically with a verb phrase.

(See Figure 4.) In this way, the links on a diagram can be read as English sentences,

with the upstream node as the subject and the downstream node as the direct object of

the sentence. There are many applications available that could be used for drawing

these diagrams, not all of which directly acknowledge their support for concept maps

in particular. Some which do include [60], [296], [132], [13], [71], [45].

Figure 4. CMap, a concept map creation tool. The structure of the diagram is a general
graph, with labels indicating the relationships between major concepts.[60]

5 It should be noted that although concept maps themselves are technically arbitrary graphs, concept
mapping techniques encourage the heavy use of hierarchy. “Place the most inclusive, most general
concepts at the top…of the map,” says Novak., and then “select…two, three, or four subconcepts under
each general concept,” and continue in this way until the most specific items are at the
bottom.”{Novak 2003} The non-hierarchical associations are termed “crosslinks,” and are thought to
be less common.

 37

 Note that a concept map is virtually identical to the notion of a “semantic

network”[339], which has served as a cornerstone for much artificial intelligence

work since its inception. Semantic networks, too, are directed graphs in which the

nodes represent concepts and labeled edges the relationships between them. Much

psychology research has strengthened the idea that the human mind internalizes

knowledge in something very like this sort of framework. This likely explains the

ease with which concept mapping techniques have been adopted by the uninitiated,

since concept maps and semantic networks can be considered equivalent.

 Cognitive mapping. Cognitive mapping, developed by Fran Ackermann and

Colin Eden at the University of Strathclyde, uses the same data model as does

concept mapping, but with a new set of techniques. In cognitive maps, element

names have two parts, separated by an ellipsis that is read “as opposed to” in order to

further clarify the semantics of the node. (“Cold…hot” is different than

“cold…freezing,” for example.) Links are of three types – causal, temporal,

connotative – the first of which is the most common and is read as “may lead to.”

Generally cognitive mapping is best suited to domains involving arguments and

decision making. Cognitive mapping is not nearly as widespread as the other two

paradigms; the premier design application is [28]. (See Figure 5.)

 38

Figure 5. Decision Explorer, a cognitive map creation tool. Cognitive maps are mostly
equivalent to concept maps, but are best suited to domains involving arguments and
decision making. The ellipses inside certain elements are to be read “as opposed to” in
order to make the meaning more precise.[28]

Together, these and related methods have brought into the mainstream the

idea of breaking down knowledge into its fundamental elements, and representing

them graphically. Students and workers from widely diverse backgrounds have

experienced success in better articulating and examining their own knowledge, and in

discovering how it relates to what else they know. We will see that although

architectural considerations prevent any of these tools from functioning as bona fide

PKBs, the ideas they have contributed to a front-end interface mechanism cannot be

overestimated.

 39

Hypertext systems

As previously stated, the hypertext community proudly points to Vannevar

Bush’s article as the cornerstone of their heritage. Hence the development of

hypertext techniques, while seldom applied specifically towards PKB solutions, is

important. There have basically been three types of hypertext systems: those that

exploit features of non-linear text to create a dynamic, but coherent “hyperdocument”

(e.g., [278], [141]); those that prescribe ways of linking existing documents together

for navigation and expression of affinities (e.g., [133], [92], [251]); and those that use

the hypertext model specifically to model abstract knowledge. Of the three, the last is

the most relevant for this study, since it relates most directly to the PKB problem

space. Interestingly, though the first and especially the second category have

dominated research efforts (and public enthusiasm) over the past two decades, it is

this third class that is closest in spirit to the original vision of hypertext by its

founders.

We have already mentioned Bush’s emphasis on extending the human

memory, which implicitly demands a way to model abstract knowledge. Doug

Engelbart, too, who began developing the first viable hypertext system in 1959,

pursued “the augmentation of man’s intellect.”[107] Engelbart’s focus has been to

develop computer systems to “help people think better,” and sought data models that

more closely paralleled the human thought process. Though his “Augment” system

underwent many evolutions and was later used for managing software engineering

projects, I will point out that his original purpose closely aligned with a key aspect of

PKBs: using hypertext as a way to represent and store abstract human knowledge.

 40

More recently, Randall Trigg’s TEXTNET[316] and NoteCards[146] systems

further explored this idea. TEXTNET revolved around “primitive pieces of text

connected with typed links to form a network similar in many ways to a semantic

network.”[78] Though text-centric, it was clear that Trigg’s goal was to model the

associations between primitive ideas and hence to reflect the mind’s understanding.

“By using…structure, meaning can be extracted from the relationships between

chunks (small pieces of text) rather than from the words making them up.”[316] The

subsequent NoteCards effort, one of the most influential hypertext efforts in history,

was similarly designed to “formulate, structure, compare, and manage ideas.” It was

useful for “analyzing information, constructing models, formulating arguments,

designing artifacts, and generally processing ideas.” (See Figure 6.)

Figure 6. The NoteCards knowledge management environment.[146]

Conklin and Begeman’s gIBIS system was another early effort into true

knowledge representation, specifically for the field of design deliberations and

 41

arguments.[79] The project lived on in the later project QuestMap[282] and the more

modern Compendium[77, 282], which has been primarily used for capturing group

knowledge expressed in face-to-face meetings. In all cases, these systems use

semantic hypertext in an attempt to capture shared knowledge in its most basic form.

Other examples of knowledge-based hypertext tools include Mental Link[94],

Aquanet[208], and SPRINT[63], as well as a few current commercial tools such as

PersonalBrain[311] and Tinderbox[39].

Note-taking applications

The most explicit attempt to create a PKB as I have defined it comes from the

area of note-taking applications. These software tools allow a user to create snippets

of text (often called “notes”) and then organize or categorize them in some way.

They draw heavily on the “note-taking” metaphor since it is a familiar operation for

users to carry over from their experiences with pen and paper. A surprising number

of tools even incorporate visual depictions of a ruled, spiral-bound notebook into their

user interfaces (e.g., [217], [20], [70]). (See Figure 7.)

 42

Figure 7. AquaMinds NoteTaker, a hierarchically-based note-taking application. [20]

We would expect applications like this to be more easily grasped by novices,

since the process of simply “taking notes” in English text involves no learning curve

such as that required for creating alien graphical diagrams. And this is indeed the

case: note-taking tools have a tremendous number of aficionados, who often defend

their choice of application with almost religious intensity.

Most of these tools are based on a tree hierarchy, in which the user can write

pages of notes and then organize them into sections and subsections (e.g., [157],

[217], [70], [20]). The higher level sections or chapters often receive a colored tab

exactly as a physical three-ring notebook might. Others eschew the tree model for a

more flexible category-based approach ([171], [42], [344]), as I will discuss in depth

 43

below in the section on data models. The primary purpose of all these tools is to offer

the benefits of freeform note-taking with none of the deficiencies: users are free to

brainstorm and jot down anything from bullet points to polished text, while still being

able to search, rearrange, and restructure the entire notebook easily.

An important subcategory of note-taking tools is outliners (e.g., [244]), or

applications specifically designed to organize ideas in a hierarchy. These tools

typically show a two-pane display with a tree-like navigation widget in the left-pane

and a list of items in the right-pane (see Figure 8.) Topics and subtopics can be

rearranged, and each outline stored in its own file. Among the first applications of

this kind were Dave Winer’s ThinkTank and MORE programs[333]; more modern

products feature the ability to add graphics and other formatting to an item, and even

hyperlinks to external websites or documents.[125] The once abandoned (but now

resurrected) Ecco system[231] was among the first to allow items to have typed

attributes, displayed in columns. This gives the effect of a custom spreadsheet per

topic, with the topic’s items as rows and the columns as attributes. It allows the user

to gracefully introduce structure to their information as it is identified.

 44

Figure 8. The TreePad outliner, which allows users to organize ideas in a hierarchy and
then expand on each one with text, graphics, etc. [125]

Of particular interest are applications optimized for subsuming portions of the

objective realm into a subjective view, where they can be clustered and arranged.

The Virtual Notebook System (VNS)[56] was one of the first to emphasize this. VNS

was designed for sharing information among scientists at the Baylor College of

Medicine; a user’s “personal notebook” could make references to specific sections of

a “community notebook,” and even include arbitrary segments of other documents

through a cut-and-paste mechanism. More recently, YellowPen[342], Cartagio[222],

and Hunter-Gatherer[280] are tools that allow one to easily grab snippets of Web

pages and then organize them subjectively. This is a crucial feature in designing a

PKB, because as mentioned, a user’s subjective realm is primarily made up of bits

 45

and pieces from the objective realm. It seems natural to model this in the knowledge

creation process.

Document management systems

 Lastly, I consider systems whose primary purpose is to help users organize

documents in the objective space. Such systems do not encode subjective knowledge

per se, but they do create a personal knowledge base of sorts by allowing users to

organize and cross-reference their information artifacts in personalized ways.

These efforts generally seek to provide alternative indexing mechanisms to the

clumsy “directory path and file name” approach. Presto[101] replaces the directory

hierarchy entirely with attributes that users assign to files. These key-value pairs

represent user-perceived properties of the documents, and are used as a flexible

means for retrieval and organization. William Jones’ Memory Extender[169] was

similar in spirit, but it dynamically varied the “weight” of a file’s keywords according

to the user’s context and perceived access patterns. In Haystack[9], users – in

conjunction with automated software agents – build a graph-based network of

associative links through which documents can be retrieved. Metadata and multiple

categorization can also be applied to provide multiple retrieval paths customized to

the way the individual thinks and works with their information sources.

WebTop[338] allows the user to create explicit links between documents, but then

also merges these user-defined relationships with other types of associations. These

include the hyperlinks contained in the documents themselves, associations implied

by structural relationships, and content similarities discovered by text analysis agents.

 46

The idea is that any way in which items can be considered “related” should be made

available to the user for help with retrieval.

A subclass of these systems integrate the user’s personal workspace with a

search facility, blurring the distinction between information retrieval and information

organization. SketchTrieve[155], DLITE[83], and Garnet[54] each materialize

elements from the retrieval domain (repositories, queries, search results) into tangible,

manipulatable screen objects. These are introduced directly into a spatial layout that

also includes the information sources themselves. These systems can be seen as

combining a spatial hypertext interface as in VIKI[209] with direct access to digital

library search facilities. NaviQue[129] is largely in the same vein, though it

incorporates a powerful similarity engine to proactively aid the user in organization.

CYCLADES[266] lets users organize Web pages into folders, and then attempts to

infer what each folder “means” to that user, based on a statistical textual analysis of

its contents. This helps users locate other items similar to what’s already in a folder,

learn what other users have found interesting and have grouped together, etc.

All of these document management systems are principally concerned with

organizing objective information sources rather than the expression of subjective

knowledge. Yet their methods are useful to consider with respect to PKB systems,

because such a large part of our knowledge is comprised of things we remember,

assimilate, and repurpose from objective sources. Search environments like

SketchTrieve, as well as snippet gatherers like YellowPen, address an important need

in knowledge management: bridging the divide between the subjective and objective

realms, so that the former can make reference to and bring structure to the latter.

 47

Data models

 Candidate PKB systems can be compared along a number of different axes,

the most important of which is the underlying data model they support. This is what

prescribes and constrains the nature of the knowledge they can contain: what types of

knowledge elements are allowed, how they can be structured, and how the user

perceives them and can interact with them. Next to the data model, all other aspects

of a system are merely ancillary features and nuances.

 A few definitions are in order. First, I will use the term “knowledge element”

to refer to the basic building blocks of information that a user creates and works with.

There is some variation across systems as to how granular these are and precisely

what they contain, but every system has some notion of a fundamental unit that the

user generates, manipulates, and rearranges to reflect their mental model. Second, the

term “structural framework” will cover the rules about how these knowledge

elements can be structured and interrelated. Whether the user places the elements in

categories, builds a top-down hierarchy out of them, spatially arranges them on the

screen, or creates arbitrary links between them is determined by the system’s

structural framework. Finally, by “schemata” (or the singular form “schema”) I mean

the introduction of formal semantics into the data model. If the knowledge elements

are, say, typeless, arbitrary words or phrases that the user creates, then there is no

notion of knowledge element “schemata.” But if, for example, the system allows

knowledge elements to be declared as being of a specific type, or if there are formal

semantic properties that can be assigned to them, then the system has effectively

introduced some sort of schema to both guide and constrain the user.

 48

 This rather lengthy section is organized around these three broad dimensions

of data models. In the first subsection below, I will discuss the five principal PKB

structural frameworks (tree, graph, tree plus graph, spatial, and category), address the

key characteristic of transclusion and its influence on the various frameworks, and

then touch on several alternate approaches to the traditional five that have been

proposed. In the two sections following, I will address the differing knowledge

element types these systems support, and the ways in which schema has been

introduced.

Structural frameworks

Kaplan et al. stated it well when they observed in 1990 that “dominant

database management paradigms are not well suited for managing personal data,”

since “personal information is too ad hoc and poorly structured to warrant putting it

into a record-oriented online database.”[171] Clearly this is the case; when we want

to jot down and preserve a book recommendation, directions to a restaurant, or

scattered lecture notes, a rigidly structured relational database table is exactly the

wrong prescription. The random information we collect defies categorization and

quantization, and yet it demands some sort of structure, both to match the organized

fashion in which we naturally think and to facilitate later retrieval. The question is,

what sort of structural framework should a PKB provide?

The five traditional structural frameworks

It turns out that among the multitude of existing systems, only five basic

structural frameworks have won wide acceptance, namely:

 49

1. Tree. Systems that support a tree model allow knowledge elements to be

organized into a containment hierarchy, in which each element has one and only one

“parent.” This takes advantage of the mind’s natural tendency to classify objects into

groups, and to further break up each classification into subclassifications. It also

mimics the way that a document can be broken up into chapters, sections, and

subsections. The tree is the basis for most modern filesystem organization (whether

“directories” in Unix or “folders” on a Windows platform) and is a popular

organization mechanism for Web browser bookmarks and e-mail management. It

tends to be very easy and natural for users to understand.

All of the applications for creating Buzan mind maps are based on a tree

model, because a mind map is a tree. Each mind map has a “root” element in the

center of the diagram (often called a “central topic”) from which all other elements

emanate as descendents. Every knowledge element has one and only one place in this

structure. Some tools, such as Mind Manager, extend this paradigm by introducing

“floating topics,” which are not anchored to the hierarchy, and permitting

“crosslinks” to arbitrary topics, similar to those in concept maps. The fact that such

features are included betrays the inherent limitations of the mind map as a modeling

technique. A strict tree is unfortunately inadequate for representing much complex

information, as I will discuss later.

Other examples of tree-based systems are most personalized search interfaces

([98], [268], [266]), outliners ([244], [125]), and most of the “notebook-based” note-

taking systems ([20], [217]). By allowing them to partition their notes into sections

and subsections, note-taking tools channel users into a tree hierarchy. In recognition

 50

of this confining limitation, many of these tools also permit a kind of “crosslink”

between items ([215], [337]), and/or employ some form of transclusion (see below) to

allow items to co-exist in several places ([344], [68]). The dominant paradigm in

such tools, however, remains the simple parent-child hierarchy.

Trees remain by far the most pervasive user interface model in computer

applications today. Their allure derives from humans’ natural tendency to form

classification hierarchies in order to make sense of their world[76], and from their

need to focus on a desired level of abstraction, which trees enable by hiding and

concealing levels of detail.

2. Graph. Graph-based systems allow users to create knowledge elements and

then to interconnect them in arbitrary ways. The elements of a graph are traditionally

called “vertices,” and connected by “arcs,” though the terminology used by graph-

based systems varies widely (see Table 1) and the hypertext community normally

uses the terms “nodes” and “links.” There are no restrictions on how many arcs one

vertex can have with others, no notion of a “parent/child” relationship between

vertices (unless the user chooses to label an arc with those semantics), and normally

no “root” vertex. In many systems, arcs can optionally be labeled with a word or

phrase indicating the nature of the relationship, and adorned with arrowheads on one

or both ends to indicate navigability. (Neither of these adornments is necessary with

a tree, since all relationships are implicitly labeled “parent/child” and are directional

from parent to child.) Note that a graph is a more general form of a tree. By using

only unidirectional arcs (a “directed graph”), electing one vertex to be the “root,” and

ensuring that all non-root vertices have exactly one incoming arrowhead, a graph can

 51

represent everything a tree can. Hence it is a strictly more powerful form of

expression.

 Vertex Arc Graph
Axon Idea Processor object link diagram
Banxia Decision Explorer concept link view
Compendium node link view
Haystack needle tie bale
Idea Graph idea connection ideagraph
Knowledge Manager concept relation map
MyLifeBits resource link/annotation story
NoteCards note card link browser
PersonalBrain thought link brain
RecallPlus idea association diagram
SMART Ideas symbol connector level

Table 1. Terminology employed by a sampling of graph-based knowledge management
tools. (Interestingly, the standard mathematical terms “vertex,” “arc,” and “graph” are
used by none of them.)

This model is the defining characteristic of hypertext systems ([147])

including many of those used for document management ([147],[338]). It is also the

underpinning of all concept-mapping tools, whether they actually acknowledge the

name “concept maps” ([60],[131]) or advertise themselves simply as tools to draw

knowledge diagrams ([73], [243]). As mentioned previously, graphs draw their

power from the fact that humans are thought to model knowledge as graphs (or

equivalently, semantic networks) internally. In fact, it could be argued that all purely

cognitive structures can be ultimately reduced to a graph of some kind, which may

point to sufficiency as a structural framework. (See also [262], [233].)

An interesting aspect of graph-based systems is whether or not they require a

fully-connected graph. A fully-connected graph is one in which every vertex can be

reached from any other by simply performing enough arc traversals. In other words,

there are no “islands” of vertices that are severed from each other. Most graph-based

 52

tools allow non-fully-connected graphs: knowledge elements are simply added to the

system, and connected arbitrarily to each other, without constraint. But a few tools,

such as PersonalBrain[311] and Compendium[77], actually require a single network

of information in which every knowledge element must be indirectly connected to

every other. If one attempts to remove the last link that connects a body of nodes to

the original root, the severed elements are either “forgotten” or else moved to a

deleted objects heap where they can only be accessed by restoring a connection to the

rest of the graph.

For completeness, note that some hypertext systems (e.g., [96], [133]) add

further precision to the basic linking mechanism by allowing nodes to reference not

only other nodes, but sections within nodes (see [147]). This ability is especially

useful if the nodes themselves contain sizeable content, and also for PKB elements

making reference to fragments of objective sources.

 3. Tree plus graph. Although graphs are a strict superset of trees, trees offer

some important advantages in their own right: simplicity, familiarity, ease of

navigation, and the ability to conceal details at any level of abstraction. Indeed, the

problem of “disorientation” in hypertext navigation ([78], [205]) largely disappears

with the tree model; one is rarely confused about “where one is” in the larger

structure, because traversing the parent hierarchy gives the context of the larger

surroundings. For this reason, several graph-based systems have incorporated special

support for trees as well, to combine the advantages of both approaches.

Concept mapping techniques are an example of this: a generally hierarchical

paradigm is prescribed, after which users are encouraged to identify “crosslinks”

 53

between distant concepts. And indeed when systems loyal to the mind mapping

paradigm break its confines to permit arbitrary relationships between nodes, they are

taking the same path.

One of the earliest systems to combine tree and graph primitives was

TEXTNET[316], which featured two types of nodes: “chunks” (which contained

content to be browsed and organized) and “table of contents” nodes (or “tocs”.) Any

node could freely link to any other, permitting an unrestricted graph. But a group of

tocs could be combined to form a tree-like hierarchy that bottomed out in various

chunk nodes. In this way, any number of trees could be superimposed upon an

arbitrary graph, allowing it to be viewed and browsed as a tree, with all the requisite

advantages.6 NoteCards offered a similar mechanism, using “FileBoxes” as the tree

component that was overlaid upon the semantic network of notecards.

Brown University’s IGD project explored various ways to combine and

display unrestricted graphs with hierarchy, and used a visual metaphor of spatial

containment to convey both graph and tree structure.[114] Their notion of “link

inheritance” simplifies the way in which complex dual structures are displayed while

still faithfully depicting their overall trends. Commercially, both PersonalBrain[311]

and Multicentrix[179] provide explicit support for parent/child relationships in

addition to arbitrary connections between elements, allowing tree and graph notions

6 Strictly speaking, a network of tocs formed a DAG (directed acyclic graph) rather than a tree. This
simply means that a “chunk” could be represented in multiple places in the tree, if two different
traversal paths ended up referring to the same chunk. We will revisit this when discussing
transclusion, below; a DAG is essentially the result of applying transclusion to the tree model. This is
also true of NoteCards.

 54

to coexist. Some note-taking tools, while essentially tree-based, also permit

crosslinks between notes (e.g., [215], [337]).

 4. Spatial. In the opposite direction, some designers have shunned links

between elements altogether, favoring instead spatial positioning as the sole

organizational paradigm. Capitalizing on the human’s tendency to implicitly

organize through clustering, making piles, and spatially arranging, some tools offer a

two-dimensional workspace for placing and grouping items. This provides a less

formal (and perhaps less intimidating) way for a user to gradually introduce structure

into a set of items as it is discovered.

This approach originated from the spatial hypertext community, demonstrated

in projects like Boxer[100] and VIKI/VKB ([209], [289], see Figure 9.) With these

programs, users place information items on a canvas and can manipulate them to

convey organization imprecisely. VIKI and VKB are especially notable for their

ability to automatically infer the structure from a user’s freeform layout: a spatial

parser examines which items have been clustered together, colored or otherwise

adorned similarly, etc., and makes judgments about how to turn these observations

into machine-processible assertions. A containment hierarchy in which one

workspace subsumes another adds tree-like features to these approaches, although the

user cannot typically see an overview of the entire hierarchy and thus navigate it at a

glance. This is partially offset by the ability to “peer inside” a child workspace from

its parent and peek at the nested structure.

 55

Figure 9. VIKI, one of the first spatial hypertext systems. Rather than links between
elements, the primary way organizational information is conveyed is through spatial
clustering. An automated spatial parser deduces the structure that the user has
informally specified. [209]

Pad[252] uses spatial positioning to organize items on a single, flat, gigantic

canvas. The workspace is navigated by means of “portals” – instruments that give a

magnifying glass effect to explore different parts of the information plane. Users can

view different objects in varying levels of detail as they share the workspace

collaboratively.

Certain note-taking tools (e.g., [56], [217]) combine an overarching tree

structure with spatial freedom on each “page.” Users can access a particular page of

the notebook with basic search or tree navigation facilities, and then lay out notes and

images on the page as desired. The KMS hypermedia system offered the same spatial

freedom on each of its “frames.”[12]

Most of the integrated search workspaces (e.g., NaviQue[129]) are also in this

category. And many of the graph-based approaches (such as concept mapping tools)

also allow for arbitrary spatial positioning of elements. This allows both kinds of

 56

relationships to be expressed: explicit links between items, and less formal expression

through creative use of screen real estate.

 5. Category. The fifth structural framework that candidate PKB systems use

is that of categories. Rather than being described in terms of their relationships to

other elements (as with a tree or graph), items are simply grouped together in one or

more categories, indicating that they have something in common. Though seldom

acknowledged, this scheme is based on the branch of pure mathematics called “set

theory,” in which each of a body of objects either has, or does not have, membership

in each of some number of sets. There is normally no restriction as to how many

different categories a given item can belong to, as is the case with mathematical sets.

Users may think of categories as collections, in which the category somehow

encloses or “owns” the items within it. Indeed, some systems depict categories in this

fashion, such as the Vista interface[101] where icons standing for documents are

enclosed within ovals that represent categories (see Figure 10.) This is merely a

convention of display, however, and it is important to note that fundamentally,

categories are the same as simple keywords. Stating that a given piece of information

is in the “to do today” category and also in the “need to inform Nancy” category is

identical to annotating the item with both the “to do today” and the “need to inform

Nancy” keywords (or keyphrases.) It might be argued that it is wiser to avoid a

graphical “containment” metaphor altogether for categories, as it may mislead users

into thinking that a given item can only be in a single category at a time. (Notice that

this is somewhat of a problem in Figure 10.) To the contrary, the category approach

derives its power from the fact that this is not the case. Permitting a single item to be

 57

in multiple “places” at a time (ie., associated with multiple groups) relieves the tree

model’s most restrictive constraint.

Figure 10. The Presto category-based browser, also known as “Vista.” Although not
shown very clearly in the diagram, items in the information space can be grouped in
multiple categories at the same time, which is the cardinal feature of the category-based
structural framework.

The most popular application to embrace the category approach was the original

Agenda[171], which later became a commercial product and spawned many

imitations. Kaplan et al. describe Agenda as an “item/category database,” where

categories are the fundamental organizational and retrieval construct. They claim that

this is more powerful than the hypertext (graph-based) model, because relationships

can be identified among groups of items, rather than simply among individual items.

 58

All information retrieval in Agenda was performed in terms of category membership.

Users specified queries that were lists of categories to include (or exclude), and only

items that satisfied those criteria were displayed. The user could then filter, sort, and

group the results in various ways, again with categories as the control mechanism.

Agenda was particularly sophisticated in that the categories themselves formed a tree

hierarchy, rather than a flat namespace. Assigning an item to a category also

implicitly assigned it to all ancestors in the hierarchy, so that searches could be

performed at varying levels of granularity. Agenda also provided more advanced

forms of expression, allowing a user to specify certain categories as mutually

exclusive, or even construct arbitrarily complex logical conditions for chained

category assignment.

Personal Knowbase[42] is a more modern commercial product based solely on

a keyword (category) paradigm, though it uses a simple flat keyword structure rather

than an inheritance hierarchy like Agenda. (See Figure 11.) Haystack[9] and

Chandler[246] are other information management tools which use categorization in

important ways. William Jones’ Memory Extender[169] took an artificial

intelligence twist on the whole notion of keywords/categories, by allowing an item’s

keywords to be weighted, and adjusted over time by both the user and the system.

This allowed the strength of category membership to vary dynamically for each of an

item’s assignments, in an attempt to yield more precise retrieval.

 59

Figure 11. Personal Knowbase, a note-taking system based on the category structural
framework. Multiple customized user keywords (listed in far left pane) can be assigned
to each note (which is comprised of a small text document and a title.) These keywords
can be combined with boolean operations in order to retrieve notes. [42]

The role of transclusion

Before taking a brief look at a few other structural frameworks that have been

proposed, I wish to draw attention to the important property of “transclusion.” This

term, first coined by Ted Nelson[228], signifies an embedded reference in one

document that points to a portion of another document. This allows any updates to

the referred-to document to be instantly seen by the referring one, and avoids having

to copy and store the relevant passage in multiple locations. In computer

programming parlance, it is essentially nothing more than a “by reference” as

opposed to a “by value” inclusion of external material. Nelson’s original motive for

this was to guarantee the payment of royalties to quoted authors in his vision for a

 60

worldwide information network. But when we consider this idea in the context of

PKB data models, we find that it is of fundamental importance.

In this context, transclusion means the ability to view the same knowledge

element (not a copy) in multiple contexts. It is so pivotal because it is central to how

the human mind processes information. Indeed, the whole idea of associative

memory demands it. I may think of Bob and Joe as related because they both attend

my seminar, but I may associate Joe and Sue together because they share an interest

in cross-country skiing. Here, the same person “Joe” is linked to two other elements

because I think of him in two different contexts, and there are potentially dozens of

others. I certainly do not relate Sue to “a copy of Joe,” but to Joe, and if I acquire

new information about Joe, this would instantly be available in all the contexts I

associate with him. Without delving into psychological research to examine exactly

how the mind encodes such associations, it seems clear that if one were to build a

comprehensive personal knowledge base containing potentially everything a person

knows, it must have the ability to transclude knowledge elements. The ability to

repurpose knowledge is vital if a system is to be faithful to the way the mind operates.

This strikes at the heart of why the tree model is so limiting. In a tree, a given

piece of information – whether a file, a Web bookmark, an e-mail message, or a

knowledge element – is filed away in a single location. It has only a single ancestral

path to the root of the tree, and hence, only appears in a single context. Much

research into human-computer interaction has investigated various ways of relaxing

this paralyzing constraint.

 61

Now consider how each of the structural frameworks we have explored is

affected by transclusion. It should be noted that the category model inherently is a

transclusive model, and that is what gives it its power: a given piece of information

can be simultaneously “in” many different categories, and these categories are

independent of one another. To use Kaplan et al.’s example[171], this is what allows

a user to assign an item “Call Fred next Tuesday about pricing policy plans” to

several categories at once: “Phone calls,” “Fred Smith,” and “Pricing policy

committee.” This fits naturally with the user’s conception, and allows the item to be

retrieved later along multiple paths.

Adding transclusion to the tree model effectively turns it into a directed

acyclic graph (DAG), in which an item can have multiple parents. This is what

Trigg[316] and Halasz[146] achieved with their extensions to the tree model. In

TEXTNET, for example, a primitive information “chunk” can be pointed to by

multiple “tocs” nodes, and hence present in multiple places in the same table-of-

contents hierarchy. Altering the “chunk” changes its appearance in all contexts.

From a PKB perspective, this is a great improvement over the strict tree, since it

permits the same sort of flexibility as the category-based model. In fact, a category

hierarchy (as in Agenda) is virtually equivalent to the DAG model: non-leaf nodes in

the DAG represent categories, and the leaves (or “chunks” in TEXTNET’s

nomenclature) are the items within those categories.7 Zoot[344] and Hog Bay[157]

7 I say “virtually” equivalent because there is a subtle difference: with a DAG, a category itself could
be a subcategory of more than one category. This is not possible in Agenda, where the categories form
a strict tree, and only the items have transclusive properties.

 62

are tree-based commercial products that also let the user transclude items into

multiple containers.

Boxer[100] incorporates transclusion into the spatial model by its “port”

construct. Normally, an information element (a “box” in Boxer’s terminology) is

accessible inside its immediate container, but not outside. To overcome this,

however, a user can create “a port, which is simply a view of a box at some other

place in the system. A port behaves in most respects identically to the box it views –

any change in one will automatically cause the same change in the other.” A single

box can thus virtually appear on multiple container boxes.

A similar mechanism can be applied to graph models, as with Tinderbox’s

“alias” feature.[39] In Tinderbox, information is broken up into “notes,” which can

appear on the screen as spatially laid out rectangles with links between them. By

creating an “alias” for a note, one can summon its appearance on a different graph

layout than the note originally appeared. An alias thus functions in the same way as

Boxer’s ports do. Note one limitation with both Boxer’s and Tinderbox’s approaches,

however: the “port” or “alias” is still inherently secondary to the original box or note

to which it refers. The port/alias is what points to the original note, not vice versa,

and hence if the latter disappears or is renamed or repositioned, difficulties may arise.

These issues are solved by Compendium[77, 282], the most thorough known

implementation of transclusion for a graph-based tool. In Compendium, it is the

actual node (rather than an alias) that is present on multiple views, without any

limitations. If the user creates a node A on view 1, then adds A to view 2, and deletes

it from view 1, A will exist solely on view 2 without any dangling references. This is

 63

because in Compendium’s relational database scheme, the node A has its own

existence, quite separate from any view in which it might appear. This seems closer

to how the mind operates: we associate ideas with contexts, but we do not embed

ideas irreversibly into the first context we happened to place them in, forcing other

contexts to “point” to the original location. Rather, the mind is fluid, freely

associating and disassociating ideas from others so that our mental model can

naturally evolve. Tightly binding an element to its original context, therefore, seems

like the wrong approach.

In summary, then, transclusion is a property that can be advantageously

combined with any of the structural frameworks above. It permits an item to appear

in multiple contexts, just as the human mind considers ideas in multiple contexts.

Thus the presence of transclusion in some form seems essential in order for a diverse

PKB to grow coherently.

Alternative frameworks

The vast majority of candidate PKB tools are based on one of the five

principal frameworks above, but for completeness I will mention three notable others

that researchers have experimented with:

Chronological. Yale University’s Lifestreams project[121] used timestamps as

the principal means of organization and retrieval of personal documents. (See Figure

12.) In Fertig et al.’s own words:

A lifestream is a time-ordered stream of documents that functions as a diary of
your electronic life; every document you create is stored in your lifestream, as
are the documents other people send you. The tail of your stream contains
documents from the past, perhaps starting with your electronic birth
certificate. Moving away from the tail and toward the present, your stream

 64

contains more recent documents such as papers in progress or the latest
electronic mail you’ve received…

Figure 12. Lifestreams, an exclusively chronologically-based information management
system. [121]

Documents are thus always ordered and accessed chronologically. Metadata-

based queries on the collection produce “substreams,” or chronologically-ordered

subsets of the original documents. The rationale for time-based ordering is that “time

is a natural guide to experience; it is the attribute that comes closest to a universal

skeleton-key for stored experience.”[126] Whether chronology is our principal or

even a common natural coding mechanism psychologically can be debated. But since

any PKB system can create such an index “for free” (it is a simple matter to record

the time of any change to the knowledge base), it seems worthwhile to follow

Lifestreams’ lead and allow the user to sort and retrieve based on time. If nothing

else, it relieves the user from having to create names for knowledge elements, since

the timestamp is always an implicit identifying mark. PlanPlus[124], based on the

Franklin-Covey planner system, is also chronologically modeled, and a number of

 65

products based on other data models (e.g., [171], [70]) offer chronological indexing in

addition to their core paradigm.

 Aquanet. Though advertised as a hypertext system, Marshall et. al’s

Aquanet[208] went far beyond the traditional node-link graph model. Knowledge

expressed in Aquanet is centered around “relations,” or n-ary links between objects in

which the semantics of each participant in the relation is specified by the relation

type. (See Figure 13.) Each type of relation specifies a physical display (ie., how it

will be drawn on the screen, and the spatial positioning of each of its participants),

and a number of “slots” into which participants can be plugged in. Each participant

in a relation can be either a base object, or another relation. Users can thus define a

schema of relation types, and then build a complex semantic model out of relations

and objects. Since relation types can be specified to associate any number of nodes

(instead of just two, as in the graph model), this potentially allows more complex

relationships to be expressed.8

8 It should be noted, however, that the same effect can be achieved in the basic graph model by simply
taking the n-ary relations and “reifying” them (ie., turning them into nodes in their own right.) For
instance, suppose we define a relation type “assassination,” with slot types of “assassin,” “victim,”
“location,” and “weapon.” We could then create a relation based on this type where the participants
are “John Wilkes Booth,” “Abraham Lincoln,” “Ford’s Theatre,” and “derringer.” This allows us to
express a complex relationship between multiple objects in Aquanet. But we can express the same
knowledge with the basic graph model by simply creating a node called “Lincoln’s assassination” and
then creating typed links between that node and the other four labeled “assassin,” “victim,” etc.
Aquanet’s biggest achievement in this area is the ability to express the schema of relation types, so that
the types of objects an “assassination” relation can connect are consistent and enforced.

 66

Figure 13. The Aquanet data model. The user can define “relations,” or templates for
semantic n-ary based links between objects. (See the upper-left corner for an example.)
Knowledge elements can then be linked together with these relations into structures of
arbitrary complexity (see right-hand side of the diagram.)[208]

Zigzag. Finally, it is worth mentioning the data model of Zigzag[230], the

successor to Ted Nelson’s original Xanadu project. Zigzag is a flexible augmentation

of the original hypertext model, in which information “cells” (nodes) are connected

together along any number of linear “dimensions.” Each dimension has an upstream

and a downstream direction, and multiple dimensions allow a cell to be

simultaneously in many different linear contexts. In programming terms, this pattern

is equivalent to having a number of objects, each of which is a participant in an

arbitrary number of independent, doubly-linked lists. By carefully arranging the cells

and their dimensions, many standard data structures (lists, spreadsheets, even trees)

can be represented in the Zigzag model. This scheme may eventually prove to be the

elegant generalization of all the structural frameworks we have presented here;

currently, however, it is not in widespread use.

 67

Knowledge elements

Having surveyed the various options for structuring knowledge elements

together in a PKB, it is now time to consider to the elements themselves: of what do

they consist, and what kind of internal structure (if any) do they possess?

There are several options here, most of which can be combined:

Word/phrase/concept. Most systems engineered specifically for knowledge

representation encourage structures to be composed of very simple elements, usually

words or phrases. This is in the spirit of both mind mapping and concept mapping,

where users are encouraged to use simple phrases to stand for mental concepts.

Decision Explorer, too, restricts the nodes in its graph to be phrases, and does not

allow anything else.[28] Note that if a user were to break up all of the knowledge

they intended to capture into a semantic network, individual words and phrases are

presumably all the result would consist of. One could argue that if any significant

free text remains (see #2, below) then the user has not completed the process of

converting their serialized information into a proper conceptual framework. As a

practical matter, of course, users may not always wish to invest the time to do that,

which makes it advantageous to permit free text to be stored in the system.

 Free text notes. For this reason, nearly all systems permit large amounts of

free text to exist in the PKB, either as the contents of the elements themselves

(NoteCards[145, 146], Hypercard[141], TreePad[125]) or attached to elements as

separate, supplementary pages (Agenda[171], Zoot[344], Hog Bay[157]). There is a

danger here, since if a system encourages free text to proliferate, then the user’s

knowledge base is prone to becoming a dumping ground for unprocessed information,

 68

rather than distilled and encoded knowledge. Nevertheless, the majority of system

designers have found this useful.

Links to the objective space. I have mentioned the “subjective-objective

divide,” and how if a user’s knowledge base is to correspond to their mental

perceptions, it should be possible for the PKB to point to entities in the objective

realm. Many systems do in fact allow their knowledge elements to point to the

objective space in some way. There are three common techniques:

 1. The knowledge element actually represents an item in the objective space.

This is the case for document management systems (WebTop[338], MyLifeBits[134],

Haystack[9]), integrated search facilities (NaviQue[129], CYCLADES[266]), and

VIKI/VKB([209], [289]). Tinderbox[39] will also allow one of its notes to be a URL,

and the user can control whether its contents should be captured once, or “auto-

fetched” so as to receive constant updates from the Web.

2. The knowledge element contains a link to the objective space. Many

systems, in addition to storing a page of free text for each knowledge element, also

permit any number of hyperlinks to be attached to a knowledge element (e.g.,

Freemind[127], PersonalBrain[311], Inspiration[162]). VNS[56], which allows users

to point to a community notebook page from within their personal notebook, offers

similar functionality.

 3. The knowledge element is a repurposed snippet from the objective space.

This is the most powerful form of subjective-objective bridging, but is sorely lacking

from most fully-featured PKB systems. Cartagio[222], Hunter-Gatherer[280], and

YellowPen[342] (see Figure 14) all allow Web page excerpts to be assimilated and

 69

organized, but they primarily only do that, without allowing them to easily be

combined with other subjective knowledge. DEVONThink[97] and MyBase’s

WebCollect plug-in[337] add similar functionality to their more general-purpose,

tree-based information managers. Both of these systems, when a snippet is captured,

archive the entire Web page locally so it can be returned to later. The user interfaces

of Circus Ponies Notebook[70] and Sticky Brain[68] have been heavily optimized

towards grabbing select bits of information from other applications and bringing them

into the PKB without disturbing the user’s workflow.

Figure 14. YellowPen, which allows snippets of textual or graphical content to be
captured from the web and repurposed in the user’s own personal (hierarchical)
structure. [342]

 70

Composites. Finally, some programs allow a user to embed knowledge

elements (and perhaps other information as well) inside a knowledge element to form

an implicit hierarchy. Trees by themselves fall into this category, of course, since

each node in the tree can be considered a “composite” of its content and children.

But a few graph-based tools offer composite functionality as well. In Aquanet[208],

as we have already seen, “relations” form the fundamental means of connection, and

the units that are plugged into a relation can be not only objects, but other relations as

well. This lends a recursive quality to a user’s modeling. VIKI/VKB’s spatial

environment offers “subspaces” which let a user partition their visual workspace into

subregions, whose internal contents can be viewed at a glance from the parent.

Boxer[100]’s paradigm is similar. Tinderbox is a graph-based tool that supports

hierarchical composite structures, and Compendium[77] extends this even further by

allowing transclusion of “views” as well as of nodes. Unlike the other tools, in

Compendium the composite hierarchy does not form a DAG, but rather an arbitrary

graph: view A can appear on view B, and B can in turn appear on A. The user’s

intuitive notion of “inside” must be adapted somewhat in this case.

Schemata

Finally, let us consider the notion of “schema” in various systems’ data

models. By schema I mean the ability for a user to specify types and introduce

structure to aspects of the data model. It is a form of metadata whereby more precise

semantics can be applied to the elements of the system. This allows more formal

knowledge expression, ensures consistency across items of the same kind, and better

 71

allows automated agents to process the information, as discussed later on. I consider

first schemata for knowledge elements, and then for links.

Schemata for knowledge elements

Types, and related schemata

Generally speaking, systems can make knowledge elements untyped, rigidly

typed, or flexibly typed. In addition, they can incorporate some notion of inheritance

among elements and their types.

Notice the distinction between types and categories here. A category-based

scheme, as previously discussed, typically allows any number of categories/keywords

to be assigned to an item. There are two differences between this and the notion of

type. First, items are normally restricted to being of a single type, and this usually

indicates a more intrinsic, permanent property of an item than simply its presence in a

category collection. (For example, we could imagine an item called “XYZ

Corporation” shifting into and out of categories like “competitors, ” “overseas

distributors,” or “delinquent debtors” over time, but its core type of “company” would

probably be constant.) Second, types often carry structural specifications with them:

if an item is of a given type, this means it will have values for certain attributes

appropriate to that type, as I will describe later. Note that some systems that do not

allow typing offer the ability to approximate this function through categories. (e.g.,

OneNote[217], Mind Manager[221]).

Untyped elements are typical among informal knowledge capture tools, since

they are designed to stimulate brainstorming and help users discover their nascent

mental models. These tools normally want to avoid forcing the user to commit to

 72

structure prematurely. Most mind mapping and many concept mapping tools are in

this category: a concept is simply a word or phrase, with no other semantic

information (e.g., VisualMind[219]). Note-taking tools also usually take this

approach, with all units of information being of the same type “note.”

At the other extreme are tools which, like older relational database

technology, require all items to be declared as of a specific type when they are

created. Often this type dictates the internal structure of the element. NoteCards took

this approach; each “card” was declared to be of a particular type (text card, sketch

card, query card, etc.) that determined what sort of information could appear on the

card. In this case, typing was used simply to control the kind of media the item

contained, not the semantic category of the conceptual entity. Frame-based systems

such as SPRINT[63] and Aquanet add semantics to this scheme: as in object-oriented

technology, each element has a declared type, which fixes the “slots” (fields) of

information that it contains, and their meanings. These tools are better suited to

domains in which the structure of knowledge to be captured is predictable, well-

understood, and known in advance. For PKB systems, they are probably overly

restrictive. KMap[131, 132] and Compendium are examples of tools that allow (and

require) each item to be typed; in their case, the type controls the visual appearance of

the item, rather than any internal structure. In KMap these types are invented by the

user; in Compendium, they are hardcoded to a particular domain (organizational

decision-making.)

In between these two poles are systems that permit typed and untyped

elements to co-exist. AquaMinds NoteTaker[20] is such a product; it holds simple

 73

free-text pages of notes, without any structure, but also lets the user define

“templates” with predefined fields that can be used to instantiate uniformly structured

forms. TreePad has a similar feature. Other systems blur the distinction between

typed and untyped, allowing the graceful introduction of structure as it is discovered.

VKB[289], for example, supports an elegant, flexible typing scheme, well suited to

PKBs. Items in general consist of an arbitrary number of attribute/value pairs. But

when consistent patterns emerge across a set of objects, the user can create a type for

that group, and with it a list of expected attributes and default values. This structure

can be selectively overridden by individual objects, however, which means that even

objects assigned to a particular type have flexible customization available to them.

Tinderbox offers an alternate way of achieving this flexibility, as discussed below.

Finally, the object-oriented notion of type inheritance is available in a few

solutions. The different card types in NoteCards are arranged into an inheritance

hierarchy, so that new types can be created as extensions of old. Aquanet extends this

to multiple inheritance among types; the “slots” that an object contains are those of its

type, plus those of all supertypes. SPRINT and Tinderbox also use a frame-based

approach, and allow default values for attributes to be inherited from supertypes.

This way, an item need not define values for all its attributes explicitly: unless

overridden, an item’s slot will have the shared, default value for all items of that type.

In general, inheritance is not widely implemented in PKB systems. Perhaps

this is because non-technical users find the concept foreign, or perhaps because its

only real selling point is more detailed structure in a realm where unstructured data is

the rule. Nearly two decades ago, Halasz[145] suggested that incorporating

 74

inheritance as well as other object-oriented constructs into hypertext systems would

be beneficial, but to this point these ideas have not made their way into the

mainstream, at least for the PKB domain. For other investigations in this area, I refer

the reader to Klas, et al[176] and Hatzopoulos[150].

Other forms of schemata

In addition to the structure that is controlled by an item’s type, other forms of

metadata and schema can be applied to knowledge elements. Keywords and

attribute/value pairs are the two I consider here.

Many systems let users annotate items with user-defined keywords. Here the

distinction between an item’s contents and the overall knowledge structure becomes

blurred, since an item keyword could be considered either a property of the item, or

an organizational mechanism that groups it into a category with like items. I have

already covered the category data model, and seen that systems like Agenda use

keywords for the latter purpose. Note here that systems based on other data models

also use keywords to achieve category-like functionality. Circus Ponies, a tree-based

note-taking application, allows “keywords, stickers, and highlighting” to adorn its

notes, all of which are forms of category annotations.[70] OneNote[217], Mind

Manager[221], and other tools offer similar features.

Arbitrary attribute/value pairs can also be attached to elements in many

systems, which gives a PKB the ability to define semantic structure that can be

queried. We have already seen examples of this with frame-based systems like

SPRINT and Aquanet, as well as NoteTaker, VKB, and Tinderbox. MindPad[13] is

notable for taking the basic concept mapping paradigm and introducing schema to it

 75

via its “model editor.” As mentioned earlier, adding user-defined attribute/value pairs

to the items in an outliner yields spreadsheet-like functionality, as in Ecco[231] and

OmniOutliner[244]. Note that some systems feature attribute/value pairs, but only in

the form of system-defined attributes, not user-defined ones. (e.g., Mind Manager,

StickyBrain[68]).

Knowledge element appearance

Finally, some tools modify a knowledge element’s visual appearance on the

screen in order to convey meaning to the user. SMART Ideas[296] and

VisualMind[219] let the user freely choose each element’s icon from a variety of

graphics, while KMap[131, 132] ties the icon directly to its underlying type. Other

graphical aspects that can be modified include color (VIKI[209]), the set of attributes

shown in a particular context (VKB[289]), and the spatial positioning of objects in a

relation (Aquanet[208]).

Schemata for links

In addition to prescribing schema for knowledge elements, many systems

allow some form of information to be attached to the links that connect them.

In most of the early hypertext systems, links were unnamed and untyped, their

function being merely to associate two items in an unspecified manner. The mind

mapping paradigm also does not name links, but for a different reason: the implicit

type of every link is one of generalization/specialization, associating a topic with a

subtopic. Hence specifying types for the links would be redundant, and labeling them

would clutter the diagram.

 76

Concept mapping prescribes the naming of links, such that the precise nature

of the relationship between two concepts is made clear. As mentioned above,

portions of a concept map are meant to be read as English sentences, with the name of

the link serving as a verb phrase connecting the two concepts. Numerous systems

thus allow a word or phrase to decorate the links connecting elements, for instance

Cmap[60] and Inspiration[162].

Named links can be distinguished from typed links, however. If the text

attached to a link is an arbitrary string of characters, unrelated to that of any other

link, we consider this the link name. Some systems, however, encourage the re-use of

link names that the user has defined previously. In PersonalBrain[311], for instance,

before specifying the nature of a link, the user must create an appropriate “link type”

(associated with a color to be used in presentation) in the system-wide database, and

then assign that type to the link in question. This promotes consistency among the

names chosen for links, so that the same logical relationship types will hopefully have

the same tags throughout the knowledge base. This feature also facilitates searches

based on link type, among other things. Other systems, especially those suited for

specific domains such as decision modeling (gIBIS[79], DecisionExplorer[28]),

predefine a set of link types that can be assigned (but not altered) by the user.

Some more advanced systems allow links to bear attribute/value pairs

themselves, and even embedded structure, similar to those of the items they connect.

In Haystack[9] this is the case, since links (“ties”) and nodes (“needles”) are actually

defined as subtypes of a common type (“straw.”) KMap similarly defines a link as a

subclass of node, which allows links to represent n-ary relationships between nodes,

 77

and enables recursive structure within a link itself. It is unclear how much value this

adds in knowledge modeling, or how often users would take advantage of such a

feature. Neptune[96] and Intermedia[133] are two older systems that also support

attributes for links, albeit in a simpler manner.

Another aspect of links that generated much fervor in the early hypertext

systems was that of link precision: rather than merely connecting one element to

another, systems like Intermedia defined anchors within documents, so that a

particular snippet within a larger element could be linked to another snippet. The

Dexter model[147] covers this issue in detail. For PKB purposes, this seems to be

most relevant as regards links to the objective space, as discussed previously. If the

PKB truly contains knowledge, expressed in appropriately fine-grained parts, then

link precision between elements in the knowledge base is much less of a

consideration.

Finally, note that throughout this discussion on links I have only been

considering connections between knowledge elements in the system, where the

system has total control over both ends of the connection. As described in the

previous section, numerous systems provide the ability to “link” from a knowledge

element inside the system to some external resource: a file or a URL, say. These

external links typically cannot be enhanced with any additional information, and

serve only as convenient retrieval paths, rather than as aspects of knowledge

representation.

 78

Architecture

The idea of a PKB gives rise to some important architectural considerations.

While not constraining the nature of what knowledge can be expressed, the

architecture nevertheless affects more mundane matters such as availability and

workflow. But even more importantly, the system’s architecture determines whether

it can truly function as a lifelong, integrated knowledge store – the “base” aspect of

the personal knowledge base as I have defined it above.

 In this section I examine some of the architectural choices that are prevalent

among candidate systems, and comment upon their ramifications.

File-based

The vast majority of solutions discussed in this chapter use a simple storage

mechanism based on flat files in a filesystem. This is true of virtually all of the mind

mapping tools (e.g., Mind Manager[221]), concept mapping tools (e.g., Cmap[60],

Axon[45], Inspiration[162]), outliners (e.g., TreePad[125], OmniOutliner[244]), and

note-taking tools (e.g., OneNote[217], Hog Bay[157], Zoot[344]), and even a number

of hypertext tools (e.g., NoteCards[146], Hypercard[141], Tinderbox[39]). Typically,

the main “unit” of a user’s knowledge design – whether that be a mind map, a

concept map, an outline, or a “notebook” – is stored in its own file somewhere in the

filesystem. The application can find and load such files via the familiar “File |

Open…” paradigm, at which point it typically maintains the entire knowledge

structure in memory. Only knowledge elements that reside in the same file can be

meaningfully connected to one another; those in other files are outside its scope.

 79

This is a very serious constraint which I will argue ultimately rules out any

such system from truly serving as a PKB. This conclusion may sound too sweeping,

but consider the ramifications of a file-based architecture on an individual’s ongoing

knowledge accumulation. The user must choose one of two basic strategies: either

store all of their knowledge in a single file; or else break up their knowledge and store

it across a number of different files, presumably according to subject matter and/or

time period. The first choice results in insurmountable scalability problems –

consider how much knowledge a user might collect over a decade, if they stored

things related to their personal life, hobbies, relationships, reading materials,

vacations, academic course notes, multiple work-related projects, future planning, etc.

Surely it is unrealistic to keep adding this kind of volume to a single, bloated, ever-

growing multi-gigabyte file! Just the time it would take the application to load it and

save it is enough to render this untenable, to say nothing of backup concerns.

But the user’s other choice is equally flawed: each bit of knowledge can be

stored in only one of the files (or else redundantly, which leads to synchronization

problems), and the user is forced to choose this at knowledge capture time. We have

already spoken of the importance of flexibility in linking: the human mind can freely

associate any two items together, so a PKB must support such unrestricted links. If

we introduce artificial boundaries into the PKB, we have given up the game: the basic

limitation of the tree model has ensnared us, in which an item is bound to a single

context.

To illustrate, suppose that Betty, a user of such a system, were to store the

details of a particular work procedure in her knowledge file for the XYZ Project she

 80

is working on at her place of business. Then she could not link this procedure to

anything in the ABC Project, since that knowledge is in a separate file. Nor could she

associate it with Jeff (who once discussed the procedure with her at a cocktail party),

since he is a friend of hers, and knowledge about him is stored in Betty’s “social”

knowledge file. Nor can she refer to it in her notes from last summer’s seminar

(during which a speaker suggested an alternative to such a procedure), since those

notes are stored in her “seminars” knowledge file. The situation is hopeless. The

user has lost most of the benefit of fluid knowledge capture, and has returned to the

world of isolated, hierarchical, name-based storage.

I have dwelt on this point at some length because it is so crucial and so

commonly overlooked. Exceptions to the file-based paradigm are rare, which may be

because of difficulty in implementation, or simply because of user familiarity with

“open” and “save” operations. But ultimately, any system that takes such an

approach is doomed in its efforts to serve as a PKB. The human mind is not rigidly

partitioned into separate compartments, and neither must be any system that attempts

to capture the knowledge the mind contains.

Database-based

A small number of systems have rejected the file paradigm and have

embraced a relational database for their storage mechanism. This choice yields all the

advantages that the file-based approach did not: scalability, reliability, and seamless

uniformity throughout the knowledge base. Knowledge elements reside in a global

space, which allows any idea to relate to any other: now a user can relate a book they

read on productivity not only to other books on productivity, but also to “that hotel in

 81

Orlando that our family stayed in last spring,” because that is where they remember

having read the book. Though such a relationship may seem “out of bounds” in

traditional knowledge organization, it is exactly the kind of retrieval path that humans

often employ in retrieving memories ([16], [195], [81]). The database architecture

enables a PKB to truly form an integrated knowledge base, and contain the full range

of relationships.

Agenda[171] and gIBIS[79] were two early tools that subsumed a database

backend in their architecture. More recently, the MyLifeBits project[134] uses

Microsoft SQL Server as its storage layer, and Compendium[77] interfaces with the

open source MySQL database. A few note-taking applications such as

StickyBrain[68] also store information in an integrated database rather than in user-

named files. The only significant drawback to this architectural choice (other than the

modest footprint of the database management system) is that data is more difficult to

copy and share across systems. This is one true advantage of files: it is a simple

matter to copy them across a network, or include them as an e-mail attachment, where

they can be read by the same application on a different machine. This problem is

solved by some of the following architectural approaches.

Client-server

Decoupling the actual knowledge store from the PKB user interface can

achieve architectural flexibility. As with all client-server architectures, the benefits

include load distribution, platform interoperability, data sharing, and ubiquitous

availability. Increased complexity and latency are among the liabilities, which can

indeed be considerable factors in PKB design.

 82

One of the earliest and best examples of a client-server knowledge base was

the Neptune hypertext system.[96] Neptune was tailored to the task of maintaining

shared information within software engineering teams, rather than to personal

knowledge storage, but the elegant implementation of its “Hypertext Abstract

Machine” (HAM) was a significant and relevant achievement. The HAM was a

generic hypertext storage layer that provided node and link storage and maintained

version history of all changes. Application layers and user interfaces were to be built

on top of the HAM. Architecturally, the HAM provided distributed network access

so that client applications could run from remote locations and still access the central

store. Another, more recent example, is the Scholarly Ontologies Project ([320],

[283]) whose ClaiMapper and ClaiMaker components form a similar distributed

solution in order to support collaboration.

These systems implemented a distributed architecture primarily in order to

share data among colleagues. For PKBs, the prime motive is rather user mobility.

This is a key consideration, since if a user is to store all of their knowledge into a

single integrated store, they will certainly need access to it in a variety of settings.

MyBase Networking Edition[337] is one example of how this might be achieved. A

central server hosts the user’s data, and allows network access from any client

machine. Clients can view the knowledge base from within the MyBase application,

or through a Web browser (with limited functionality.)

The Haystack project[9] outlines a three-tiered architecture, which allows the

persistent store, the Haystack data model itself, and the clients that access it to reside

on separate machines. The interface to the middle tier is flexible enough that a

 83

number of different persistent storage models can be used, including relational

databases, semistructured databases, and object-oriented databases. Presto’s

architecture[101] exhibits similar features.

Web-based

A variation of the client-server approach is of course Web-based systems, in

which the client system consists of nothing but a (possibly enhanced) browser. This

gives the same ubiquitous availability that client-server approaches do, while

minimizing (or eliminating) the setup and installation required on each client

machine.

KMap[132] was one of the first knowledge systems to integrate with the

World Wide Web. It allowed concept maps to be shared, edited, and remotely stored

using the HTTP protocol. Concept maps were still created using a standalone client

application for the Macintosh, but they could be uploaded to a central server, and then

rendered in browsers as “clickable GIFs.” Clicking on a concept within the map

image in the browser window would have the same navigation effect as clicking on it

locally inside the client application. Hunter-Gatherer[280], Cartagio[222], and

Notestar[15] are more recent browser-based systems that use proxies or browser

plugins to achieve a knowledge building workspace. The user’s knowledge

expressions are stored on a central server in nearly all cases, rather than locally on the

browser’s machine.

Handheld devices

Lastly, I mention mobile devices as a possible PKB architecture. Storing all

of one’s personal knowledge on a palmtop computer would solve the availability

 84

problem, of course, and even more completely than would a client-server or web-

based architecture. The safety of the information is an issue, since if the palmtop

were to be lost or destroyed, the user could face irrevocable data loss; this is easily

remedied, however, by periodically synchronizing the handheld device’s contents

with a host computer. More problematic is simply the limitations of the hardware.

Screen real estate, processing power, and storage capacity are of course much more

limited, and this hampers their overall effectiveness.

Most handheld applications are simple note-taking software, with far fewer

features than their desktop counterparts. BugMe![105] is an immensely popular note-

taking tool that simply lets users enter text or scribble onto “notes” (screenfulls of

space) and then organize them in primitive ways. Screen shots can be captured and

included as graphics, and the tool features an array of drawing tools, clip art libraries,

etc. The value add for this and similar tools is purely the size and convenience of the

handheld device, not the ability to manage large amounts of information.

Perhaps the most effective use of a handheld architecture would be as a

satellite data capture and retrieval utility. A user would normally employ a fully-

functional desktop application for personal knowledge management, but when “on

the go,” they could capture knowledge into a compatible handheld application and

upload it to their PKB at a later convenient time. To enable mobile knowledge

retrieval, either select information would need to be downloaded to the device before

the user needed it, or else a wireless client-server solution could deliver any part of

the PKB on demand. This is essentially the approach taken by software like

KeySuite[65], which merely supplements a feature-rich desktop information

 85

management tool (Microsoft Outlook) by providing access to that information on the

mobile device. InfoSelect[215], a tree-based note-taking application, also offers a

mobile product. There are no prominent handheld companion applications for any

bona fide knowledge representation tools, however. Idea Pad[234], a drawing

program for the Palm OS platform, is the closest, supporting simple mind maps and

concept maps and capable of exporting the results to any desktop graphics

application. The drawings remain just drawings, however, with no ability to integrate

or connect them to form a full-fledged knowledge base. As desktop PKB solutions

become more viable and widely accepted, satellite handheld software will presumably

emerge to support them.

Supplementary features

Before I conclude with an overall analysis of the systems presented in this

chapter, I wish to identify several key features that some of them have implemented,

that may prove especially beneficial in the realization of a true PKB. Some are

fundamental, others merely peripheral to the tool’s basic operation.

Analysis tools. Knowledge bases that humans define can become quite large

over time, of course, and some systems provide automated means to analyze them for

general patterns. I have already mentioned the spatial parser of VIKI/VKB([209],

[289]) which can analyze how a user has visually arranged and adorned elements and

draw conclusions about their implicit structure. In a somewhat different vein,

Decision Explorer[28] provides “analysis functions” that show trends in the overall

knowledge graph. Clusters, cycles, and highly influential concepts can be discovered

 86

and brought to the user’s attention. Multicentrix[179] and Knowledge Manager[160]

can each compute the paths that connect any two elements in a knowledge network,

however distant. This helps a user see how two concepts are related. SPRINT[63]

had an active inference engine built in to assist users in drawing logical conclusions

from the knowledge assertions they have expressed.

Auto-classification. To assist the user in organizing their data, some systems

examine incoming information and either suggest or automatically perform a

categorization for it. Agenda[171] and DEVONThink[97] demonstrate two alternate

ways of doing this. In Agenda, the user specifies an explicit set of rules for

evaluating items – keying on whether certain text strings are present in the content,

for instance. The system then executes these rules whenever items are changed or

introduced into the database, and then automatically assigns them to the appropriate

categories. DEVONThink takes an artificial intelligence approach, comparing the

contents of new information units with the items in the folders the user has already

established, in order to auto-file similar items together. WebTop[338],

CYCLADES[266] and Horse[89] discover similarity relationships in much the same

way. Haystack[9] and Presto[101] both feature background services that examine

content and auto-annotate it with metadata for future retrieval.

Auto-suggest. PKBs are intended to capture human knowledge, and

interestingly, some systems actually attempt to suggest knowledge for the user to

consider. The CmapTools program includes a “concept suggester” module that takes

a concept map in the process of being designed and searches the Web for concepts

that may be relevant to it.[60] This is designed to assist the user in brainstorming and

 87

to help them flesh out an “incomplete” map. Similarly, NovaMind[237], a mind

mapping tool, includes a “branch proposal system,” which suggests words or phrases

that relate conceptually or linguistically to the selected node. These enhancements

are primarily suited to the knowledge generation process, of course, and do not

pertain to long-term storage and retrieval.

 KMap[131] took a considerably more ambitious approach by integrating with

tools that auto-generate knowledge from text sources. Programs that perform text

analysis (by determining the linguistic relationship between phrases, for example, or

by examining the co-occurrence of words in sentences) can give a preliminary

attempt at a graphical knowledge representation of the text. KMap can import these

results to generate concept maps that can be perused and refined by the average user.

These sorts of techniques probe the boundary of the definition of personal knowledge,

since they indeed produce a knowledge representation (rather than raw, unprocessed

information) yet they were not generated by the user’s own understanding. In the

present context, such efforts are best seen as methods to expedite the knowledge

generation process, which must then be examined and approved by the user before

admission into the PKB.

Auto source capture. I have pointed out that an individual’s subjective

knowledge is in large part comprised of elements from the objective realm, and

mentioned several tools that tap into this phenomenon by allowing bits of objective

sources to be easily subsumed into the knowledge base. An extension of this is the

ability to automatically preserve the source location of the objective information.

Some tools, for instance, will allow a user to highlight a snippet of a Web page in a

 88

browser and then drag that information into the tool, automatically capturing the

source URL so that the original Web page can be easily referred to later. This is of

considerable value, since it lets users concentrate on reading and assimilating

information, without having to bother explicitly copying every source address in case

it is needed later on. OneNote[217] and YellowPen[342] achieve this with the

Internet Explorer browser. DEVONThink provides its own browser as part of its

integrated environment, and so has access to the URL of every page viewed and

stored. StickyBrain[68] boasts a similar feature. And completely browser-based

tools offer this sort of feature by definition, of course, since all they do is archive and

organize Web content (e.g., [280])

Actions. Some tools extrapolate from the idea of a passive knowledge base

and allow executable actions to be attached to knowledge elements. This affords the

user customization and automation of the knowledge management process.

Boxer[100] was an extreme example of this, since it was a bona fide programming

environment: the structure a user created was composed largely of executable

programming elements. KMap allowed the user to customize the behavior of the

interface on a per-concept-map basis by attaching AppleScript macros to the maps.

As Gaines and Shaw describe, “each concept map can have its own script which

receives messages triggered by user interaction with the concept map. This enables

KMap to be integrated with other applications, and user interaction with graphical

structures in the visual language to be used to control any activity supported on the

host computer or network.” MindPad[13], Axon[45], and Omnigraffle[243] are tools

that allow various kinds of scripts to be attached to knowledge elements, and

 89

automatically executed in response to user navigation. This would allow a user to

track how often items have been viewed or changed in the knowledge base, integrate

with related information from external applications, etc. These features typically

require significant expertise on the user’s part to take advantage of them, however.

Search services. As mentioned earlier, several tools effectively integrate a

search environment with a personal information management workspace (e.g., [83],

[155], [54], [129]). This helps smooth the divide between the objective and

subjective realms by giving easy access to the one from the other. Applications that

integrate browsers into a knowledge storage paradigm (e.g., DEVONThink) achieve a

similar result.

Collaboration support. Though outside the sphere of personal knowledge

management, many tools facilitate sharing portions of a knowledge base with others,

and/or integrating knowledge with a public repository. Cmap[60], KMap, and even

the original Augment/NLS[107] had this goal in view. Clearly this is a desirable

addition to a PKB, since ultimately all public information begins as private

knowledge, before it is identified as of general interest and is published to an

accessible location. The prospect of easily integrating, sharing, and selectively

publishing subjective knowledge is an exciting one, and is really the next logical step

in the process. One would expect it to become much more widespread after personal

knowledge bases become the norm.

 Three-dimensional rendering. All of the spatial tools I have mentioned thus

far have been based on a flat canvas on which the user can arrange knowledge

elements. To try and improve visualization of large knowledge bases, however, tools

 90

such as Axon[45] and HeadCase[41] provide three-dimensional views of a knowledge

network. Taking advantage of the extra dimension permits more freedom in the

laying out of nodes and connections. This has the potential of increasing

comprehensibility, but comes at the expense of more awkward (or at least less

familiar) forms of navigation. Placing items in a three-dimensional space is not a

common task with today’s popular computer applications, and until such a paradigm

becomes widespread this feature may be of limited value.

XML export. Several tools offer the ability to save or export knowledge

representations in XML format, in an attempt to facilitate interchange between PKB

applications (e.g., [160], [127], [289], [39]). Standards are needed here, of course, in

order to ensure proper migration, and this is a great challenge because of the great

variations in PKB data models. Currently, one’s only option is to handcraft XSL

transformation templates to convert the format of one tool’s output to another, which

needless to say is quite a daunting proposition. For now, one can only hope that as

PKBs become embraced by the public, industry consortia would arise to agree upon

standards for knowledge interchange between systems.

Memorization aid. Though their basic purpose is to store knowledge

electronically so it can be later retrieved, a few tools also emphasize the ability to

strengthen biological memory. The unspoken premise here is that for at least some

areas of knowledge, users need immediate recall from their own minds, rather than

simply easy access to archived records. Mental Link[94] was designed to support

this: its stated purpose was to use knowledge models as a communication vehicle

from educators to teachers. RecallPlus[111] allows the same sort of knowledge

 91

expression as many of the systems in this survey, but it is advertised as a study tool.

Students input the knowledge they wish to retain for an exam, for instance, and the

tool iteratively quizzes them, repeating material at optimal intervals and focusing on

problem areas. KnowledgeManager’s “assessment questions” feature is in a similar

spirit.[160]

Semantic Web support. The Semantic Web initiative is a collaborative effort

sponsored by the World Wide Web Consortium[323] to extend today’s Web by

adding machine processible information.[37] As it stands today, the Web is an

enterprise almost strictly for human viewers: the emphasis is on free text content and

decorative markup, the meaning of which is virtually impenetrable to agent software.

The Semantic Web proposes to incorporate technologies such as the Resource

Description Framework (RDF)[182] for annotating pages with formal expressions of

their content. The authors, topics, and institutions involved, the details of the services

advertised, and even the assertions a page makes will be coded in such a way that

automated programs can reason about them and draw deductive conclusions. Though

primarily intended to enable machine processibility, the Semantic Web also promises

global consistency of terminology and unambiguous identifiers for shared concepts.

This latter capability is what makes Semantic Web technologies an enticing

component to consider for a PKB system.

The RDF data model is essentially a graph, in which the vertices represent

real-world concepts denoted by Uniform Resource Indicators (URIs)[36]. Each URI

is a globally unique identifier, potentially shared by an entire community of users to

refer to the same concept. The idea is that a distributed community will jointly agree

 92

on a formal description of their domain – including the kinds of relevant entities and

how they relate to each other – called an ontology. This standard terminology is then

used by all members of the community to describe the information they work with in

a consistent manner. Simple examples include the FOAF project[123] which defines

a standard schema for describing relationships between people, and the Dublin Core

Metadata Initiative[102] for describing properties of electronic resources.

Since RDF is used to describe abstract knowledge in a graph model, and

brings with it standardization, deduction engines, and the promise of numerous

community-authored ontologies stating useful facts, the prospect of integrating it into

a PKB becomes attractive. It could be useful, for instance, to associate knowledge

elements in a PKB with public URIs, and to link them together with relationships that

conform to those defined in a standard ontology. This would allow the plethora of

“common sense” facts that ontologies embody to be made immediately available to

the tool, and would better facilitate the sharing of PKBs.

The Semantic Web is still being defined, so existing applications are quite

rare. One PKB system to delve into this area is the Mind Raider open source

project[104]. Mind Raider is a tree-based outliner, but in addition to basic outliner

functionality (and a graphical view that portrays the outline as a mind map), URIs can

be assigned to nodes in the tree. Nodes can then be annotated with semantic metadata

according to standard ontologies. For instance, nodes in a mind map that represent

people can be annotated with FOAF information. The tool automates the process of

importing the ontology and defining compatible data. Idea Graph[25] adds similar

Semantic Web support to concept maps.

 93

Compendium has also been used for a similar purpose[282], though strictly

for an ontology pertaining to organizational meetings and discussions. (It is not

intended for general purpose RDF.) Recent extensions to the original Haystack

project[159] have incorporated Semantic Web technologies for personal document

management, but not abstract knowledge expression. Documents, messages, and

other information units can be annotated according to a personal ontology, and

custom metadata added.

Since the Semantic Web itself is still in its infancy, this area has not yet been

widely explored. But if accepted on a global scale, the potential it would bring for

integrating private and public knowledge would be a tremendous asset to PKBs.

Summary and critique

The problem of knowledge management is well-appreciated, as the sheer

number of attempted solutions attests. The systems presented in this chapter are

intended for a variety of overlapping purposes – some to help formulate abstract

knowledge ([127], [162]), others to store it safely ([215], [97]), still others to

repurposing objective snippets ([209], [280]) – but they all share a common,

overarching goal: helping the user cope with the multitudinous bits of knowledge they

encounter and generate.

 And yet for John – the fictional, amateur philosopher presented in the

introduction – the alternatives are unfortunately slim. He wanted a way to archive his

memories as he conceived them, potentially materializing his entire subjective view

of the world so that it did not fade. And although a myriad of design efforts have

 94

produced some very good tools, none of them are a very good fit for his problem. Let

us look broadly at the choices here presented, and consider how they would apply to

John’s situation:

1. Document management systems (like [134], [9], and [169]) would allow him

to better organize and retrieve the documents he encounters, but they do

nothing to help him store the knowledge he gleans from those documents.

2. Text-based tools (like [244], [217], [20]) let him record subjective knowledge,

but he would have to do so with traditional English sentences. These cannot

capture interrelated concepts very well, since the noun phrases that describe

concepts would invariably be inconsistent, besides being buried in the middle

of paragraphs. In any case, English sentences do not adequately capture the

fluid, nonlinear nature of his mental impression. Additionally, the tools in this

category most often force the text to be structured in a tree hierarchy, which is

not flexible enough to capture arbitrary relationships.

3. The category model (as in [344], [42]) improves upon the tree-centric

approach of most of these text-based tools, but it is still insufficient to

encompass John’s mental impressions. It allows him to represent a thought

like “The Epicureans, Stoics, and Cynics were all Hellenistic philosophers,”

but not “Hellenistic philosophy followed Plato and Aristotle” or “The Sceptics

influenced postmodernism, which influenced Bobby’s older sister.” Mental

impressions like these demand a nonlinear set of arbitrary relationships,

preferably with spatial layout.

 95

4. Mind mapping tools (like [237], [241]) give a partial solution to this, since

concepts can be arranged spatially and related in ways other than categories.

But their tree model is far too restrictive, as we have seen.

5. Concept mapping tools (like [60], [39]) go a step further and permit arbitrary

relationships between items. This suffices on a small scale, since John could

use such a tool to sketch the ideas and the relationships he perceives. The

trouble is that these tools cannot serve as a true PKB, since they are file-based

and offer limited or no transclusion. Therefore, the files that they produce are

isolated subsets of knowledge that cannot refer to each other. A label in a box

on one diagram has no direct connection to an identical label in another box

on another diagram: to the tool, they are just boxes, not coherent concepts that

can appear in multiple contexts. And to even retrieve an individual concept

map, the user is forced to navigate the same path-and-filename filesystem

paradigm that so frustrates users today.

The best candidates available today for John’s application appear to be

PersonalBrain[311], NoteCards[146], and Compendium[77]. Yet each of these also

presents difficulties:

• Although PersonalBrain supports an arbitrary graph, and implements its own

database and search facility capable of supporting many thousands of items, it

offers no true transclusion. Each “thought” can be connected to any number

of others, and these connections labeled, but a given thought always appears

in the same context, showing all of its relationships. Thus there is no way to

 96

construct a picture of a mental impression that combines four or five concepts

in a particular relation to each other. One cannot place John Wilkes Booth

and Abraham Lincoln in a view, for example, and say anything about them

without simultaneously bringing in all the other knowledge one may have

acquired about Lincoln. Partly because of this, PersonalBrain does not give

the user spatial control over the display: rather, it automatically lays out all the

associated thoughts to the currently focused thought. Finally, PersonalBrain

requires a fully-connected graph, as explained above, which makes it

awkward at best to enter knowledge from a new domain. The user must either

create meaningful connections to the trunk at the time the knowledge is

entered, or else put the new knowledge into a separate file, which promotes

isolation and partitioning.

• The NoteCards system (and its precedent, TEXTNET) had much to

recommend it. Yet some unsolved problems remain that would make it less

than ideal for John’s particular application. For one, its transclusion was

somewhat incomplete. Although multiple “browser cards” could be created

that referred to the same “notecard,” which effectively placed the notecard in

multiple contexts, there was apparently no easy way to see all of the browser

cards that referred to a particular notecard. Hence the containment could only

be traversed (and seen) in one direction: from owner to owned. This

restriction prevents a user from navigating from context to context via shared

ideas, as the human mind habitually does. Equally problematic is the strict

division of elements into notecards and browser cards, forcing the user to

 97

choose at each stage between content and relationships.9 More subtly, the

notecards themselves were intended to function as coherent chunks of text or

graphics, similar to a physical 3x5 card. Hence they would not normally

represent conceptual entities, but rather paragraphs. One could imagine a

NoteCard user operating only with browser cards, and except for the

aforementioned transclusion limitation this would give an approximate

solution to John’s needs. Finally, NoteCards was developed before public file

exchange was commonplace (as it is today with the Web), and so there was no

ability to incorporate objective snippets into the knowledge base.

• Of all the solutions here presented, Compendium boasts a feature set closest to

John’s needs. It supports full transclusion, and allows all the contexts of a

particular node to be viewed and accessed. It features a robust database-

driven backend, and permits arbitrary spatial positioning of elements.

However, it has three main drawbacks. First, it is unfortunately hardwired for

a particular domain (decision rationale expressed in group meetings) and all

knowledge elements must be declared as conforming to one of a few types

specific to that domain (“argument,” “decision,” “question,” etc.) It is thus

unsuitable for general-purpose use. Second, it requires a fully-connected

graph, as does PersonalBrain, and this gives it the same limitations described

above. And third, it offers no facility at all for bridging the subjective-

9 One could not, for instance, create a notecard to contain some textual information, and then decide to
place other notecards on it in a particular configuration. Linking from within one notecard to another
was permitted (similar to today’s Web hyperlinks, with link types added), but not displaying particular
relationships between notecards on another notecard. The latter could only be accomplished on a
browser card, which could then not hold any content. The basic limitation here is that notecards were
entirely separate from browser cards, and the features of the two could not be easily combined.

 98

objective divide (even simple, hardcoded references to objective sources are

not supported, let alone automatic drag and drop source capture.)

There is therefore no true solution to the kind of personal knowledge base that

John desires. This also implies, of course, that there have been no studies of how

such a system would operate in practice. The purpose of this thesis was to identify

the design goals for such a system, implement a workable prototype, and then deploy

it to real-world users who would use it for real-world tasks. Only then would it

become clear how it would be used, whether it would be valuable, and what its

benefits and liabilities would be. In the next chapter, I will discuss what was learned

about these matters.

 99

CHAPTER 4

POPCORN: A PROTOTYPE
PERSONAL KNOWLEDGE BASE

Design goals

In considering how to best architect an effective personal knowledge base, I

identified and pursued a number of design goals. Together, these goals form an

analysis of the task of personal knowledge management.

1. Recording knowledge should be quick and painless. Building knowledge

from information is difficult enough, and requires focusing the powers of

concentration. Hence it is imperative that the tool itself not hinder this task by

presenting a cumbersome or non-intuitive interface, forcing the user to navigate

numerous options, etc.

 2. Returning to previously recorded knowledge should be quick and painless.

This is especially true with regards to rapidly changing contexts. The human mind

has the remarkable ability to abruptly transition from one domain to another. One can

be hard at work on a project, for example, and then suddenly interrupt their thoughts

when the phone rings to discuss a completely different topic. After a brief

conversation, it is relatively easy to return to the previous task. A personal

knowledge base should support the same pattern. From deep inside one domain, it

should not be difficult to wrestle the tool away from its surroundings and direct it to

another. Rather, context switches should be rapid and facile.

 100

3. Reorganizing knowledge should be easy. As we learn more about a new

domain, our perceptions about it change. The ideal tool should encourage rather than

inhibit the restructuring of our knowledge to reflect our current understanding.

Indeed, people are somewhat reluctant to abandon their mental organization patterns,

even when these prove to be suboptimal[318]; the last thing a tool should do is further

enforce this rigidity.

4. Users should be able to express knowledge both formally and informally.

We sometimes wish to take the time to specify knowledge very meticulously,

especially in a difficult domain where we had to work hard to discern its precise

meaning. Other times, however, being forced to spell out details would only get in

our way; we do not know, care, or want to take the time to be so strict. Both cases are

important, and so an effective PKB should allow the user to operate at any point

along this continuum.

 Similarly, for maximum effectiveness a PKB should also allow a user to

operate freely along the information-knowledge continuum. Fully transforming

information into knowledge is a time-consuming process, and users may sometimes

wish to simply record the information either in its raw form, or only partially

digested. Then later they could return to it and complete the difficult work of

expressing it as a knowledge structure.

 5. Public content should be easy to assimilate. One’s private knowledge is

primarily comprised of bits and pieces of public information. The facts and opinions

that we read are the raw material for the learning process; it is only our own

organization of those facts that represents our personal point of view. Since this is

 101

true, a PKB should make it easy to incorporate snippets of information from the

public realm (say, the Web) into the knowledge base, and to maintain the links

between them so they can be revisited.

 6. The tool should work naturally with human memory. If the goal is to

archive memories and return to them later, then the tool’s data model and user

interface paradigm must take into consideration the processes humans naturally

undergo, in order to exploit strengths and fortify weaknesses. This is an immense

task, of course, given the breadth of psychological findings (and controversies) about

the nature of memory. But the following seven points seemed worth incorporating:

 Semantic network. Memories are often encoded in something very like a

concept map, or semantic network10.[339] This is by no means a unanimous

conclusion among psychologists, but convincing evidence has been found to suggest

that the mind stores at least some knowledge in the form of key ideas and their

relationships. ([16], ch.4; [174], p.267; [298], p.39, pp.76-77; [166], pp.249-251.) A

PKB should therefore allow users to express knowledge in this form.

Categories. It should also be easy to organize knowledge based on sets of

categories. Both categories and associations are fundamental organizational

constructs, and neither is explainable in terms of the other. ([174], pp.243-253.)

Unlimited total memory, limited working memory. There are at least two

important components to human memory: our working, or short-term memory

(STM), and our long-term memory (LTM.) The latter is our permanent storage

10 There are subtle differences between concept maps and semantic networks (as well as the related
notions of propositional networks, frame-based representations, and object-oriented models.) But for
our purposes, we consider them equivalent. They all ultimately represent knowledge as a graph: a set
of named concepts connected by typed relationships.

 102

repository, containing everything we have ever learned, even if some of those items

are difficult or impossible to retrieve. Our STM contains what our mind is actively

thinking about: in fact, cognitive processes cannot function on knowledge that is not

in STM. ([16], ch.6.) One interesting relation between the two is that our STM

normally contains a (very small) subset of items from our LTM. It is as though

knowledge from our LTM has to be “loaded” into our STM in order for our mind to

operate on it. The size of the STM is extremely limited: a famous finding estimated

its capacity as from five to nine items of information, depending on the individual and

their circumstances.[218] Interestingly, however, these “items” were often found to

be multifaceted, as if a great deal of underlying complexity could be collapsed into a

single element and held compactly in the STM.

Following these findings, then, it seems prudent for a PKB to store unlimited

amounts of information (like the human LTM), but to allow the user to work with

only a coherent, manageable subset of items at any one time, each of which can hide

unlimited complexity (as the human STM does.) This should hopefully interface well

with the way the human mind naturally stores, retrieves, and works with information.

Users will not be overwhelmed by encountering too much information at a time, and

yet the items they do work with will be implicitly linked to many others by virtue of

their presence in LTM.

Traversal between contexts. The human mind is associative: one idea reminds

us of another, and we often follow a meandering train of thought flowing across many

contexts. This idea has been pinned down experimentally and denoted as “spreading

activation”[75]: loading one item into STM partially triggers the other items we

 103

associate with it and renders them more readily available. A PKB, it seems, could

explicitly support this tendency to great advantage. First, the multiple contexts that a

particular item appears in could all be readily available when that item is considered.

Second, it could be made easy to traverse from context to context via the ideas that

are shared between them. And thirdly, the general user experience could be one of

fluidity: as the user navigates from idea to related idea, the display would be

continuous and free-flowing, not disjoint or jarring. All of this would allow the user

to traverse their memories along the paths that they would naturally travel.

 Multiple retrieval paths. Remembering is a reconstructive process, and we

often make use of multiple, sometimes redundant retrieval paths in order to locate and

bring information back into our STM. ([16], p.194.) Hence a PKB should encourage

the creation of many multiple associative connections to any given knowledge

element. It should not, for instance, lodge each element into only one “correct” place

with a single access path, as this may inhibit retrieval later on.

 Extension of prior knowledge. A critical part of the learning process is

relating new information to the background knowledge that we already

understand.[24, 235] Indeed, some claim that this is the only way that learning is

possible: we merely interpret new knowledge in terms of the old.[23] Whether or not

this is always the case, it seems that an effective PKB interface should encourage

users to extend their existing knowledge with new findings, and to incorporate old

elements into the new knowledge structures they create. This allows one’s

knowledge representation to grow seamlessly over time instead of being a

discontinuous sequence of isolated, perhaps incompatible snapshots.

 104

 Visio-spatial support. Finally, evidence suggests that our minds make use of

visio-spatial cues to help us process information[19], and that providing users with

spatial flexibility can be a great aid to organizing information[209]. A basic design

premise, therefore, was to take advantage of the inherently spatial aspects of human

cognition by giving users control over a two-dimensional canvas.

The Popcorn data model

The following data model attempts to support these goals, and forms the

underlying structure of a Popcorn knowledge base. In Popcorn, the basic building

block of knowledge is the kernel: an entity corresponding to a real-world concept in

the user’s mind. A kernel can be viewed “from the outside” as simply a named item,

and it can also be expanded to show its inner contents, which is called the kernel

view. Each kernel view is a two-dimensional canvas on which can be placed other

kernels and also free-text snippets of varying size called notes. Notes are atomic in

the sense that they contain only verbatim text and cannot be further expanded; they

also have local scope in the sense that no note is visible anywhere except on the

kernel view that owns it. Be careful to observe, however, that this is not the case with

kernels. Many kernels can appear on a kernel view, but this does not preclude their

simultaneous appearance elsewhere (ie., on other kernel views.) Indeed, all kernels

have global scope in a Popcorn knowledge base, and can appear in any spatial

position on any number of other kernel views. At any point in time, exactly one

kernel view is the “active kernel”; that is, the one that the user is currently focusing

on.

 105

It is worth remarking that although kernels can be named (and usually are)

they actually can be left unnamed if the user desires. This sometimes occurs when a

kernel is used only for its kernel view; ie., it is always viewed from the inside, never

from the outside. A user can simply create a new, unnamed kernel view and

represent some snapshot of knowledge within it. In this case the kernel view can only

be retrieved by means of its contained items, not by its name (since it has none.)

Kernels and notes can have named relationships with each other. Each pair of

objects (kernels and notes are the two kinds of Popcorn “objects”) can optionally

have a single relationship between them. This can be named with a free-text tag

describing the nature of the relationship, though it need not be. It can also be

specified as navigable in one or both directions. Relationships between two kernels

are global, just as the kernels themselves are global: they are not restricted to any

kernel view. In other words, if a kernel “Antony” has a relationship of type

“married” to another kernel named “Cleopatra,” then that relationship holds (and will

automatically appear) on any kernel view that contains both Antony and Cleopatra.

Relationships between a kernel and a note, or between two notes, on the other hand,

are visible only on a single kernel view (since the notes themselves are not visible

outside of it.)

Finally, notes can have source information associated with them. This is

useful for snippets of text that were excerpted from information sources, so that the

original source of the excerpt can be maintained. (Popcorn automatically captures the

source URL of snippets that were dragged into it from a Web browser, as explained

below.)

 106

Formally, if Σ is the set of alphanumeric characters, we can denote a Popcorn

knowledge base as a triple <K, R, a> where:

K is the set of kernels (defined below),
{ }bftypesKKR ××××⊂ is the set of relationships between kernels, where

*Σ=types is the set of possible relationship types (strings), and
{ }1,0, ∈bf indicate whether the relationship is navigable in the

forward and/or backward directions, and
Ka ∈ is a special kernel called the “active kernel.”

Each kernel Kk ∈ is defined as a 5-tuple <n, C, N, P, L>, where:

*Σ∈n is the name of the kernel,
{ }kKC −⊂ is the set of “child kernels” that appear on k’s kernel view

N is the set of notes (defined below),
(){ }1,,,0,,,|,,,: ≤≤∧ℜ∈→ hwyxhwyxhwyxCP is a function that

specifies the spatial position (x and y) and size (width and height) of
each child kernel on k’s kernel view (as a fraction of the kernel view’s
overall width and height), and

() (){ }bftypesNCNCL ×××∪×∪⊂ is the set of “local” relationships
between notes and kernels, or notes and other notes.

Finally, each note Nn ∈ is defined as a triple <c, s, (x,y,w,h)>, where:

*Σ∈c is the content of the note,
*Σ∈s describes the source of the note (often a URL), and

x, y, w, and h specify the position and size of the note on the kernel view that
owns it.

Notice that there are fundamentally two ways that kernels can be related to

each other. One is explicitly through relationships: the user can create a relationship

from “Brutus” to “Caesar” of type “conspired against.” The other is implicitly

through containment: the user can specify that the kernel “Bach” appears on the view

for the kernel “Baroque composers.” Both techniques are available, and it is

interesting to observe how different individuals make use of them (see chapter 5.)

 107

It is also worth emphasizing that although Popcorn includes the notion of

containment (one kernel can appear “on” another), the kernels in a knowledge base do

not form a tree hierarchy. This is because placing a kernel A on a kernel view B does

not prevent A from also appearing on kernel view C. “Bach” may well appear on

both “Baroque composers” and on “Influences on Mozart,” as well as others. It is

also very possible (and common) for cycles to exist in the knowledge base: A may

appear on B and B on A, for instance. For example, consider a professor teaching a

small graduate seminar. When her mind is on the seminar, she thinks of each of the

students who are enrolled in it. Thus she might have a kernel called “CSCI 6800

seminar” on whose view appears a kernel called “Bill Smith,” representing one of the

students. When she turns her mind specifically to Bill Smith himself, however

(perhaps to recall her experiences with him, write a letter for him, or consider him for

work on a future project), she naturally reflects on all of the things she knows about

him. Since he was present in her seminar class, one of the kernels on Bill Smith’s

view is likely to be “CSCI 6800 seminar.” So a cycle appears: “Bill Smith” appears

on “CSCI 6800 seminar,” and vice versa, since considering each topic naturally

conjures up the other. The professor is actually encoding two related but distinct

facts: “Bill was one of the students in my seminar,” and “the seminar was one of the

ways I got to know Bill.”

 This does not present a problem. The strategy here is to allow the user to

work with small amounts of information at a time, just as the limitations of their

working memory force them to. Each kernel view thus contains a small subset of

items from their knowledge base, chosen and arranged according to some particular

 108

purpose. A kernel view can be seen as a kind of “snapshot” of working memory: a

record of what the user was thinking about at some point in time.

Kernels have global scope because the ideas in our minds have global scope.

True, it may sometimes be convenient to model knowledge as a hierarchy: “Joe

DiMaggio” might be contained within “New York Yankees,” which in turn is

contained under “American League” and “Major League Baseball.” But there is

certainly nothing preventing our minds from seeing a modern ballplayer and

remarking, “Barry Bonds reminds me of Joe DiMaggio,” or learning that “Marilyn

Monroe was married to Joe DiMaggio.” Here we have taken an idea embedded deep

within a hierarchy (DiMaggio) and placed it in a completely different context outside

its immediate container. It would be unfortunate indeed if DiMaggio’s scope was

restricted to only the “New York Yankees” kernel view, preventing his appearance

elsewhere. One never faces this trouble in real life: we are never unable to repurpose

an individual fact because we once classified it a certain way. On the contrary, our

minds can maintain alternate, complementary organizations of the same concepts,

depending on the relationships we perceive. Popcorn was designed explicitly to

support this phenomenon.

I will sometimes refer to the kernels whose views contain a particular kernel A

as the parents of A. “Baroque composers” and “Influences on Mozart,” then, would

both be parents of the “Bach” kernel. Formally, the parents of A are the set of kernels

{ })(| CkAk ∈ . Popcorn prevents a kernel from being its own parent, but again note

that any two kernels may very well be parents (and children) of each other.

 109

The Popcorn interface

Viewing and recording knowledge

Popcorn’s user interface follows this data model exactly. (See Figure 15.)

The active kernel view appears in the application’s viewport, a rectangular area that

normally occupies most of the bottom-left corner of the window. The child kernels

and notes of this active kernel can be positioned arbitrarily within the viewport. The

top of the window contains the parents panel: a scrollable list of thumbnails depicting

each of the active kernel’s parents. The bottom-right corner of the window contains a

special kernel called the “sandbox.” It is designed as a convenient placeholder or

scratch pad for the user to work with as they manipulate items in the viewport. Since

it is always visible, it can also be used to hold “bookmarks” to commonly used

kernels.

 110

Figure 15. The Popcorn user interface. The view of the active kernel (here called
“Lincoln assassination”) occupies the viewport, while all of its parents (other kernel
views in which it appears) are displayed immediately above it. The active kernel is
displayed in a highlighted color wherever it appears, in order to draw attention to it.
Kernels within a kernel view may be expanded, as is the case with the “John Wilkes
Booth” kernel here. Popcorn’s layout engine attempts to show as much meaningful
information for each component as possible, subject to the space available, while still
preserving the spatial relationships between components. Note, for instance, that in the
“Reconstruction” kernel (upper left), the kernel named “The Freedman’s Bureau” has
been shortened to “The Free…”, and that in many places only the first few words of
each note are visible. The user can hover over notes or kernels with the mouse pointer
to summon a popup “tool tip” with the complete contents.

The active kernel itself is shown in a different color (salmon) than other

kernels wherever it appears in a parent view. This allows the user to see at a glance

all of the contexts in which a particular kernel appears. Other kernels appear in one

of two colors: blue, if they have inner contents (ie., one or more child kernels or

 111

notes), and grey if they do not. This helps users identify which kernels contain

further information so that they do not waste time navigating to kernels only to find

them empty.

A kernel can also be expanded while inside the viewport so that its inner

contents are revealed in miniature. When the mouse pointer hovers over a kernel, two

buttons appear next to it: one to expand/collapse it, and the other to remove it from

the view. The user may also resize an expanded kernel to see more or less detail.

This allows users to “peek inside” the kernels in the viewport without changing

contexts.

It is important to realize that removing a kernel from a particular view does

not delete it from the database. This is because kernels represent generic ideas and

have global scope within the knowledge base. A given kernel may appear on one

view, many views, or no views at all; in any of these cases, it is still a bona fide entity

whose existence is not tied to its appearance in any particular context. A kernel can

only be permanently deleted by means of a special, explicit operation: namely,

navigating to that kernel (making its view the active view), and then pressing the

delete button in the upper-right-hand corner of the viewport. (This button looks like a

popcorn kernel with a red “X” through it.) If the user presses this button, the system

presents a dialog box explaining the consequences of the action, and asking the user

to confirm it (see Figure 16.) These consequences include altering each of the

kernel’s parent views, and permanently deleting all of its notes (since they only have

scope within the kernel.) This operation does not delete its child kernels, of course,

since they, too, are generic entities with global scope, and may (or may not) appear

 112

elsewhere. This “permanent delete” operation was created as a concession to the fact

that users may wish to undo mistakes, and may wish to periodically “clean up” their

knowledge base by purging old data.

Figure 16. Confirmation dialog box for permanent kernel deletion.

Kernels and notes can be moved about the viewport using the familiar drag

and drop paradigm. Creating a relationship is accomplished by positioning the mouse

pointer near the edge of an object (at which point the cursor changes to a crosshair)

and then dragging to the related object. The arrowheads on either side of the line

(indicating navigability) can be toggled on and off by clicking on them. New kernels

and notes can be added to the view by double-clicking or right-double-clicking,

respectively.

When the user double-clicks in the background to add a kernel to the view,

they may type a name for it. At this point an autocomplete search pane appears

immediately below the kernel name, offering to match existing kernel names – or the

contents of notes within them – as the user types. (This list of kernel names is a

 113

smaller version of the “quicksearch” panel shown in Figure 17.) Pressing the return

key selects a kernel within this list. This allows users to place an existing kernel on

the view without typing its entire name, and also encourages the re-use of kernels in

multiple contexts. It is also intended to alert users to the presence of kernels they

have previously created: if the user attempts to type the name of a new kernel, and it

matches that of a previous kernel, this will be readily apparent.

The same name can be given to multiple kernels, however. This relieves the

user’s burden of having to generate unique names, since humans often use the same

identifier in different contexts to refer to different entities. Creating a new kernel

with the same name as an existing one must be a deliberate operation on the part of

the user. When they type the name, the autocomplete search pane will, by default,

highlight the name of the existing kernel, so that if the user simply presses the return

key, the existing kernel will be retrieved (and placed on the current view) rather than

a new one being created. To create a new kernel, the “new…” option at the top of the

list must be intentionally chosen (by pressing the up arrow), which again alerts the

user to the fact that they are about to create a duplicately-named kernel. The two (or

more) kernels with duplicate names can be distinguished during retrieval as explained

in the next section.

Finally, if any kernel appears in the search results pane that is already present

on the view, its listing will appear “grayed out” and be unselectable. This is because

according to the data model, each kernel can only appear once on a given view.

Showing the search result anyway should avoid disorienting the user (by not hiding a

 114

result that they know should be there), and they gray color should alert them that the

kernel is already present somewhere on the current view.

Note that all of the basic operations – adding and changing kernels, notes, and

relationships – are accomplished without any menus, toolbars, or palettes. This is

possible since Popcorn permits only a small number of operations, and it speeds up

the interface experience considerably. Also, note that all of the operations here

described are applicable not only to the viewport, but to any expanded kernel,

including the ones in the parents panel or sandbox. A user can, for instance, expand a

kernel within the viewport and then manipulate its children by dragging and dropping

them, or double-click in the background of a parent kernel view to create a new child

of that parent. All expanded kernels thus behave identically, promoting consistency

throughout the interface.

Retrieving knowledge

Browsing through the knowledge base can be done in two ways: navigation,

and search. The user can make any visible kernel the active kernel by simply double-

clicking on its name. This is true for any of the parents as well as the children of the

currently active kernel or sandbox. Double-clicking initiates a “zoom” animation

sequence that smoothly brings the selected kernel into the viewport. The aim here

was to provide a seamless transition from context to context as the user navigates,

giving a sense of continuity.

Searching is initiated simply by typing when nothing is selected. Typing

immediately pops up a search pane (see Figure 17), which, like the autocomplete

pane for kernel name completion, matches kernel names and contents as the user

 115

types. This allows for very rapid switching of contexts: the user only need type the

name of something they are thinking of in order to instantly bring that information to

the foreground.

Figure 17. Popcorn’s “quicksearch” facility for switching contexts to another kernel
view. The user has just typed “boo” in an attempt to bring up the kernel “John Wilkes
Booth,” intending to switch contexts from the currently active kernel (which deals with
mind maps, a completely different topic.) After typing “boo,” the user has pressed the
down arrow on the keyboard to move the selection to the desired kernel. (In practice, it
would probably be quicker in this case for the user to continue typing “t” and “h,”
which would bring the target kernel to the top of the results list.) If the user were now
to press the return key, the active kernel would immediately become “John Wilkes
Booth,” with its parent kernels replacing those in the parents panel.

 116

 Note several things about the quicksearch results pane in Figure 17. After

each keystroke, the results panel is refreshed with four sets of choices:

 1. The “new… ("boo")” entry. If selected, this will create a new kernel with

the name the user has typed (in this case, “boo”), and make this kernel the active

kernel.

2. All kernels whose names begin with the letters typed. The letters typed are

shown in red to indicate which part of the name has matched.

3. All kernels with any word (other than the first word) matching what was

typed. Again, red letters draw attention to the match.

4. All kernels that contain a note which matches the letters typed. In this case,

the red letters appear in an excerpt of the note (trimmed to a word boundary if

necessary to fit the results pane) which follows the kernel name.

 (When more results are available than can be displayed, the list becomes

scrollable and the user can view the additional items by simply pressing the down

arrow.)

 The idea is that the user can recall information by simply typing what comes

to their mind. As long as the word or phrase that they type is somewhere in the name

or the contents of the kernel, it can be successfully retrieved this way. And if neither

the name nor any note can be remembered, the user can still navigate to the kernel if

they can first browse to a kernel to which it is related (either through association or

containment.)

 All searches are case-insensitive, as can be seen from the figure. (The string

“boo” matches both “bookmarks” and “The Mind Map Book.”) This is because I

 117

assumed users would be unlikely to remember specific capitalization, and in any case

it is slightly more cumbersome to have to use the shift key. Also, note that searches

only match at the beginnings of words, not within them. (The “boo” search would

not match a kernel named “notebook,” for example.) This is partially because the

implementation of a within-word search would be problematic (see implementation

section, below) and partially because it seems that users would normally remember

words, rather than syllables. Admittedly, this issue has not been further explored, but

it is worth noting that no users complained of failing to recover knowledge because

they could only remember the middle of a key word!

 Finally, since there is nothing preventing the user from giving two (or more)

kernels the same name, the search results list attempts to distinguish between them by

listing the names of the parent kernel views immediately after identically named

kernels. In the figure, note that there are two kernels named “books” that matched the

user’s search text. The program therefore indicates that one of them has a single

parent named “psych refs,” and the other has two parents named “English lit class”

and “to buy on campus.” This will hopefully be enough to help the user choose the

correct kernel, if they were indeed trying to retrieve one of the identically named

ones. This strategy will not suffice in every case, of course, since there is nothing

preventing both identically named kernels from appearing on the same set of parents

(or no parents at all), and even if these sets of parents are unique there is no guarantee

that they will help the user properly distinguish between them. In practice, however,

such corner cases seem to be extremely rare, and so I believe this technique is

sufficient.

 118

The “jump-index-local-nav” retrieval strategy

Note that these two methods – navigating from kernel to kernel, and

quicksearching to a new context – are the only ways to bring up previously entered

data. There is no all-encompassing browsing function, for instance, that would allow

the user to see everything they have entered at a glance. This omission is intentional:

Popcorn is trying to model the way the mind naturally works with knowledge, and

people are not known to ask themselves, “now what are all the things I know?”

Instead, one always begins with a reference point and starts the recall process from

there. The implication is that in Popcorn, a user can never reach a previously

recorded kernel unless they can remember (a) its name, (b) any of its contents (notes),

or (c) the name or contents of any kernel it is connected to, either directly or

indirectly.

This may seem to be a great hindrance to retrievability, since users cannot (for

instance) browse through a folder of items, but are instead required to remember the

names of items. This gamble is based on the practical observation that even when

one cannot recall a name, one is normally able to free associate to related information.

If we cannot remember a former colleague’s name, we can usually at least remember

the names of a few other colleagues at that place of business, or else the names of the

projects we worked on with them, or at the very least the name of the business itself.

Presuming we have modeled the knowledge correctly, then, all of these other avenues

will be available to us: we can simply quicksearch to the name of another colleague

(or a project name, or the company name) and browse from there to very rapidly

locate our target.

 119

I term this retrieval strategy “jump-index-local-nav,” meaning that whenever

the user desires to retrieve a particular piece of information (kernel or note), they

commence a two-step process. The first step is to “jump-index” to a related kernel,

based on the free associations that come naturally to them in their mind. The second

step is “local-nav”: the user navigates locally within that part of the knowledge base

that surrounds the kernel that they jumped to. This makes the entire knowledge base

available to the user as long as they remember a relatively few starting points to jump

to. The user thus is not required to remember the name of every kernel in order to

access every kernel.

To take an example, suppose a user wished to recall some information about

the U.S. Secretary of State in the late 1990’s. Conceivably they might face some

difficulty if they were required to produce the name “Madeline Albright” from

scratch. But it is less likely that this user would forget the name “Bill Clinton,” and

presuming that a fact such as “Bill Clinton nominated Madeline Albright” were in the

knowledge base, all of the information about Albright would be retrievable by first

jump-indexing to Clinton, then locally navigating to Albright. The efficacy of this

approach is based on the notion expressed by Lorayne and Lucas: “you can remember

any piece of information if it is associated to something you already know or

remember.” ([195], p.7.) And as reported in the next chapter, users did indeed find

this retrieval mechanism straightforward and reliable.

Miscellaneous supporting features

Browser integration. In order to help the user assimilate Web content,

Popcorn features tight drag and drop integration with the Mozilla Firefox browser.[1]

 120

Users can highlight text in any drag-and-drop-enabled application, and then drag the

selection into Popcorn, which automatically creates a note for it. But for Firefox, a

special Popcorn “plug-in” also includes the URL of the source Web page for such

events. When the user drags an excerpt from a Web page into Popcorn, the created

note will have a special icon attached to it. (The icon looks like a small earth, and is

visible in several of the notes in Figure 15.) If the user later clicks on that icon, a new

Firefox window will automatically pop up and connect to the Web page, scroll to the

excerpt, and highlight it. This makes it easy to incorporate publicly-available

information into one’s personal knowledge store, without dealing with the hassle of

maintaining links or copying URLs.

 Hotkeys. It is clear that a PKB will often be used in conjunction with other

applications, such as Web browsers and PDF readers (for assimilating knowledge)

and word processors and e-mail clients (for using knowledge to produce artifacts.)

For this reason, users can press a Popcorn “hotkey” combination to quickly toggle the

application between foreground and background. This allows Popcorn to always

remain “at the user’s fingertips” and yet not consume screen real estate. The hotkey

can be combined with the drag and drop from Firefox: users highlight text, click and

move the mouse pointer to initiate the drag, and then press the hotkey combination to

bring up Popcorn to receive the drop.

 Back and forward buttons. Finally, a pair of browser-like navigation buttons

(the large left and right arrows in Figures 15 and 17) permit users to scroll back and

forth through the list of recently accessed browser views. This gives the user a better

feel for where they have been and also helps “undo” false navigations. Each button

 121

becomes “grayed out” if there is no next or previous view to navigate to. (The

contents of this recently-navigated list is not stored persistently between Popcorn

sessions.)

Architecture and implementation

 The Popcorn prototype was written almost entirely in Java for purposes of

cross-platform compatibility. (Users of Microsoft Windows, Macintosh, and Linux

systems all volunteered for user testing, and hence it was essential to support all three

platforms with a common code base.) It consists of 107 source files in nine packages

that comprise a total of about 25,000 lines of Java code.

Only two small components were written in other languages. The hotkey

event handler code needed to be compiled natively and installed into the operating

system, and so a separate C++ handler had to be written for each platform. The

Firefox extension was written in XUL[140], a user interface markup language that

can be interpreted by various Mozilla tools to parametrically describe GUI widgets

and their actions. The latter component is also cross-platform for any operating

system supporting the Firefox browser, and so with the exception of the hotkey

handlers complete portability was achieved.

Portability comes at the expense of speed, of course, since cross-platform

code must be interpreted by a program at runtime rather than executing directly on the

system processor. However, with a personal knowledge base, throughput is not a

concern: only latency matters. This is because the volume of information recorded

and retrieved in real time by a single human user is miniscule compared to the

 122

amount of time available (milliseconds, seconds, or even minutes between requests.)

The only performance questions involve the responsiveness of the interface to GUI

interactions: for example, will the search pane come up quickly enough when the user

types, how long will it take to load a single kernel view from disk when the user

requests it, etc. Careful optimization around specific performance-sensitive

operations was sufficient to make the interface relatively quick. (Only two out of

twenty users in the user trial complained of an unresponsive interface.)

Popcorn interfaces with the open source MySQL relational database, which it

uses to actually store the user’s knowledge. The schema for this database is given in

Appendix A. Essentially, each note, kernel, and relationship is stored as a row in a

table designed for that type of entity. The containment relationships, along with the

spatial positions on each kernel view, are held in a separate table called

“containedObjects.” The transclusion property can be observed by simply looking at

this table. When one kernel appears on another’s view, a row with the id of the

contained kernel will appear in this table. This same id can appear in any number of

other rows, which means that (1) a kernel can appear in many contexts, and (2) there

is no “primary” context in which it appears; all contexts are “equal.” (As an aside,

the same table is used to hold information about where notes appear on kernel views,

which means that the database schema itself does not prohibit notes from being

transcluded by multiple views just as kernels can. The Popcorn interface, however,

does not allow this since there is no way to search for a note itself outside the view in

which it was originally created.)

 123

The Popcorn prototype caches information from the database as it runs. When

the user starts the application, and searches or navigates to a particular kernel view,

that kernel view will be loaded into memory (or “hydrated”) and kept up to date there

until the application terminates. Changes are also flushed to the database as they

occur. Measures were taken, however, to ensure that cascading hydration was

limited. A user’s knowledge base, after all, is normally composed of many

interlinked entities, and so the danger existed that navigating to one kernel view

would cause a huge segment of the database to be hydrated at once (all the children

and parent kernels of the kernel view, plus all of those kernels’ children and parents,

and so on.) For this reason, a more sophisticated caching mechanism was called for,

so that only the information that would actually appear on the screen would be

hydrated, rather than everything the kernel was ultimately connected to. This keeps

the memory footprint of the application as small as possible, while eliminating the

latency associated with hydrating unnecessary data.

Finally, it is worth mentioning the specialized indexing necessary for the

quicksearch facility. Quicksearch responsiveness is the most critical performance

aspect of the entire system, since the application must present search results as the

user types. Any sizeable latency here is aggravating, and it can disrupt the thought

process of a user who may be guessing at the names of kernels created long ago. For

this reason, a fairly complex search mechanism was designed to optimize

performance in this area. First, MySQL supports a basic “free-text search” facility,

which was extended to support searches for both kernel names and contents. When

properly configured, MySQL can build word-by-word indexes of specific fields in a

 124

table, so that the rows which match specific words (or the beginnings of words) can

be identified without actually searching the entire table row by row. Second, since

numerous kernels may match a search (especially short search strings, when the user

first begins typing) it was impractical to return all the results for each keystroke. A

paging strategy was employed, so that when a key is typed, only enough results to fill

the search results pane are returned for display. The additional pages of results are

only fetched as the user scrolls. Somewhat complicating matters was the fact that a

given kernel might match a search in more than one way. For instance, a kernel

named “The End of the Affair” with a note “The protagonist was sympathetic” on its

view would match the search string “the” three times: twice in the kernel name, and

once in the note. Care was taken to display a given kernel only once in the results

list, and happily this additional processing did not appear to slow down the search

responsiveness significantly.

Evaluation of design goals

 Before presenting the actual user results in the next chapter, it is worthwhile to

illustrate briefly how this design attempts to meet the goals originally outlined:

1. Recording knowledge should be quick and painless. Popcorn’s interface is

streamlined to allow one thing and one thing only: encoding knowledge. The user

has no options, say, to select different colors, fonts, or graphics, and hence the entire

set of operations can be mapped directly to mouse and keyboard inputs. The interface

does not need to be modal, and no menu selection or similar tasks are required that

might soon become tedious when large amounts of knowledge need to be quickly

 125

entered. Note that discoverability has been deliberately sacrificed here, in the hopes

that users will quickly master and memorize the small number of operations.

 2. Returning to previously recorded knowledge should be quick and painless.

A simple key press brings up the search-as-you-type feature, allowing users to rapidly

switch between contexts. If the user forgets the name or contents of a desired kernel,

searching for anything related to it will allow them to “get close” with a search and

then navigate locally within the desired realm.

3. Reorganizing knowledge should be easy. Users can drag kernels and notes

freely in any kernel view, and can even drag them inside or outside of expanded

kernels and parents. Kernels, notes, and relationships can be deleted simply by

hovering over them and pressing the popup delete button. The intent is that

reshuffling objects into different configurations will be easy with direct manipulation.

 4. Users should be able to express knowledge both formally and informally.

The user may choose to encode knowledge as groups of interrelated kernels, as

natural language sentences in notes, or a combination of the two. Relationships may

be typed or untyped, and kernels may be named or unnamed. And spatial positioning

(e.g., clustering) is available when users want to express similarities or grouping

informally.

 5. Public content should be easy to assimilate. Dragging a snippet of text

from another application automatically creates a note for it in Popcorn. And when

such a snippet comes from the Web (through Firefox), not only the URL but also the

position within the source page is captured so it can easily be referenced later in

context.

 126

6. The tool should work naturally with human memory. Numerous features of

the interface have been designed with this in mind, including:

 Semantic networks. Popcorn’s basic data model is a semantic network, which

the user constructs from kernels and relationships one view at a time.

Categories. The membership of elements in a user-perceived category can be

expressed by placing kernels inside a kernel view. And Popcorn’s transclusion

permits an idea to be present in any number of categories. This does not address the

more subtle notions of “fuzzy membership” (ie., some items are more perfect

examples of a category than others), but the user has other options at their disposal to

express such nuances, such as spatial positioning or annotation through notes.

Unlimited total memory, limited working memory. The entire interface has

been designed for compatibility with the STM/LTM dichotomy of the human mind.

The database (analogous to the LTM) is comprised of hundreds or thousands of

kernels, only a select few of which are visible at any one time (just as the STM only

works with small subsets at a time.)

Traversal between contexts. The multiple contexts of the active kernel are

immediately visible and the position of the active kernel within them can be clearly

seen. These contexts can be navigated to with a simple double-click, which mimics

the “spreading activation” concept of closely related information.

 Multiple retrieval paths. The autocomplete kernel-naming feature steers users

towards reusing kernels in different contexts, which encourages the encoding of

multiple retrieval paths.

 127

Extension of prior knowledge. Similarly, when creating a new view, users can

easily incorporate elements from previous views, which allows them to tie together

new knowledge and old.

Visio-spatial support. The two-dimensional spatial metaphor is central in

Popcorn; all activity takes place by manipulating items visually. And the spatial

positioning is recorded along with the content, so that when the user returns to a

previous view, the layout is consistent.

This evaluation is merely theoretical, however; the only way of knowing how

well such a system would work in practice is to deploy it to real users. In the next

chapter I present the results of a user study designed to give insight into the issues

surrounding both this particular design, and the notion of PKBs in general.

 128

CHAPTER 5

USER TESTING RESULTS

 An effective personal knowledge base should be an integral part of a person’s

life. It is not so much used for a particular task in order to produce a particular

artifact, but rather intermittently, in conjunction with the daily tasks that already

confront the user. The user will employ the system much more on some days than

others, and very rarely for its own sake: the goal is not “to sit down and use the

personal knowledge base for a while,” but “to work with knowledge for some

external purpose, which will require, among other things, consulting the personal

knowledge base.”

The true utility of such an application cannot be determined instantaneously,

but only over time, as the user retrieves and augments the knowledge they have

previously stored. Simply having users experiment with the interface to generate

knowledge diagrams does not tell us if the PKB is doing its job. The true test comes

later, when that knowledge is to be recalled, reorganized, and exploited. Only then

will it become apparent whether the tool is useful in maintaining a user’s knowledge

over time.

To evaluate the Popcorn design, a prototype version was deployed to twenty

volunteer users for use in their real-life settings. Each tester was given a one-month

trial period in which to use Popcorn, though several users requested to continue to use

 129

it after the trial expired.11 This group included students from a variety of engineering

disciplines, computing professionals in various roles (developers, testers,

administrators, marketers), a schoolteacher, a business consultant, a newsletter editor,

a product development manager, and a Presbyterian minister.

The goal was to determine how naturally the tool would integrate with a

user’s daily life, how much it would be used and for what tasks, and so forth. Hence

after the software was installed, testers received a brief tutorial and were then

instructed to use the system in any way they wished during the testing period. No

specific usage requirements (total amount of data to be entered, number of times per

week the application was to be used, etc.) were stated or implied. Users were not told

to invent artificial tasks for which the system might be useful (unless they wanted to

do that), but rather to try and apply it in natural scenarios, where it would be

genuinely valuable.

As might be expected, the results were widely variable. Some testers used the

system heavily, nearly every day; others were more sporadic, only entering data on a

few days each month. Some adopted Popcorn as a full-fledged personal knowledge

base, recording knowledge about numerous diverse aspects of their lives; others

concentrated only on a few domains or even a single domain. The types of

information recorded were many and various, including such domains as culinary

recipes, event planning and scheduling, personal health concerns, source code

snippets, procedures for system administrators, guitar chords, contact information,

lesson preparation, and notes on the Russian Revolution, just to name a few.

11 For this reason, the statistics presented in this chapter represent a longer period of usage in some
cases.

 130

To give a concrete example, one computer science student used Popcorn to

store a variety of programming-related knowledge. This included the relationship

between components in the C++ standard template library, which ones he had used in

certain modules of a class project, and snippets of Web pages that contained relevant

tips and techniques. He also archived the syntax for certain Linux commands that he

had trouble remembering, and useful ways he had seen them combined in scripts.

This user stored more than just technical knowledge, however. Planning a trip to a

dinner theatre involved the times, dates, and prices of shows, directions to the

playhouse, and a record of a credit card transaction. Meeting minutes from his part-

time job tracked the status of decisions on key projects, and the influences on them.

A schedule of deadlines and relevant procedures helped him keep track of his

graduation requirements. Notes from all of his class lectures captured and cross-

referenced key points and highlighted pertinent sections of reading. And a multiply-

categorized “to do” list, crossing several kernels, helped him manage his list of

monthly, daily, and even hourly tasks. Note that Popcorn was used to manage

knowledge in diverse domains, with varying degrees of structure, complexity, and

malleability over time.

Quantitative analysis

Six of the testers were unable to use the system effectively enough to provide

meaningful quantitative data, for various reasons described in the section on

“Qualitative impressions,” below. The others agreed to run a simple program which

extracted certain statistical information from their knowledge base. This was

 131

intended to get an idea of the general structure of Popcorn knowledge bases, and the

degree to which they varied among users. A summary of these results is presented in

Table 2. I will address each statistic in turn, and explain what light it sheds on

Popcorn usage.

 Mean Min Median Max Coefficient
of Variance

General:
 Total size of knowledge base 768.4 86 208 3661 137.5%
 Notes with Web source (%) 17.7% 0.0% 13.3% 62.5% 104.2%
Measures of relationship usage:
 Typed relationships (%) 48.6% 12.5% 45.4% 100% 55.3%
 Number of relationships per kernel 0.25 0.02 0.21 0.63 69.9%
 Number of relationships per type 1.23 0.67 1.04 2.21 38.2%
Measures of kernel complexity:
 Note-to-kernel ratio 1.34 0.12 1.19 2.84 67.4%
 Empty kernels (%) 52.9% 35.8% 50.8% 75.5% 24.7%
Measures of kernel containment:
 Avg kernels contained per view (and

contained by other views) 1.03 0.76 1.00 1.45 18.8%

 Avg objects contained by non-empty views 4.98 2.52 5.17 7.41 27.6%
 Kernels that have one or more parents (%) 82.2% 66.0% 83.3% 96.2% 9.9%
 Kernels that have one or more children (%) 28.0% 13.5% 28.1% 44.0% 27.2%
 Kernels with both parents and children (%) 18.5% 2.0% 18.3% 37.5% 47.2%
 Kernels with two or more parents (%) 15.1% 2.0% 14.8% 33.1% 65.2%
Island analysis:
 Number of islands 26.9 4 13 135 135.7%
 Avg kernels per island 9.8 4.46 6.88 26.5 66.8%
 Kernels in largest island 176.7 18 50 1045 172.3%
 Total size of largest island (%) 61.1% 31.9% 61.8% 87.2% 31.5%

Table 2. Summary of knowledge base characteristics across the test group. “Mean” is
the arithmetic mean of each statistical measure. “Coefficient of variance” is defined as
the standard deviation divided by the mean, which gives a mean-adjusted idea of the
stability of each statistic.

Total size of knowledge base

 This total was computed as the sum of the number of kernels, notes, and

relationships in the knowledge base at the time the data was collected. (Note that any

objects created and then deleted before the analysis program was run would not be

included in this total.)

As can be seen, the quantity of knowledge stored varies widely among

individuals. Paradoxically, this measure did not always correlate with users’

 132

qualitative assessments of the tool: several users with relatively small knowledge

bases said the tool was very effective for them. The safest conclusion seems to be

that different users have very different knowledge needs: some either deal with much

more knowledge than others, or choose to materialize it much more often. Thus the

absolute size of the knowledge base is not a very accurate measure of the tool’s utility

for a user.

Notes with Web source (%)

 Also widely varying was the percentage of a user’s notes that had a Web

source attached; ie., that were dragged in from Firefox. Some testers did not use this

feature at all, while others reported that they completely forsook the traditional

“bookmark” functionality of their browser in favor of Popcorn notes. Overall, this

measure is doubtless most dependent on where a user receives their information: if

most of their information sources are on the internet, Popcorn’s auto-URL capture

facility can be extremely convenient. Most users made use of this feature to some

significant extent, but also had numerous “plain” notes that they composed

themselves (see Figure 18.)

0

1

2

3

4

0-5% 5-10% 10-15% 15-20% 20-25% 25-30% 30-35% 35-40% 40-45% over 45%

Figure 18. Histogram of the percentage of a user’s notes that were assimilated from
Firefox.

 133

Typed relationships (%), Number of relationships per kernel

 Relationships were used in very different ways, as can be seen by the

variability in the overall percentage of relationships that were assigned types (ie.,

given names), and in the number of relationships per kernel. This underscores how

users can differ significantly along the formality/informality continuum. Some users

clearly prefer to precisely specify the nature of relationships between kernels, while

others are content to simply draw informal connections. This likely depends on the

type of knowledge being recorded, and how fully it is understood by the user. Many

users had significant numbers of relationships with and without types; most often,

around half of each (see Figure 19.)

The fact that some users had many more relationships per kernel than others

tells us that users express the associations between ideas in different ways. Some

most often create an explicit relationship between items, while others presumably

indicate relationships less formally, perhaps through spatial positioning or

containment. (See Figure 20.)

The correlation coefficient between these two measures is 0.43, which

indicates that they are somewhat related: users that frequently assign names to their

relationships also have many relationships per kernel, which further confirms the

formality/informality hypothesis. Interestingly, however, even the user with the

densest number of relationships had only .63 per kernel, or about two relationships

for every three kernels. This tells us that even users who prefer formality also take

advantage of informality, though the converse may not be true.

 134

0

1

2

3

4

5

0-10% 10-20% 20-30% 30-40% 40-50% 50-60% 60-70% 70-80% 80-90% 90-100%

Figure 19. Histogram of the percentage of a user’s relationships that were given types
(names.)

0

1

2

3

4

5

0 - 0.1 0.1 - 0.2 0.2 - 0.3 0.3 - 0.4 0.4 - 0.5 0.5 - 0.6 0.6 - 0.7 0.7 - 0.8 0.8 - 0.9 0.9 or
more

Figure 20. Histogram of the average number of relationships per kernel.

Number of relationships per type

 This statistic relays how often a user gave the same type (or name) to multiple

relationships. It is computed as the number of relationships that were given names

divided by the number of unique names given. For example, if a knowledge base

contained the three relationships “Caesar ruled Rome,” “Cleopatra loved Caesar,” and

“Cleopatra ruled Egypt,” this statistic would be 1.5, since there are three

relationships, and two types (“ruled” and “loved.”) Hence it helps us determine

whether the verb phrases between kernels are often re-used, or whether they are

normally unique. The analysis reports yield the latter conclusion. (See Figure 21.) It

 135

appears that for most users, relationships are rarely given the same names. This tells

us that at least in this regard, users tend to model knowledge informally. Empirically,

relationship types are often multi-word, descriptive phrases, intended to convey

precise and nuanced meaning, rather than being members of an oft-used set of

common link types (as is the case with most current research efforts into knowledge

ontologies.)

0

1

2

3

4

5

6

7

< 1.01 1.01 - 1.25 1.25 - 1.5 1.5 - 1.75 1.75 - 2.0 over 2.0

Figure 21. Histogram of the average number of relationships per type.

Note to kernel ratio

 Another highly variable figure was the ratio of the number of kernels to the

number of notes in the knowledge base. This may be another indicator of

formality/informality preference, since it shows the extent to which users represent

knowledge as concept maps, rather than as raw phrases or sentences. It is clearly a

matter of personal choice: one tester had eight times as many kernels as notes;

another had nearly three notes for every kernel. The histogram (Figure 22) shows

how variable this preference is.

 136

0

1

2

3

0 - 0.25 0.25 - 0.5 0.5 - 0.75 0.75 - 1.0 1.0 - 1.25 1.25 - 1.5 1.5 - 1.75 1.75 - 2.0 2.0 - 2.25 2.25 - 2.5 2.5 - 2.75 2.75 - 3.0

Figure 22. Histogram of the note-to-kernel ratio.

Empty kernels (%)

 More constant was the percentage of kernels that were empty (ie., those with

no notes or child kernels.) Most testers had very close to half their kernels containing

inner detail, and half representing simple unelaborated concepts (see Figure 23.)

0

1

2

3

4

5

0 - 10% 10 - 20% 20 - 30% 30 - 40% 40 - 50% 50 - 60% 60 - 70% 70 - 80% 80 - 90% 90-100%

Figure 23. Histogram of the percentage of empty kernels.

Avg kernels contained per view (and contained by other views), Avg
objects contained by non-empty views

 A surprisingly stable statistic was the average number of kernels that were

contained on a kernel view, or put another way, the average number of child kernels

per view. (Since every parent relationship is also a child relationship, this is also

equivalent to the average number of parents per kernel.) This was very close to 1 for

most users. The average number of objects (kernels and notes) on a non-empty view

 137

was also relatively stable (see Figure 24), and gives insight into how “full” a user

tends to keep their views. This is especially important in light of the difficulty in

reorganizing knowledge that plagued many users: the problem is more likely to

develop for densely packed views, as explained below. On average, most users tend

to keep between three and seven objects on a view.

0

1

2

3

4

1.0 - 2.0 2.0 - 3.0 3.0 - 4.0 4.0 - 5.0 5.0 - 6.0 6.0 - 7.0 7.0 - 8.0 8.0 - 9.0 9.0 -
10.0

Figure 24. Histogram of the average number of objects per view.

Kernels that have one or more parents (%), Kernels that have one or
more children (%), Kernels with both parents and children (%)

 These three statistics were nearly constant across the user group. The

percentage of kernels that had parents was normally about 83%, with very little

variation, and the percentage with children was about 28%. The percentage of

kernels that had both parents and children was somewhat more variable, but was still

between 15% and 25% for over half the group. (See Figure 25.)

 Overall, it seems that most users create relatively few “top-level kernels”

(17% or so.) By combining these figures with the “empty kernel” data (above), we

 138

can conclude that most people have about half their kernels empty, 1/4th with child

kernels (and possibly notes), and 1/4th with notes only.

0

1

2

3

4

5

6

7

8

9

0 - 10% 10 -
20%

20 -
30%

30 -
40%

40 -
50%

50 -
60%

60 -
70%

70 -
80%

80 -
90%

90 -
100%

w ith parents

w ith children

w ith both

Figure 25. Histograms of the percentage of kernels that had parents, children, and both
parents and children.

Kernels with two or more parents (%)

 More than any other statistic here presented, the percentage of kernels with

two or more parents was a predictor of the user’s qualitative assessment of the tool.

The correlation was extraordinary. Every user with more than 10% of their kernels

having multiple parents was enthusiastic about the tool’s effectiveness, without

exception. Every user with a lower percentage found the tool difficult to use

effectively, also without exception. (See Figure 26.)

 From this data we can conclude that transclusion is perhaps the most critical

ingredient in Popcorn’s success. After all, “kernels with two or more parents” is just

another way of saying “kernels that appear in multiple contexts,” and it is this feature

that all thriving Popcorn users seem to master. Placing the same item on multiple

views is a technique that some users find immediately intuitive, but that others

struggle to find uses for. Probably the best way to interpret these results is that when

 139

a user does not make use of transclusion, Popcorn doesn’t have enough other

compensating advantages to make it worth their while. There are enough

impediments (unfamiliar interface, change in workflow, etc.) that the cost of using

Popcorn outweighs the perceived benefits. In the hands of a user who has mastered

transclusion, however, the gains can be tremendous, and well worth the trouble of

adapting to the quirks and even changing one’s way of working.

0

1

2

3

4

0 - 5% 5 - 10% 10 - 15% 15 - 20% 20 - 25% 25 - 30% over 30%

Figure 26. Histogram of the percentage of kernels that had two or more parents (ie.,
that appeared in multiple contexts.) This statistic, by far more than any other collected,
correlated strongly with user satisfaction. Users with a percentage of greater than 10%
always found Popcorn to be a very useful tool, while those with a lower value were
invariably dissatisfied.

Number of islands, Avg kernels per island, Kernels in largest island,
Total size of largest island (%)

 The last set of general statistics relate to the islands in the user’s knowledge

base. An island is a set of kernels that are connected to each other, either directly or

indirectly, and so reachable by navigation alone (as opposed to by quicksearch.) The

kernels in an island may be related through relationships, containment, or both. Each

island is thus a cluster of interrelated information, which is not connected to any

 140

kernels outside of it. The purpose of island analysis is to discover how many isolated

clusters of knowledge a user’s PKB consists of, and how large those islands are. This

should give a good picture of how diverse a user’s domains are, and how often the

user makes use of connecting kernels across contexts.

 The results here were surprising, and remarkably consistent across users.

Nearly every user’s knowledge base followed the same pattern: many islands of

knowledge, each with less than ten kernels, plus one gigantic island that contained the

majority of the knowledge base. No user had less than 32% of their knowledge base

consolidated into a single island, and several users had 80% or more in one cluster

(see Figure 27.) This is all the more remarkable given the average number of kernels

per island, which was nearly always quite low (see histogram in Figure 28.) These

results hold even for the many users who stated (in face-to-face interviews) that they

used Popcorn for many separate tasks and in diverse domains.

 The pattern seems to be that users create small chunks of knowledge as they

use Popcorn, but that over time the chances increase that each small chunk will be

“absorbed” into the large island because of some association the user perceives. And

once connected to the whole, it normally stays there, since relationship deletion and

container removal are both relatively rare.

 We can draw an important conclusion from this pattern that actually validates

Popcorn’s overall data model. Consider two graph-based approaches presented in

chapter 4: the file-based architecture of tools like CMap[60] and Inspiration[162], and

the “fully-connected” graph of PersonalBrain[311] and Compendium[77]. In the

former, users create separate files for each knowledge diagram, and the elements on

 141

these diagrams cannot refer to one other. This approach can be viewed as the forceful

division of a user’s knowledge into small islands. In the latter, the opposite is true:

the user is prohibited from partitioning their knowledge into islands, because every

element must be connected to the root or else it is lost. In contrast, Popcorn stakes

claim to a flexible middle ground: every item of knowledge can exist on its own, or

be freely connected to any other. Hence the islands can develop naturally, as the user

sees fit. Users are neither required to partition, nor prohibited from doing so.

 The island analysis data seem to attest that this approach, and only this

approach, is ultimately viable. I stated earlier that forcing the user to divide up their

knowledge into isolated pieces was unacceptable, and here is the proof. The fact is

that, when given the opportunity, users naturally create numerous relationships

between all kinds of elements in their knowledge base, even between those from

domains that seemingly would be separate from each other. Therefore, requiring the

user to isolate their knowledge into bite-sized pieces prohibits a great deal of

expression. On the other hand, a complementary pattern is that users tend to create

many small islands in addition to the single large one. They drop data into Popcorn

without concern for fitting it into the larger picture, and these connections only

emerge later, if at all. Hence the “fully-connected graph” approach is also

problematic, because the user will be forced to create such associations at data entry

time, when they are not yet naturally perceived. Popcorn’s method of facilitating the

creation of any relationship yet not mandating artificial ones seems to be the best

solution here.

 142

0

1

2

3

4

0 - 10% 10 - 20% 20 - 30% 30 - 40% 40 - 50% 50 - 60% 60 - 70% 70 - 80% 80 - 90% 90 -
100%

Figure 27. Histogram of the percentage of the knowledge base occupied by the largest
island.

0
1
2
3
4
5
6
7
8
9

10

0 - 4.0 4.0 - 8.0 8.0 - 12.0 12.0 - 16.0 16.0 - 20.0 over 20.0

Figure 28. Histogram of users’ average number of kernels per island.

Temporal analysis

 The creation and most recent modification date of each kernel is stored in the

database, so it was possible for the analyzer program to track each tester’s usage over

time. Figure 29 gives time series plots of this data, as a percentage of the user’s

overall activity during the trial. The message seems to be that users fall into two

categories: those who use Popcorn in bursts, and those who use it more steadily.

Several users had large spikes on particular days, indicating that they used the tool

very heavily on certain occasions, while others demonstrated more constant usage

 143

throughout the trial. (Note that data retrieval statistics were not captured, which

means that these usage loads only reflect the creation of data.)

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

day of user trial

Figure 29. Usage over the trial period, as a percentage of total usage. (Note: some user
trials lasted longer than one month, and in those cases the usage statistics on this graph
have been truncated to show only the first 30 days.)

Day of week analysis

 Finally, the analysis program extracted the day of the week that knowledge

elements were created, in order to compile weekly patterns of usage. As expected,

this varied considerably from user to user, and the results are shown in Figure 30.

The only constant seems to be that the system is rarely used on weekends or

(bizarrely) on Tuesdays. Perhaps the most important fact that we can glean from this

data is that Popcorn usage is highly dependent on a user’s schedule. Nearly every

tester had a large spike on at least one day, suggesting that users settle into patterns of

data entry that conform well to their work week. This probably indicates that

Popcorn is often used for deliberate knowledge modeling sessions, in addition to

simply capturing bits of data that the user encounters randomly through the day. (As

 144

above, these statistics only reflect the creation of data. How the frequency of

knowledge retrieval correlates with the day of the week is therefore not known.)

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

Sun
da

ys

Mon
da

ys

Tue
sd

ay
s

W
ed

ne
sd

ay
s

Thu
rsd

ay
s

Frid
ay

s

Satu
rd

ay
s

Figure 30. Testers’ usage load by day of week, as a percentage of overall usage.

Qualitative impressions

 After the one-month trial period, each of the twenty testers engaged in a face-

to-face interview lasting about two hours.12 Interviewees were asked a broad range of

questions designed to elicit how the tool functioned for them practically, and what

obstacles they faced. In many cases, a tester would provide an unexpected insight

into their experience, which would trigger a more lengthy follow-on discussion to

further flesh out its implications. The results presented in this section are largely my

attempt to ferret out the common themes that emerged from these interviews, even

12 In two cases, the interview was conducted by means of a confidential e-mail exchange.

 145

though a particular idea was often stated in quite different ways by different testers

answering different questions.

General impressions

Overall, the qualitative impressions were mixed and strikingly bimodal: users

tended to either embrace the system enthusiastically, often using it as a replacement

for all other forms of knowledge management (8 out of 20 testers), or else have great

difficulty in adapting to the paradigm (7). A few (5) occupied a middle ground where

they could use the system effectively enough to see its advantages, but ultimately

rejected the tool as it stands because of one or more inhibiting factors. As discussed

in detail below, the ability (or willingness) of a tester to understand, accept, and

effectively use Popcorn’s data model (as opposed to its interface, or raison d’ etre in

general) seemed to be the largest determining factor in the overall impression.

Incentives and obstacles to usage

 A personal knowledge base is entirely subject to the user’s initiative. It never

proactively prompts its owner to complete a particular task, but sits passively, waiting

to be expanded or consulted at the user’s whim. The question arises: when a

knowledge-based task presents itself, what ultimately causes a user to decide to reach

for a tool like Popcorn? What benefits do they gain, or believe they will gain? And

conversely, what perceived hindrances cause them to not use the tool for such a task,

in the key moment of decision?

 To try and answer these questions, interviewees were presented with a series

of statements about the reasons they might have used or not used the tool, and asked

to rate how strongly they agreed with them. Responses were given on a five-point

 146

scale: 1 for “strongly disagree,” 2 for “disagree,” 3 for “neutral,” 4 for “agree,” and 5

for “strongly agree.”

Incentives to usage

The questions regarding incentives are given in Table 3, and the average

responses on the 1 to 5 scale in Figure 31.

“Think about the times you chose to use Popcorn. On a scale of 1 to 5, where 1
means ‘strongly disagree’ and 5 means ‘strongly agree,’ how would you rate each
of the following statements:

“1. I often choose to use Popcorn because using it helps me understand my

knowledge better.”
“2. I often choose to use Popcorn because it helps me manage my ongoing,

changing knowledge.”
“3. I often choose to use Popcorn because it helps me archive and return to the

knowledge I once knew.”
“4. I often choose to use Popcorn because it helps me return to Web pages of

interest again.”
“5. I often choose to use Popcorn because it helps me combine/synthesize/integrate

multiple sources of information.”

Table 3. Interview questions designed to determine why people use Popcorn.

3.49

3.58

4.00

3.18

3.57

1 2 3 4 5

strongly disagree ... strongly agree

1. Understand
knowledge

2. Manage ongoing
knowledge

3. Archive & return
to knowledge

4. Return to Web
pages

5. Combine/
synthesize

Figure 31. Average responses to the questions given in Table 3.

 147

 No one factor sticks out above the others in Figure 31. Popcorn’s stated

purpose of “a place to store and retrieve your knowledge” is clearly a motivating

factor, but others are almost equally so, including helping one to understand a

difficult domain, and facilitating the integration of sources. The ability to return to

Web pages via auto-URL capture met with mixed results, with six users (30%) rating

the statement a 5 (“strongly agree”) and another six never having even tried the

feature. Perhaps the most significant finding here is that users had no consensus on

which task(s) Popcorn was most helpful with. Only one user agreed (or strongly

agreed) with every statement, and only one user failed to agree with any. The others

were mixed. Clearly Popcorn is used for a variety of purposes, and there is

considerable disagreement about what kind of tool it really is.

Obstacles to usage

The questions regarding disincentives are given in Table 4, and the average

responses on the 1 to 5 scale in Figure 32.

Hardware availability

 The responses about inhibiting factors (see Figure 32) are more revealing.

Clearly the most important barrier to using Popcorn is simply that the application is

tied to the platform on which it runs (statement #2.) Hence it is easily accessible only

at one’s desk, when one is normally working alone on a specifically computer-

supported task. Users said they wanted Popcorn to be available to them in the

kitchen, during meetings, on the road, even in the shower, and in such settings they

were forced to rely on other means. Even laptop users reported that their machines

were not always available or convenient when needed.

 148

“Think about the times you chose not to use Popcorn. On a scale of 1 to 5, where 1
means ‘strongly disagree’ and 5 means ‘strongly agree,’ how would you rate each
of the following statements:

“1. I often choose not to use Popcorn because I just don’t have that much knowledge
worth managing.”

“2. I often choose not to use Popcorn because the hardware is not convenient: I’m not
around the computer when I need to store knowledge.”

“3. I often choose not to use Popcorn because the software is not convenient: it’s too
hard to start up and use the application.”

“4. I often choose not to use Popcorn because the possible benefit of storing my
knowledge just isn’t worth the effort.”

“5. I often choose not to use Popcorn because I don’t have confidence I’ll be able to
find my knowledge again.”

“6. I often choose not to use Popcorn because there’s nothing pushing me to use the
tool – it relies on my own intiative.”

“7. I often choose not to use Popcorn because Popcorn’s paradigm of concept maps
isn’t intuitive.”

“8. I often choose not to use Popcorn because Popcorn’s user interface is foreign and
non-intuitive.”

“9. I often choose not to use Popcorn because there are other tools (electronic or not)
that work better for me than Popcorn.”

“10. I often choose not to use Popcorn because I just can’t seem to develop the habit
of using it.”

“11. I often choose not to use Popcorn because I have trouble integrating Popcorn into
my daily routine.”

Table 4. Interview questions designed to determine why people don’t use Popcorn.

This was expected to be a problem, but a surprising discovery was that

knowledge recovery was not the feature most sorely missed, but in fact knowledge

entry. Evidently, users do not need to access their previously entered data in remote

settings so much as they need to record the new knowledge that they generate there.

The reason for this, as the interviews made clear, is that knowledge is elusive: it

disappears quickly. One user, for example, recounted that he would often discuss a

key idea in a meeting and have some critical insights, but that by the time he got back

to his desk to record the knowledge into Popcorn, many of the important nuances had

already faded from his memory. For maximum effectiveness, it seems, Popcorn must

be made available at the point of knowledge creation. And considering how fleeting

newly discovered knowledge appears to be, it could be an extremely valuable tool in

this setting.

 149

2.81
2.88

3.06
1.84

2.13
2.94

1.57
2.69

2.38
3.66

2.00

1 2 3 4 5

strongly disagree ... strongly agree

1. Don't have much know ledge

2. Hardw are not convenient

3. Softw are not convenient

4. Benefit isn't w orth the effort

5. Don't have conf idence to f ind

6. Relies on ow n initiative

7. Concept maps not intuitive

8. User interface foreign

9. Other tools w ork better

10. Can't develop the habit

11. Trouble integrating into routine

Figure 32. Average responses to the questions given in Table 4.

An obvious solution is to provide a distributed architecture, where one’s

knowledge base is hosted on a centralized server and accessed by client machines.

These clients could include palmtop devices and cell phones as well as workstations

or laptops. This would also solve the problem faced by some users who needed

Popcorn to be available in two locations, typically work and home. There are many

issues to be addressed here: security and privacy, meaningfully displaying knowledge

on small screens, and keeping multiple clients “in sync” if the same knowledge base

is accessed from more than one location. But a networked solution is probably

necessary for a personal knowledge base to truly fulfill the vision outlined in this

thesis.

 150

Integration with toolset

 Statement #9 (“other tools work better for me”) was also a popular answer,

but for two different reasons. A small number of users already had in place another

information-keeping system (most often paper-based), and because they had ironed

out the difficulties with those systems and formed habits around them, Popcorn was

found lacking in comparison. But more often the reason was that the user already had

a considerable amount of information entered into a different tool, or was required to

use a different tool to generate a particular kind of knowledge artifact. And Popcorn,

as it stands, does not interface well with most of the other software a typical user

employs.

The level of integration desired varied among users. Some suggested that if

the data they currently managed in other applications could be easily imported into

Popcorn, they would be content to abandon those applications entirely and use

Popcorn as the sole repository. These users were invested only in their data, not in

the other tools themselves. Others were looking for more task-specific support so that

their Popcorn knowledge could be more conveniently leveraged. (Ideas included

exporting a network of kernels to create a Microsoft Word outline or a set of

PowerPoint slides; including shortcuts to files in a kernel view; and directing e-mail

messages from a particular sender into a kernel representing that person.)

The basic message here is that an individual uses a variety of applications to

manage their knowledge effectively. And although a personal knowledge base should

perhaps be the centerpiece of this toolset, it should work seamlessly with the other

applications to carry out tasks. At the very minimum, Popcorn needs to be able to

 151

import and reference data stored in other tools, and it might also be advantageous to

more tightly integrate with certain tools so that the knowledge it contains can be used

to maximum effect.

Habits and initiative

 As users “talked out loud” about their answers to statements 6, 10, and 11, it

was apparent that these ideas were related. Many users had simply never thought in

terms of intentionally managing their knowledge before, and so while a promising

concept, there were challenges in putting it into practice. Some of this had to do with

getting used to identifying items of knowledge as they were encountered throughout

the day, and considering them as candidates for entry into the tool. Some had to do

with developing more diligence in acquiring information, and being less content to

make decisions based on assumptions.

These problems had less to do with Popcorn per se, and more to do with the

whole idea of a personal knowledge base. In general, a PKB (like Popcorn) is not an

easy tool to properly use. It is easy to use “in the small” – creating and retrieving a

knowledge diagram is trivial – but much harder to user “in the large”; that is,

maintaining enough consistent, disciplined usage over a long period of time for its

benefits to show themselves. One user commented that his problem with Popcorn

was that its supposed added value was too distant; it was hard for him to convince

himself that it was worth investing the time to record knowledge, when the benefits of

doing so, even if they materialized, were remote.

 152

The cost/benefit tradeoff

 Related to this issue were the responses to statement #4 (“the benefit isn’t

worth the effort.”) Several users stated that they often struggled with this decision at

the time knowledge was encountered. Recording knowledge in Popcorn, while fairly

streamlined, still requires effort, and it is hard for users to know whether this is

worthwhile in the instant that it must be recorded or lost (see [168].) Making an

effective “to record or not to record” decision requires a good deal of prescience, both

about whether the knowledge is likely to be retrieved later, and if so, how best to

encode it (and associate it with other items) so as to facilitate this retrieval. It is

expected that if a user makes a commitment to a PKB, over time they will recognize

their own habits and patterns, and make wiser decisions here.

Non-factors

This verbal questionnaire also helped identify some red herrings. Two of the

areas expected to be problems at the outset of this project – the unfamiliar UI

paradigm, and the anticipated difficulty in remembering kernel names – were plainly

insignificant. Nearly every user (17 out of 20) reported that although the interface

took some getting used to initially, they were quickly able to adjust to it, and soon

preferred it for speed’s sake. This is probably because Popcorn supports such a small

number of operations, all of which are used commonly, and so are easily

remembered.

Too, Popcorn users were surprisingly successful at retrieving old knowledge

from their knowledge base. This was expected this to be a problem since recall ought

to be more difficult than recognition, and Popcorn requires the recollection of

 153

verbatim text (or the verbatim text of a connected kernel) in order to retrieve an item.

However, nearly every user (also 17 of 20) stated flatly that remembering the names

of (or retrieval paths to) desired kernels was never an issue for them.

There are several possible reasons for this. For one, the trial period was brief,

and it is possible that after a year or more of using Popcorn, users would find

recovery substantially more difficult. It is also possible that users’ retrieval patterns

are usually short-term in nature: one normally needs to return only to kernels that

have been created recently, thereby lessening the burden on biological memory. It

may well be, however, that Popcorn’s recipe of “free associate to a related kernel,

then navigate from there” is in fact an effective retrieval technique for the long-term.

Longer-term testing should reveal whether this is the case.

The response to statement #1 (“I don’t have that much knowledge worth

managing”) demonstrates that nearly everyone agrees with Popcorn’s main goal. The

reason to reject Popcorn, whatever else it might be, is not because it is a solution for a

non-existent problem. On the contrary, the problem of drowning in knowledge that

one cannot easily manage is well-appreciated by all – the only question is how best to

solve it.

Finally, remarkably few users expressed any difficulties with concept maps

themselves (see statement #7), even though no formal training was provided. In most

cases, just a few examples were sufficient to demonstrate the paradigm of

association-based knowledge representation, and users were comfortable working

with it. This at the very least affirms that semantic networks come naturally to people

 154

with very different backgrounds, and may in fact further suggest that our minds

actually store knowledge in a representation quite like them.

Specific themes

 As testers talked about their experiences using Popcorn, several other themes

emerged that form some of the most important “lessons learned” from this project.

Common patterns of use

Somewhat surprisingly, the typical Popcorn user tends to use the system in

two very different, non-overlapping ways. One is for information capture. Popcorn

users stored various bits of important data in the tool, loosely grouping them and

naming them, and taking great comfort in knowing that they were “safe.” A few

examples would be phone numbers, driving directions, passwords, and quotes from

Web pages, but the variety here was quite large. This kind of information is typically

relevant for a short to medium duration, has very little structure, and its primary

purpose is to be later recalled.

The second common area is knowledge formulation. Users brainstorm

difficult domains with Popcorn, and their intent is to emerge with a better

understanding of the topic. They most often do not begin with a thorough grasp of

the knowledge, but rather discover it as they go, using Popcorn as a sort of

multidimensional scratch pad. Interestingly, many users report that once they have

generated a concept map, even if it is very detailed and crosses over numerous kernel

views, they have little interest in being able to return to it again. Hence Popcorn’s

primary function as a storage repository is not even used in this case. The knowledge

gained theoretically has very long-term value (especially as compared with a phone

 155

number or password), and yet apparently its chief purpose is to be formed in the

mind, not recalled via the tool.

The interesting fact here is that nearly all users (18 out of 20 in the trial)

employ both of these methods to some degree, but with little to no overlap. Over

time, their knowledge base becomes a growing collection of two spheres: loosely

connected bits of information, entered hurriedly and recalled frequently; and richly

structured knowledge maps, created painstakingly and reviewed rarely. Both have

value, but it is surprising that one tool seems to serve both purposes.

A third, less common use for Popcorn (recall Figure 31) is to manage

ongoing, changing knowledge. Users keep a set of kernels up-to-date so that it

always represents the “current state of affairs” in some area. Examples here are

personal “to do” lists, project management resource allocations, and the state of

ongoing dialogues with customers. Users report that this can be very helpful in

staying on top of tasks that involve multiple interdependencies, but that it is

impractical for more than a small number of areas simply due to the time required to

keep them up to date.

Domains

As a knowledge management tool, Popcorn is best-suited to ill-understood,

unexplored domains with many arbitrary relationships. This is clearly something that

most existing software applications have trouble with, and is what can make Popcorn

a very valuable tool. It was apparent, however, that the knowledge most users

generate is a combination of these kinds of domains plus hierarchical (e.g., outlines,

org charts), tabular (accounts, contact info), and unstructured (memos, essays)

 156

information. Users liked Popcorn for the first kind of knowledge, but for these other,

more traditionally organized areas, many of them (9 of 20) became frustrated with it.

The unrestrained flexibility, which is Popcorn’s hallmark, makes it ill-suited to

domains that implicitly have a regular, predictable structure: for these areas, users

prefer tools that more rigidly guide them. And using Popcorn for completely

unstructured information (free text) is equally frustrating because its text editing

features do not compare with those of word processors. Hence it appears that the

original vision for Popcorn as a “store everything” knowledge base needs to be

adjusted somewhat. As discussed previously, it needs to be better integrated into a

user’s overall toolset so that each application can be used to process the type of

information for which it is intended.

Visual representation

Popcorn’s method of displaying knowledge visually through concept maps

was mostly well-received, though not without a few criticisms. Users reported that

the spatial nature of kernel views helped them more quickly zero in on important

information, more easily get their bearings when returning to a previously created

view, and more firmly ingrain the knowledge in their biological memories (nine

testers mentioned one or more of these benefits, even without being asked.) One user

said that after constructing a kernel view, a certain concept was thereafter “always in

the bottom-right corner” of their mind, even when not using the tool, and this sort of

feedback was not uncommon. This suggests that the act of using Popcorn helps

create and solidify dependable cognitive structures.

 157

Spatial placement on a canvas involves more degrees of freedom than writing

on a lined notebook page, and users varied in their ability to adjust to that. For some,

it was extremely positive: one stated that after using Popcorn, it was painful to return

to linear text because it felt arbitrarily confining. Another commented that working

spatially let them “think like a human, rather than the computer forcing me to think

like a machine.” A few users (4 of 20), however, found this extra dimension

unnecessary and even inhibiting. The knowledge itself was sometimes harder to

enter, because in addition to specifying the concepts the user is forced to also specify

their spatial positions, which can be distracting. Another frequent comment (from 7

users) was that certain patterns of information – most commonly, lists – did not lend

themselves well to a spatial representation. One can implement a list as a kernel

view, of course, with the items arranged as kernels or notes inside of it, but some

users were unsatisfied with this, preferring a strictly one-dimensional listing of bullet

items.

Difficulty in reorganization

Despite attempts to facilitate the reshuffling of knowledge, Popcorn did not

live up to user’s expectations in this regard. Many users (about 15) related that they

found it frustrating to restructure kernels to conform to new understandings. This is

partially due to the specifics of the tool’s interface. There is currently no “multi-

select” operation, which could be used to select and then move a number of related

kernels in concert. Also, the screen features just one kernel view at a time (the active

kernel in the viewport), with all others relegated to a smaller, thumbnail status. This

makes it difficult to break one kernel view into two, since one has to create a new,

 158

expanded kernel on the viewport, move some of the contents into it, name it and

delete it from the current view, and then reorganize the remnants, an unnatural and

tedious process. Also, since knowledge acquisition is nearly always additive, even

sparsely populated kernels tend to fill up over time as more facts are learned about a

topic. An eventual reorganization of the kernel is actually the most fortunate outcome

here; more problematic is that the user will become reluctant to add newly acquired

knowledge for fear of the view becoming overcrowded. Clearly, better methods for

restructuring are needed. I expect that modest enhancements to the user’s repertoire

of operations (such as adding multi-select and multiple top-level windows) would

help a good deal.

A replacement for bookmarks

 At least six users stated that Popcorn was a complete replacement for their

Web browsers’ “bookmarks” or “favorites” facility. The ability to drag text into

Popcorn from a Web page and auto-capture the URL has several advantages. First,

the granularity of “bookmarking” is smaller: instead of pointing to an entire page,

snippets of important text within a page can be captured. One user observed that this

was particularly useful when gathering information from “blogs” or “forum”

websites. These sites often feature lengthy exchanges between individuals on some

topic, and important morsels of information can be buried inside a response many

screenfuls down within the page. The ability to instantly return to the surrounding

context of the excerpt is powerful.

Another advantage is that the URL of the webpage is captured in the context

in which the user is naturally thinking about it. A Popcorn view contains a user’s

 159

understanding of a subject, and if some Web content bears upon that understanding it

is quite natural for the annotated URLs to appear directly on that view. Compare this

with using (say) a Word processor to express one’s thoughts, and having to wade

through a hierarchical arrangement of bookmarks every time one needs to view a

related web page.

 Finally, this feature helps solve the volume problem. More than one user

remarked that their browser had become so overloaded with (often outdated)

bookmarked pages that it was now impossible to navigate them. The basic problem

here is that the browser is forcing all bookmarks for all topics to be contained within a

single hierarchy, and this proves to be unwieldy over time. With Popcorn, however,

the field of view is never uncluttered with irrelevant bookmarks. Each one appears

on the view for which it is relevant, and never obscures the user’s field of vision

otherwise. A Popcorn knowledge base can accommodate thousands of bookmarks

over a period of years, since none will ever appear outside the right context.

The effect of allowing duplicate names

 The original Popcorn design mandated that the name of every kernel in a

knowledge base be unique. This was for the sake of simplicity and to make the

search process more straightforward – nothing but the kernel name itself would need

to be shown in the results list. Early testing, however, revealed that this was

problematic in some situations. It is probably true that most of our ideas could be

given a unique name that would unambiguously denote them: for instance, a

businessperson might be thinking of “barriers to entry for the Z1000 product in the

medical sector.” However, people normally operate in the presence of so much

 160

implied context that it is unnatural to specify this level of detail in a name.13 If a

colleague were to ask what this businessperson was discussing at lunch, they would

be much more likely to simply hear “barriers to entry,” with the other details being

left out because they were understood.

 In Popcorn terms, this manifests itself in the naming of kernels. A user wants

to quickly assign the most natural name for a kernel, based on what they are thinking

about at the moment. In the above example, the obvious name for the kernel is

“barriers to entry.” But if names are required to be unique, this is problematic.

Surely over the lifetime of a knowledge base, the tag “barriers to entry” is likely to

have more than one meaning depending on context. (Different products, different

sectors, or even different conversations about the same product in the same sector.) If

the user does not fully appreciate the ramifications of global uniqueness, they are

likely to want to create a different kernel with a duplicate name later on, which the

system wouldn’t allow. (Renaming the original kernel is possible, of course, but

requires the user to lay aside their current task and temporarily return to a former one,

which is very disruptive.) And if the user does appreciate the ramifications, the

problem can be even worse. Some early testers reported that they sometimes felt

paralyzed when naming kernels, because they recognized they needed to be

absolutely certain to fully specify the concept with a globally unique name. At the

13 Note that this is one advantage of the hierarchical data model. Every node is implicitly “in” exactly
one other (ie., it has one parent) and so it can be considered a proper subset of that parent. Thus, for
example, in a filesystem it is common to see a folder named “meeting minutes” underneath a folder
named “XYZ project.” The very structure implies that the former contains the meeting minutes for the
XYZ project. There is no need to actually name it “XYZ project meeting minutes.” When we move
from the hierarchy to a directed-graph-based representation, however, the notion of “in” changes, since
any node can have any number of parents, which is what leads to this naming dilemma.

 161

very least, this slows down the process of knowledge entry, which we want to avoid

at all costs. And it can also lead to uncertainty and doubt.

 In response to this issue, Popcorn’s data model and interface were modified

slightly to allow duplicate names. As described in chapter 4, two kernels with the

same name can (sometimes) be distinguished in the search results list by including the

names of their parents. The effect of this change was positive, but in an unexpected

way. After using the modified application, users reported that in actual fact, they did

not encounter name collisions very often at all. The fears that led to naming paralysis

were largely unjustified (at least during the relatively brief trial period.) The impact

of the change, however, was substantial: it simply relieved users’ anxiety at kernel

naming time. Since users can assign names freely, knowing that if necessary they

could create a different kernel with the same name later on, they can proceed with

confidence.

“Fuzzy” vs. “crisp” kernels

 Popcorn models an abstract “thought” as a concrete, named entity. This

works better for some thoughts than others, especially those that appear in multiple

contexts. A kernel named “John Wilkes Booth,” for example, works well because of

its tangibility: there is very little ambiguity about what real-world object is meant.

But consider a kernel like “rebellion.” Suppose it first appears in a kernel view about

the Civil War. Now the user is creating a knowledge representation of the Warsaw

Uprising, and wants to include a kernel called “rebellion.” They double-click, type

the first few letters of the name, and see the previous kernel pop up in the results

pane. Should the user place the previous kernel on this view, or create a new one

 162

with the same name? And how would this change if the user were describing a

mutiny on a ship, or problems in dealing with teenagers?

 The answer is not as simple as it first appears. If the user chooses to create a

new kernel, then there will be no “link” between the Civil War and the Warsaw

Uprising. Later on the user could not, for example, browse the Civil War view,

observe the kernel on “rebellion,” and then double-click on it to see “Warsaw

Uprising” among the contexts in which it appears. To the system, these would be two

completely unrelated kernels, which prevents the user from asking the question,

“where are all the places in my knowledge base that deal with rebellion?” Choosing

to use the same kernel, however, is also not without difficulties. If two distinct topics

are really in view (rebellion in a war versus teenage “rebellion”) then it is probably

not a good idea to use the same kernel to represent them. But even when they are

essentially the same topic, the “rebellion” kernel may have information inside it

(other kernels and notes) that pertains specifically to the Civil War (or the Warsaw

Uprising.) In this case, it is awkward to have a kernel appear on one view that

contains information obviously meant for another.

 The problem seems to be that knowledge is often less well-defined than we

realize. We pretend that it can be broken down into crisp, unambiguous concepts, but

using Popcorn for any length of time exposes that sometimes it can’t be. The same

basic idea may be proliferated throughout a knowledge base, but its semantics change

slightly depending on its context, which makes rendering it in a Popcorn-like data

model difficult. I know of no great solution to this problem, other than gaining

experience with the tool over time as such situations are discovered.

 163

Communication through views

 On the whole, Popcorn users were quite optimistic that if they were to share

their kernel views with another person, they would be easily and quickly understood,

with little to no accompanying explanation. Some reported that they had actually

done this with friends or colleagues and had success. One tester commented that she

used Popcorn to “show her thinking to others” and that the diagrams were actually

more for their benefit than her own. Another planned to use it as a tutor in order to

encourage students to lay out their notes in a certain way.

While perhaps a bit naïve (the implicit expression through spatial positioning

would not be obvious to a newcomer, for instance) these findings do bode well for

extending Popcorn into a collaborative tool. Users could perhaps work together

remotely on views, share portions of their knowledge base for another’s perusal, etc.

This is outside the scope of personal knowledge bases per se, but since knowledge in

some sense is contained within organizations as well as individuals, this may be a

fertile area of future research.

Oft-requested features

 The most commonly requested feature was the aforementioned distributed

architecture, so that a user’s knowledge base would be accessible from multiple

locations. Another desirable enhancement was a “global browser” feature through

which one could see the entire contents at a glance. This would fill a gap in

Popcorn’s search paradigm. Unlike, say, hierarchical tools, where one can start at the

root and explore down the tree, there is no way to access “everything” in Popcorn. If

a user knows something is in the knowledge base, it is easy to find, but the user has to

 164

start by knowing (or suspecting) that it is there. No mechanism exists to discover

what is there, other than by typing random letters and seeing what appears in the

search results!

 Three reasons were cited for wanting this feature. One was to periodically

“clean up” the knowledge base by purging it of dated information. This was

admittedly for aesthetic reasons rather than performance, since Popcorn suffers

virtually no performance degradation as more information is added (due to its

database indexing mechanisms.) The second was to serve as a directory of

information into the knowledge base – a user could browse a list of “starting kernels”

which would direct them into the main areas of knowledge. The final reason was

simple curiosity: after working with Popcorn for a long period of time and building

up a large knowledge base, some users were simply interested in going back and

surveying what they had created, which is difficult to do with the product as it stands.

 One other feature users mentioned was a “chronological search” similar to

that of LifeStreams[121, 126] or Circus Ponies[70]. They expressed that it would

sometimes be convenient to go back to “yesterday’s kernels” without having to name

them, or to be able to look for information that they knew had been recorded last

summer in case the existing search mechanism failed.

Lack of structure

If freedom and fluidity are Popcorn’s greatest assets, it appears that they can

also be its greatest liabilities. Several users (8) commented that they sometimes felt

paralyzed by too many options: since Popcorn imposes no particular structure, the

onus is completely on the user to generate their own, and this can be an intimidating

 165

proposition. It is often not clear at the outset which of several modeling choices will

turn out to be the best. So the user must simply choose one, and proceed half-

convinced, always wondering if they made a suboptimal choice. Later on, new

knowledge may arise that shares features with something they previously recorded,

but the user will inadvertently encode it differently than they did before. Such

inconsistencies can be maddening when they are later exposed, and can actually lead

to fear and uncertainty.

Part of the difficulty is the fact that much creativity is involved in encoding

knowledge at all. Popcorn is obviously not a structured tool that presents the user

with, for instance, a template of fields to fill out. One user commented that in many

ways he found such “idiot-proof” tools more comforting, because they left no doubt

about exactly what kind of input they expected. Another echoed the thoughts of

many when he said, “I’m very impressed with the way I see Popcorn working for

others. But when I sit down to input something myself, I often just stare at that blank

screen and don’t know how to proceed.” The flexibility itself, it appears, sometimes

stifles thought.

There are several ways this could be addressed. One is simply through

training. Popcorn is a tool quite unlike most applications users have ever worked

with, and it may be too much to ask to simply teach them the basic GUI operations

and then leave them to their own devices. A brief “introduction to knowledge

mapping through Popcorn” course could explain the principles of concept mapping,

plus common techniques and tricks to materialize one’s knowledge within the

constraints of the tool. Another idea would be to introduce sample skeletal structures

 166

for particular domains. When modeling a new area, users could perhaps browse a

central location (or even the Web, with a service discovery approach) to find

“Popcorn starter structures” for download. These would contain basic patterns that

have been proven successful by other Popcorn users in a particular field, which the

user could fill in, imitate, modify, and extend. This would help bootstrap a beginning

user by giving them some guidance as to which way to proceed initially.

The difficulty of knowledge formulation

The most significant barrier to using Popcorn, however, and also the most

enlightening one, was simply this: knowledge formulation is a more difficult

endeavor than the testers (or I) imagined. The hope was that since the mind can be

said to store knowledge as a semantic network, allowing users to transcribe that

structure directly into electronic form would be easy and painless. What was

discovered, however, was that this can be a vexing task, not because the interface is

suboptimal, nor because the data model is insufficient, but because the knowledge

users wish to record is often not fully understood.

It was abundantly clear from user experiences that Popcorn exposes ill-

understood knowledge. Its strength is that it allows knowledge to be expressed as a

cognitive structure; but the catch is that it essentially demands the user enter it in that

form. Time and again, users would be frustrated in trying to properly model their

knowledge in the tool, and they often reported that their lack of understanding is what

really stopped them. They couldn’t figure out how to express the knowledge in terms

of concepts and relationships because they didn’t truly understand the concepts and

 167

relationships. The experience was frustrating because Popcorn confronted them with

their lack of understanding and forced them to deal with it.

A related user complaint was that it was often troublesome to try and record

knowledge “in real time.” Many users attempted to create concept maps for newly

acquired knowledge even as they were learning it. The idea was that as new concepts

and their relationships are encountered, it would be optimal to simply record them as

one went along, compiling information into knowledge as it was consumed. Most

quickly discovered that this was impossible. It takes time to mull over a difficult

domain and ferret out the essential insights, and rushing this process is a certain road

to chaos. For this reason, most users spent significant time thinking and doodling

before recording a “mostly correct” concept map for a complex domain. Some

formed the habit of recording fragments of text in Popcorn notes when a new domain

was initially encountered, returning later to process the information more deeply and

“compile” it into a concept map of kernels. With this technique, the ratio of notes to

kernels on a particular view could serve as a rough indicator of how deeply the

information had been processed.

When confronted with difficulty in knowledge formulation, users had two

basic responses. They either gave up using the tool for that task out of frustration, or

else they took much longer than expected to record their knowledge. Those who took

the first course were conscious that they did not understand the topic as well as they

thought, and this frank realization became Popcorn’s primary contribution for them.

The others engaged in more time-consuming investigations and longer brainstorming

sessions, after which they invariably emerged with a more thorough grasp of the

 168

domain. Popcorn’s value for them was perhaps not that it stored the knowledge itself,

but that it dispelled the illusion that they really understood it, and encouraged them to

explore it further. A very common remark from users was that although it was

sometimes time-consuming to construct a set of kernel views, in the end the process

was well worth it.

Summary

 In all, Popcorn seems to be a reasonably effective tool in the hands of

someone who understands and commits to the data model (including transclusion.)

Interestingly, there are a number of different ways it can be effective, and this varies

greatly depending on the particular user’s information needs. In some ways, the tool

becomes whatever the user wants it to be, which is both a strength and a weakness.

Its strength is that it can serve many purposes and adapt to many different working

environments; its weakness is that it does not direct the user towards a course of

action, which can be confusing and in some cases deprive the tool of its utility.

 A personal knowledge base makes great claims on a user’s life – attempting to

manage all of their knowledge in every conceivable domain. And yet it can only be

effective if it does this without interfering much in the user’s daily activities. We are

rarely conscious of “using our brain” as we carry out tasks; if a PKB is to be a

“surrogate brain” we should ideally be unaware of it, too. What this means

practically is that it must smoothly integrate into a user’s workflow. It must be

available on demand, and in exactly the way the user needs it, but it must never

intrude when not wanted or require any explicit upkeep. This is a delicate balance.

 169

One fact brought out by the user testing is that people are sensitive to a number of

parameters, including the time taken to process knowledge, the physical location in

which knowledge is acquired, the specific tasks that the knowledge is needed for, and

simply their existing habits around knowledge management. Attempting to inject an

added value into this equation without disturbing the established processes is a

difficult operation for any tool to achieve.

 As for knowledge itself, the user trial demonstrates two important realities.

The first is that non-linear knowledge representations like concept maps are

promising. Most users, even without training, seem to understand them, and are even

confident that others could look at their diagrams and discern the meaning easily.

The second reality, however, is that knowledge itself is often difficult to form, and

trying to express it as a concept map exposes that. Users discovered that expressing

knowledge to Popcorn can be vexing at times because it is often elusive, fuzzy, and

frankly, not fully understood.

 Lastly, a tool like Popcorn seems to require a great deal of commitment to be

effective. Most users are either “Popcorn geeks” who embrace the tool and mold

their whole workflow around it, or else fail to derive any lasting benefit. Apparently,

it can only function well as a major component in a person’s life, which means the

stakes are high indeed.

 170

CHAPTER 6

CONCLUSION: KNOWLEDGE AS A COMMODITY

 Personal knowledge bases can be very effective tools in the hands of

dedicated users, as the testing phase of this thesis made clear. They require

significant discipline, even to the point of being willing to change habits, in order to

fulfill the vision outlined in the introduction. But in these cases they can be a

tremendous aid to knowledge management and personal effectiveness. Users who

fail to make this commitment can still reap some shorter-term benefits, especially in

the area of focused knowledge formulation, though the gains are much smaller.

 But perhaps the most interesting finding from these experiments has less to do

with PKBs themselves, than with what it revealed about the ways humans work with

knowledge. A personal knowledge base is intended to be a reflection of a user’s

mind, and this is a double-edged sword. It enhances our fleeting thoughts with

persistence and tangibility, which can be valuable indeed, but these very attributes

also expose what it is in the mind, often in a surprising and uncomfortable way. I

conclude this thesis with some observations about human behavior that this project

revealed for me.

 We live in a world that moves at breakneck speed. Many of us spend most of

our time just trying to keep pace with a swarm of short-term obligations. And we are

evaluated – by our managers, our peers, and even ourselves – largely in terms of the

concrete tasks we complete. Our overriding concern tends to be how many papers we

publish, or deliverables we meet, or clients we see, or sales deals we close. This rate-

 171

of-task-completion may or may not be the best gauge of success, but it is certainly

measurable, and our rewards systems tend to be heavily based on it.

 Now when we turn to electronic tools, what do we usually want them to do for

us? Naturally, to speed up our rate of task completion. The word processor helps us

to write documents more quickly. E-mail helps us communicate more quickly. The

Internet helps us access information and make purchases more quickly. Databases

help us access customer records more quickly. Upon reflection, the underlying goal

of a huge majority of software applications is simply to automate something for us.

We’re too busy, it seems, to spend the time on a new, potentially enlightening

endeavor. All we want the computer to do for us is to speed up our rate of

processing, so that we can continue to execute the tasks we already understand faster

and faster.

 The above description is a caricature, of course. But it does seem to me that

our society is largely predicated upon doing, not knowing. We often fail to value

knowledge itself as a commodity, instead valuing only the concrete applications of

that knowledge. This sounds innocent enough, and even pragmatic, but it is all too

easy for us to start focusing only the completion of the task, rather than the

understanding that made the accomplishment possible. Soon, we begin tackling tasks

without having the knowledge necessary, which leads to faulty decisions and

suboptimal solutions. Worse, we may not even realize that these solutions are

suboptimal, because the only way to evaluate them is by means of the knowledge that

we carelessly discarded. We soon find that we are in a race to complete a certain task

 172

in a certain way faster than our competitors, when it may not be the right way, or

even the right task.

 This phenomenon struck me in a new way during this thesis. When I was

explaining Popcorn to the volunteer testers, I found myself describing it in these very

terms. It was intended to “let you quickly record your knowledge,” I claimed, and to

“speed up your access to all your information.” The central fact in my sales pitch was

automation: Popcorn would help you complete your existing tasks more quickly by

putting your knowledge at your fingertips.

 What the user testing revealed was that this is not Popcorn’s main function at

all. For the most part, Popcorn is not a tool that makes simple things quicker and

easier. Rather, it’s a tool that gives support to tackle hard problems, and to encourage

the user to work on them. Users were frustrated by trying to quickly enter

knowledge, and were brought face-to-face with their lack of understanding. “No,”

the tool would say if it had a voice, “my job is not to let you hurry up and enter this so

you can return to the whirlwind of deadlines. My job is to make you step back for a

moment and consider whether you really understand what you think you do.”

 It is actually a frightening thought that many of us evidently live out our lives

unaware that we understand as little as we probably do. It is even more frightening

that we regularly make decisions based on this weak foundation. Perhaps the world

would be better served if we valued not so much the speed of task completion, but the

depth to which we understood the task and pondered the best possible outcome, and

even the degree to which we were certain it was the correct task in the first place.

 173

 I believe we live in a world that is mostly very free-form and ill-understood,

but that has little pockets of well-defined, structured material that we understand well.

Much of our lives are spent dealing with these little pockets. We intuitively flock to

them because we can understand them and find them comfortable. It’s a relief from

the chaos, and we take refuge in it. Most of our electronic tools are built around this

structured data: account balances in Quicken, contact information in Outlook,

perfectly hierarchical directory structures. We operate in these areas because we can

operate in them, without much risk or confusion.

 Popcorn’s perplexity is that it ventures into the unknown realm – it challenges

the user to make sense of the unfamiliar parts of their world, and to do it in ways that

are unfamiliar. It dares them to forge order out of chaos. This requires innovation,

courage, determination, and the willingness to recognize mistakes and start over. But

the potential reward is considerable: an ever-expanding realm of understanding that

provokes new questions and challenges the status quo.

 A personal knowledge base is not a complete solution by itself, of course. No

mere tool could be. The change would have to be cultural, a fundamental shift in

values. But a PKB could support it better than any other application. Because it is

designed to handle the fluidity of thoughts in the human mind.

 I close with a quote from Albert Einstein: “I lived in solitude in the country

and noticed how the monotony of a quiet life stimulates the creative mind.” Clearly,

here was a man who made major discoveries, furthered our understanding, and

changed the world for the better. Perhaps it was because he removed himself from

the hustle and bustle of shortsighted deadlines and took the time to think things

 174

through. Perhaps it was because he valued knowledge itself as a commodity worth

seeking. Perhaps taking a step back from the fray and truly trying to understand

would be the best way to improve our world.

 175

BIBLIOGRAPHY

1. The Mozilla Foundation. The Firefox Browser. Available at: www.mozilla.org. 2005

2. Grokker 2.1. Available at: www.grokker.com. 2004

3. Sunburst Technology, Inc. HyperStudio 4. Available at: www.hyperstudio.com. 2005

4. Knowledge Interchange Format (KIF) draft proposed American National Standard
NCITS.T2/98-004. Available at: http://logic.stanford.edu/kif/kif.html. 1991

5. Solutions Etcetera. SuperCard 4.5. Available at: www.supercard.us. 2005

6. XML TopicMaps (XTM). Available at: http://www.topicmaps.org/xtm/index.html. 2001

7. XPertRule Software Ltd. xPertRule eLearning. Available at: www.xpertrule.com. 2005

8. Aberer, K., Cudre-Mauroux, P. and Hauswirth, M., The Chatty Web: Emergent semantics
through gossiping. in Proceedings of the 12th International World Wide Web Conference,
(Budapest, Hungary, 2002).

9. Adar, E., Karger, D. and Stein, L.A., Haystack: per-user information environments. in
Proceedings of the Eighth International Conference on Information Knowledge Management,
(Kansas City, Missouri, 1999), 413-422.

10. Agrawal, R., Imielinski, T. and Swami, A., Mining association rules between sets of items in
large databases. in Proceedings of the ACM SIGMOD Conference on Management of Data,
(Washington, D.C., 1993), 207-216.

11. Ahlberg, C., Williamson, C. and Shneiderman, B., Dynamic queries for information
exploration: An implementation and evaluation. in Proceedings of the ACM Conference on
Human Factors in Computer Systems, (Monterey, California, 1992), 619-626.

12. Akscyn, R., McCracken, D. and Yoder, E., KMS: a distributed hypermedia system for
managing knowledge in organizations. in Proceedings of the ACM Conference on Hypertext,
(Chapel Hill, North Carolina, 1987).

13. AKS-Labs. Mind Pad v1.1. Available at: www.mind-pad.com. 2005

14. Institute of Computer Science, FORTH. The ICS-FORTH RDFSuite: Managing voluminous
RDF description bases. Available at:
http://www.ics.forth.gr/isl/publications/paperlink/semweb2001.pdf. 2001

15. Advanced Learning Technologies in Education Consortia (ALTEC). NoteStar. Available at:
http://notestar.4teachers.org. 2005

16. Anderson, J.R. Cognitive Psychology and Its Implications, 3rd Ed. W.H. Freeman, New York,
1990.

17. Ankerst, M., Ester, M. and Kriegel, H.-P., Towards an effective cooperation of the user and
the computer for classification. in Proceedings of the ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, (Boston, Massachusetts, 2000), 178-
188.

18. Ankolekar, A., Burstein, M., Hobbs, J.R., Lassila, O., Martin, D., McDermott, D., McIlraith,
S.A., Narayanan, S., Paolucci, M., Payne, T. and Sycara, K., DAML-S: Web Service
description for the Semantic Web. in First International Semantic Web Conference (ISWC
2002), (Sardinia, Italy, 2002), 348-363.

19. Antonietti, A. Why does mental visualization facilitate problem-solving? in Denis, M. ed.
Mental Images in Human Cognition, Elsevier Science Publishing Company, Inc., New York,
1991, 211-227.

 176

20. AquaMinds Software Corporation. NoteTaker 1.9. Available at: www.aquaminds.com. 2005

21. Arens, Y., Knoblock, C.A. and Shen, W.-M. Query Reformulation for Dynamic Information
Integration. Journal of Intelligent Information Systems, 6 99-130.

22. Assini, P., NESSTAR: A Semantic Web application for statistical data and metadata. in
Eleventh International World Wide Web Conference: Workshop on Real World Applications
of RDF and the Semantic Web, (Honolulu, Hawaii, 2002).

23. Ausubel, D.P. Educational Psychology: A Cognitive View. Holt, Rinehart, and Winston, Inc.,
New York, 1968.

24. Ausubel, D.P. The use of advance organizers in the learning and retention of meaningful
verbal material. Journal of Educational Psychology, 51 267-272.

25. Ayers, Danny. IdeaGraph. Available at: www.ideagraph.net. 2005

26. Bachler, M., Shum, S.B., De Roure, D., Michaelides, D. and Page, K., Ontological mediation
of meeting structure: argumentation, annotation, and navigation. in Proceedings of the 1st
International Workshop on Hypermedia and the Semantic Web, (Nottingham, UK, 2003).

27. The KartOO Visual Metasearch Engine. Available at: www.kartoo.com. 2004

28. Banxia Software Ltd. Decision Explorer. Available at: http://www.banxia.com/demain.html.
2005

29. Bartlett, F. Remembering: A Study in Experimental and Social Psychology. The Syndics of
the Cambridge University Press, Cambridge, 1964.

30. Bayardo Jr., R.J., Bohrer, W., Brice, R., Cichocki, A., Fowler, G., Helal, S., Kashyap, V.,
Ksiezyk, T., Martin, G., Nodine, M., Rashid, M., Rusinkiewicz, M., Shea, R., Unnikrishnan,
C., Unruh, A. and Woelk, D., Infosleuth: Semantic integration of information in open and
dynamic environments. in Proceedings of the 1997 ACM-SIGMOD International Conference
on Management of Data, (Tuscon, Arizona, 1997), Morgan Kaufman, 195-206.

31. World Wide Web Consortium. OWL Web Ontology Language Reference. Available at:
http://www.w3.org/TR/2004/REC-owl-ref-20040210/. 2004

32. World Wide Web Consortium. RDF/XML Syntax Specification (Revised). Available at:
http://www.w3c.org/RDF/. 2004

33. University of Bristol, UK. Redland RDF Application Framework. Available at:
http://www.redland.opensource.ac.uk. 2000

34. Benjamins, V.R., Wielinga, B., Wielemaker, J. and Fensel, D., Towards Brokering Problem-
Solving Knowledge at the Internet. in Eleventh European Knowledge Acquisition Workshop
(EKAW-99), (Dagstuhl Castle, Germany, 1999).

35. Berendt, B., Hotho, A. and Stumme, G., Towards semantic web mining. in Proceedings of the
First International Semantic Web Conference, (Sardinia, Italy, 2002), 264-278.

36. Network Working Group: Request for Comment 2396. Uniform Resource Identifiers (URI):
Generic Syntax. Available at: http://www.ietf.org/rfc/rfc2396.txt. 1998

37. Berners-Lee, T., Hendler, J. and Lassila, O. The Semantic Web. Scientific American, 2001.

38. Bernstein, M. The bookmark and the compass: orientation tools for hypertext users. ACM
SIGOIS Bulletin, 9, 4 34-45.

39. Bernstein, M., Collages, Composites, Construction. in Proceedings of the Fourteenth ACM
Conference on Hypertext and Hypermedia, (Nottingham, UK, 2003).

40. Bertino, E., Catania, B. and Zarri, G.P. Intelligent Database Systems. Addison-Wesley,
Edinburgh, England, 2001.

 177

41. Bignell, Elliott. HeadCASE: Mind Mapping for Windows. Available at: www.bignell.de.
2005

42. Bitsmith Software. Personal Knowbase. Available at:
http://www.bitsmithsoft.com/product.htm. 2005

43. Blandford, A.E. and Green, T.R.G. Group and individual time management tools: what you
get is not what you need. Personal and Ubiquitous Computing, 5, 4.(December 2001), 213-
230.

44. World Wide Web Consortium. XQuery 1.0: An XML Query Language. Available at:
http://www.w3.org/TR/xquery/. 2003

45. Axon Research. Axon Idea Processor. Available at: web.singnet.com.sg/~axon2000. 2005

46. Boley, D., Gini, M., Gross, R., Han, E.-H., Hastings, K., Karypis, G., Kumar, V., Mobasher,
B. and Moore, J. Document categorization and query generation on the World Wide Web
using WebACE. AI Review, 13, 5-6 365-391.

47. World Wide Web Consortium. Web Services Architecture. Available at:
http://www.w3c.org/TR/ws-arch/. 2004

48. The Bosley Group. MindMapper Professional v4.2. Available at: www.mindmapperusa.com.
2005

49. Bower, G.H. and Clark, M.C. Narrative stories as mediators for serial learning. Psychonomic
Science, 14 181-182.

50. World Wide Web Consortium. Extensible Markup Language (XML) 1.0 (Second Edition).
Available at: http://www.w3.org/TR/2000/REC-xml-20001006.html. 2000

51. World Wide Web Consortium. Resource Description Framework (RDF) Schema
Specification 1.0. Available at: http://www.w3.org/TR/2000/CR-rdf-schema-20000327/. 2000

52. Broekstra, J., Kampman, A. and van Harmelen, F., Sesame: A generic architecture for storing
and querying RDF and RDF schema. in First International Semantic Web Conference,
(Sardinia Italy, 2002), Springer-Verlag Heidelberg, 54-68.

53. Bruce, H., Jones, W.P. and Dumais, S.T. Information behaviour that keeps found things
found. Information Research, 10, 1.

54. Buchanan, G., Blandford, A.E., Thimbleby, H. and Jones, M., Integrating information seeking
and structuring: exploring the role of spatial hypertext in a digital library. in Proceedings of
the Fifteenth ACM Conference on Hypertext and Hypermedia, (Santa Cruz, California, 2004),
225-234.

55. Buckingham Shum, S., Motta, E. and Domingue, J., Representing scholarly claims in internet
digital libraries: a knowledge modelling approach. in Proceedings of ECDL'99: Third
European Conference on Research and Advanced Technology for Digital libraries, (Paris,
France, 1999).

56. Burger, A.M., Meyer, B.D., Jung, C.P. and Long, K.B., The virtual notebook system. in
Proceedings of the Third Annual ACM Conference on Hypertext, (San Antonio, Texas, 1991),
395-401.

57. Bush, V. As we may think. The Atlantic Monthly, 1945, 101-108.

58. Buzan, T. and Buzan, B. The Mind Map Book: How to Use Radiant Thinking to Maximize
Your Brain's Untapped Potential. Plume Books, 1996.

59. Canas, A.J., Carvalho, M., Arguedas, M., Leake, D.B., Maguitman, A. and Reichherzer, T.,
Mining the Web to suggest concepts during concept map construction. in Proceedings of the
1st International Conference on Concept Mapping, (Pamplona, Spain, 2004).

 178

60. Canas, A.J., Hill, G., Carff, R., Suri, N., Lott, J., Gomez, G., Eskridge, T.C., Arroyo, M. and
Carvajal, R., CmapTools: a knowledge modeling and sharing environment. in Proceedings of
the First International Conference on Concept Mapping, (Pamplona, Spain, 2005), 125-133.

61. Card, S.K., Robertson, G.G. and York, W., The WebBook and the WebForager: an
information workspace for the World Wide Web. in Proceedings of the 1996 CHI Conference
on Human Factors in Computing Systems, (1996).

62. Carenini, G., An analysis of the influence of need for cognition on dynamic queries usage. in
Proceedings of the Conference on Human Factors in Computing Systems, (Seattle,
Washington, 2001).

63. Carlson, D.A. and Ram, S. HyperIntelligence: the next frontier. Communications of the ACM,
33, 3 311-321.

64. Chakrabarti, S. and Batterywala, Y., Mining themes from bookmarks. in Proceedings of the
Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
(Boston, Massachusetts, 2000).

65. Chapura, Inc. KeySuite v3.3.2. Available at: http://www.chapura.com/keysuite.php. 2005

66. Chawathe, S., Garcia-Molina, H., Hammer, J., Ireland, K., Papakonstantinou, Y., Ullman, J.
and Widom, J., The TSIMMIS Project: Integration of Heterogeneous Information Sources. in
16th Meeting of the Information Processing Society of Japan, (Tokyo, Japan, 1994), 7-18.

67. Chen, Q., Wu, X. and Zhu, X., OIDM: Online interactive data mining. in Proceedings of the
17th International Conference on Industrial & Engineering Applications of Artificial
Intelligence & Expert Systems, (Ottowa, Canada, 2004).

68. Chronos. StickyBrain 3. Available at: www.chronosnet.com. 2005

69. Texas Tech University. A Conceptual Model of an Adaptive Decision Support System
(ADSS). Available at: http://hsb.baylor.edu/ramsower/ais.ac.96/papers/chuang.htm. 1996

70. Circus Ponies. NoteBook 2.0. Available at: www.circusponies.com. 2005

71. Claro Software. MindFull V2. Available at: http://clarosoftware.com. 2005

72. CoCo Systems Ltd. VisiMap Professional 4.0. Available at: www.visimap.com. 2005

73. Cognitive-Tools. Easy-Mapping-Tool. Available at: www.cognitive-tools.com. 2005

74. Cohn, D. Learning the structure of unstructured document bases. Microsoft Research, Seattle,
Washington, 2001.

75. Collins, A.M. and Loftus, E.F. A spreading-activation theory of semantic processing.
Psychological Review, 82 407-428.

76. Collins, A.M. and Quillian, M.R. Retrieval time from semantic memory. Journal of Verbal
Learning and Verbal Memory, 8 240-247.

77. The Compendium Institute. Compendium Version 1.3.04. Available at:
www.compendiuminstitute.org. 2005

78. Conklin, J. Hypertext: an introduction and survey. Computer, 20, 9.(Sept 1987), 17-41.

79. Conklin, J. and Begeman, M.L., gIBIS: a hypertext tool for exploratory policy discussion. in
Proceedings of the 1988 ACM Conference on Computer-supported Cooperative Work,
(Portland, Oregon, 1988), 140-152.

80. Conklin, J., Selvin, A.M., Shum, S.B. and Sierhuis, M., Facilitated hypertext for collective
sensemaking: 15 years on from gIBIS. in Proceedings of the Twelfth ACM Conference on
Hypertext and Hypermedia, (2001).

 179

81. Conway, M.A., Kahney, H., Bruce, K. and Duce, H. Imaging objects, routines, and locations.
in Denis, M. ed. Mental Images in Human Cognition, Elsevier Science Publishing Company,
Inc., New York, 1991, 171-182.

82. Cooley, R., Mobasher, B. and Srivastava, J., Web mining: Information and pattern discovery
on the World Wide Web. in Proceedings of the 9th IEEE International Conference on Tools
with Artificial Intelligence, (1997).

83. Cousins, S.B., Paepcke, A., Winograd, T., Bier, E.A. and Pier, K., The digital library
integrated task environment (DLITE). in Proceedings of the Second ACM International
Conference on Digital Libraries, (Philadelphia, Pennsylvania, 1997), 142-151.

84. Craven, M., Freitag, D., McCallum, A., Mitchell, T., Nigam, K. and Quek, C.Y., Learning to
extract symbolic knowledge from the World Wide Web. in Proceedings of the 15th National
Conference on Artificial Intelligence, (Madison, Wisconsin, 1998), 509-516.

85. Daconta, M.C., Orbrst, L.J. and Smith, K.T. The Semantic Web: A Guide to the Future of
XML, Web Services, and Knowledge Management. John Wiley & Sons, 2003.

86. Davies, J., Duke, A. and Stonkus, A., OntoShare: Using ontologies for knowledge sharing. in
WWW2002 Semantic Web workshop, Eleventh International World Wide Web Conference,
(Honolulu, Hawaii, 2002).

87. Davies, J., Fensel, D. and van Harmelen, F. (eds.). Towards the Semantic Web: Ontology-
Driven Knowledge Management. John Wiley & Sons, Ltd., 2003.

88. Davies, J., Krohn, U. and Weeks, R., QuizRDF: search technology for the semantic web. in
WWW2002 workshop on real world RDF & Semantic Web Applications, 11th International
WWW Conference, (Hawaii, USA, 2002).

89. Davies, S., Leveraging metadata inductively and subjectively. in Proceedings of the Fourth
International Conference on Dublin Core and Metadata Applications, (Shanghai, China,
2004), 163-167.

90. Davies, S. and King, R., Crossing the objective-subjective divide in information space
organization. in Proceedings of the Eighth Joint Conference on Information Sciences, (Salt
Lake City, Utah, 2005).

91. Davies, S., Velez-Morales, J. and King, R., Building the Memex sixty years later: trends and
directions in personal knowledge bases. University of Colorado Technical Report CU-CS-
997-05. Available at: http://www.cs.colorado.edu/department/publications/reports/docs/CU-
CS-997-05.pdf. 2005

92. Davis, H., Hall, W., Heath, I., Hill, G. and Wilkins, R., MICROCOSM: an open hypermedia
environment for information integration. in Proceedings of the INTERCHI Conference on
Human Factors in Computing Systems, (1993), ACM Press.

93. Davis, R.C., Brotherton, J.A., Landay, J.A., Price, M.N. and Schilit, B.N., NotePals:
lightweight note taking by the group, for the group. Available at. 1998

94. Dede, C.J. and Jayaram, G., Designing a training tool for imaging mental models. Available
at. 1990

95. Deerwester, S., Dumais, S.T., Furnas, G.W., Landauer, T. and Harshman, R. Indexing by
latent semantic analysis. Journal of the American Society for Information Science, 41, 6 391-
407.

96. Delisle, N. and Schwartz, M., Neptune: a hypertext system for CAD applications. in
Proceedings of the 1986 ACM SIGMOD International Conference on Management of Data,
(Washington, D.C., 1986), 132-143.

97. DEVONtechnologies. DEVONthink Personal Edition. Available at: http://www.devon-
technologies.com/. 2005

 180

98. Di Giacomo, M., Mahoney, D., Bollen, J., Monroy-Hernandez, A. and Meraz, C.M.R.
MyLibrary, a personalization service for digital library environments.

99. Diaz, G. Decision Explorer. Social Science Computer Review, 18, 3 344-350.

100. diSessa, A.A. and Abelson, H. Boxer: a reconstructible computational medium.
Communications of the ACM, 29, 9 859-868.

101. Dourish, P., Edwards, W.K., LaMarca, A. and Salisbury, M. Presto: an experimental
architecture for fluid interactive document spaces. ACM Transactions on Computer-Human
Interaction, 6, 2 133-161.

102. The Dublin Core Metadata Initiative. Available at: www.dublincore.org. 2005

103. Dumais, S.T., Cutrell, E., Cadiz, J., Jancke, G., Sarin, R. and Robbins, D.C., Stuff I've Seen: a
system for personal information retrieval and re-use. in Proceedings of the 26th annual
international ACM SIGIR conference on Research and development in information retrieval,
(Toronto, Canada, 2003), 72-79.

104. Dvorak, Martin. MindRaider. Available at: mindraider.sourceforge.net. 2005

105. Electric Pocket, Inc. BugMe! Notepad. Available at: http://www.electricpocket.com/bugme-
palm/. 2005

106. Enfish Software, Campbell, California. Enfish Find. Available at:
http://www.enfish.com/Products_Find.asp. 2005

107. Engelbart, D.C. A conceptual framework for the augmentation of man's intellect. in
Howerton, P.W. ed. Vistas in Information Handling, Spartan Books, Washington, D.C., 1963,
1-29.

108. Engels, R.H.P. and Lech, T.C. Generating ontologies for the Semantic Web: OntoBuilder. in
van Harmelen, F. ed. Towards the Semantic Web: Ontology-Driven Knowledge Management,
John Wiley & Sons, Ltd., 2003.

109. Erdmann, M. and Studer, R. How to structure and access XML documents with ontologies.
Data Knowledge Engineering, 36 317-335.

110. Etzel, B. and Thomas, P.J. Personal Information Management: Tools and Techniques for
Achieving Professional Effectiveness. New York University Press, New York, 1996.

111. EvolutionCode Pty Ltd. RecallPlus V3. Available at: www.recallplus.com. 2005

112. Fails, J.A. and Olsen, D.R., Interactive machine learning. in Proceedings of the Eighth
International Conference on Intelligent User Interfaces, (Miami, Florida, 2003), 39-45.

113. Farquhar, A., Fikes, R. and Rice, J. The Ontolingua Server: a tool for collaborative ontology
construction. International Journal of Human-Computer Studies, 46, 6 707-727.

114. Feiner, S., Seeing the forest for the trees: hierarchical display of hypertext structure. in
Proceedings of the Conference on Office Information Systems, (Palo Alto, California, 1988),
ACM Press, 205-212.

115. Fensel, D., Benjamins, V.R., Motta, E. and Wielinga, B., UPML: A framework for knowledge
system reuse. in Proceedings of the 16th International Joint Conference on AI, (Sweden,
1999), 16-23.

116. Vrije Universiteit Amsterdam. The Web Service Modeling Framework WSMF Extended
abstract. Available at: http://informatik.uibk.ac.at/~c70385/wese/wsmf.bis2002.pdf. 2002

117. Fensel, D., Hendler, J., Lieberman, H. and Wahlster, W. (eds.). Spinning the Semantic Web.
The MIT Press, Cambridge, Massachusetts, 2003.

 181

118. Fensel, D., Horrocks, I., van Harmelen, F., McGuinness, D. and Patel-Schneider, P.F. OIL:
Ontology infrastructure to enable the Semantic Web. IEEE Intelligent Systems, 16,
2.(March/April 2001), 38-45.

119. Fensel, D., Staab, S., Studer, R., van Harmelen, F. and Davies, J. A future perspective:
Exploiting peer-to-peer and the Semantic Web for knowledge management. in van Harmelen,
F. ed. Towards the Semantic Web: Ontology-Driven Knowledge Management, John Wiley &
Sons, Ltd., 2003.

120. World Wide Web Consortium. Scalable Vector Graphics (SVG) 1.1 Specification. Available
at: http://www.w3.org/TR/SVG11/. 2003

121. Fertig, S., Freeman, E. and Gelernter, D., Lifestreams: An alternative to the desktop
metaphor. in Proceedings of the Conference on Human Factors in Computing Systems
(CHI96), (Vancouver, British Columbia, 1996), 410-411.

122. Fluit, C., ter Horst, H., van der Meer, J., Sabou, M. and Mika, P. Spectacle. in van Harmelen,
F. ed. Towards the Semantic Web: Ontology-Driven Knowledge Management, John Wiley &
Sons, Ltd., 2003.

123. The Friend of a Friend (FOAF) Project. Available at: www.foaf-project.org. 2005

124. FranklinCovey. PlanPlus 4.0 for Windows XP. Available at: www.franklincovey.com. 2005

125. Freebyte. TreePad Business Edition 7.1.7. Available at: www.treepad.com. 2005

126. Freeman, E. and Gelernter, D. Lifestreams: a storage model for personal data. ACM SIGMOD
Record, 25, 1.(March 1996), 80-86.

127. FreeMind. Available at: http://freemind.sourceforge.net. 2005

128. Frye, C., Plusch, M. and Lieberman, H. Static and Dynamic Semantics of the Web. in
Wahlster, W. ed. Spinning the Semantic Web, The MIT Press, Cambridge, Massachusetts,
2003.

129. Furnas, G.W. and Rauch, S.J., Considerations for information environments and the NaviQue
workspace. in Proceedings of the ACM Conference on Digital Libraries, (1998), ACM, 79-
88.

130. Gael Ltd. MindGenius Home v2.22. Available at: www.mindgenius.com. 2005

131. Gaines, B.R. and Shaw, M.L.G. Concept maps as hypermedia components. International
Journal of Human Computer Studies, 43, 3 323-361.

132. Gaines, B.R. and Shaw, M.L.G., WebMap: concept mapping on the web. in Proceedings of
the Fourth International WWW Conference, (1995).

133. Garrett, L.N., Smith, K.E. and Meyrowitz, N., Intermedia: Issues, strategies, and tactics in the
design of a hypermedia document system. in Proceedings of the Conference on Computer-
Supported Cooperative Work, (1986), 163-174.

134. Gemmell, J., Bell, G., Lueder, R., Drucker, S. and Wong, C., MyLifebits: Fulfilling the
Memex vision. in Proceedings of the 2002 ACM Workshops on Multimedia, (2002), 235-238.

135. Gentner, D. and Stevens, A.L. (eds.). Mental Models. Lawrence Erlbaum Associates, Inc.,
New Jersey, 1983.

136. Getoor, L., Friedman, N., Koller, D. and Pfeffer, A. Learning probabilistic relational models.
in Lavrac, N. ed. Relational Data Mining, Springer-Verlag, 2001.

137. Ghani, R., Jones, R., Mladenic, D., Nigam, K. and Slattery, S., Data mining on symbolic
knowledge extracted from the Web. in Proceedings of the Sixth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, (Boston, Massachusetts, 2000).

 182

138. Gil, Y. and Ratnakar, V., TRELLIS: An interactive tool for capturing information analysis
and decision making. in Proceedings of Ontologies and the Semantic Web: 13th International
Conference, (Siguenza, Spain, 2002).

139. Godwin-Jones, B. Blogs and wikis: environments for on-line collaboration. Language
Learning and Technology, 7, 2.(May 2003), 12-16.

140. The Mozilla Foundation. XML User Interface Language (XUL) version 1.0. Available at:
http://www.mozilla.org/projects/xul/xul.html. 2001

141. Goodman, D. The Complete Hypercard Handbook. Bantam Books, New York, 1988.

142. Grosky, W.I., Sreenath, D.V. and Fotouhi, F. Emergent semantics and the multimedia
semantic web. SIGMOD Record, 31, 4 54-58.

143. Gruber, T., Ontolingua: A mechanism to support portable ontologies. Available at. 1992

144. World Wide Web Consortium. SOAP Version 1.2. Available at:
http://www.w3.org/TR/2003/REC-soap12-part1-20030624/. 2003

145. Halasz, F.G. Reflections on NoteCards: seven issues for the next generation of hypermedia
systems. Communications of the ACM, 31, 7 836-852.

146. Halasz, F.G., Moran, T.P. and Trigg, R.H. NoteCards in a Nutshell. ACM SIGCHI Bulletin,
17 45-52.

147. Halasz, F.G. and Schwartz, M. The Dexter hypertext reference model. Communications of the
ACM, 37, 2.(February 1994), 30-39.

148. Harman, G. Thought. Princeton University Press, Princeton, New Jersey, 1973.

149. Hastie, T., Tibshirani, R. and Friedman, J. The Elements of Statistical Learning: Data Mining,
Inference, and Prediction. Springer-Verlag, New York, 2001.

150. Hatzopoulos, M., Gouscos, D., Spiliopoulou, M., Vassilakis, C. and Vazirgiannis, M., An
object-oriented data model for hypermedia systems. in Proceedings of the DELTA Conference
in Research and Development, (The Hague, 1990), 483-493.

151. Hayes, G., Pierce, J.S. and Abowd, G.D., Practices for capturing short important thoughts. in
CHI '03 Extended Abstracts on Human Factors in Computing Systems, (Ft. Lauderdale,
Florida, 2003), 904-905.

152. Hearst, M.A., Levy, A.Y., Knoblock, C.A., Minton, S. and Cohen, W. Information
integration. IEEE Intelligent Systems, 13, 5.(Sept./Oct. 1998), 12-24.

153. Heflin, J. and Hendler, J., Searching the Web with SHOE. in Artificial Intelligence for Web
Search. Papers from the AAAI Workshop, (Menlo Park, CA, 2000), AAAI/MIT Press, 35-40.

154. Hendler, J. and McGuinness, D. The DARPA Agent Markup Language (DAML). IEEE
Intelligent Systems, 15, 6.(November/December 2000), 67-73.

155. Hendry, D.G. and Harper, D.J. An informal information-seeking environment. Journal of the
American Society for Information Science, 48, 11 1036-1048.

156. Hicks, D.L. and Tochtermann, K., Personalizing information spaces: a metadata-based
approach. in Proceedings of the International Conference on Dublin Core and Metadata
Applications, (Tokyo, Japan, 2001), 213-220.

157. Hog Bay Software. Hog Bay Notebook v3.5. Available at: www.hogbaysoftware.com. 2005

158. Horrocks, I. and Patel-Schneider, P.F. Optimizing Description Logic Subsumption. Journal of
Logic and Computation, 9, 3 267-293.

159. Huynh, D., Karger, D. and Quan, D., Haystack: a platform for creating, organizing, and
visualizing information using RDF. in Proceedings of the 18th National Conference on

 183

Artificial Intelligence: Workshop on Ontologies and the Semantic Web, (Alberta, Canada,
2002).

160. Hypersoft-net. Knowledge Manager v8.4. Available at: www.knowledgemanager.us. 2005

161. IBM Lotus Software. IBM Lotus Notes 6.5. Available at:
http://www.lotus.com/products/product4.nsf/wdocs/noteshomepage. 2005

162. Inspiration Software, Inc. Inspiration 7.6. Available at: www.inspiration.com. 2005

163. Intelligents, LLC. NoteWorthy. Available at: http://www.intelli-gents.com/noteworthy.htm.
2001

164. Iosif, V., Mika, P., Larsson, R. and Akkermans, H. Field experimenting with Semantic Web
tools in a virtual organization. in van Harmelen, F. ed. Towards the Semantic Web: Ontology-
Driven Knowledge Management, John Wiley & Sons, Ltd., 2003.

165. Jain, R., Emergent semantics and experiential computing. Available at:
http://lsdis.cs.uga.edu/SemNSF/Jain-Position.doc. 2000

166. James, W. The Principles of Psychology. Harvard University Press, Cambridge, 1890.

167. Jasper, R. and Uschold, M. Enabling Task-Centered Knowledge Support through Semantic
Markup. in Wahlster, W. ed. Spinning the Semantic Web, The MIT Press, Cambridge,
Massachusetts, 2003.

168. First Monday. Finders, keepers? The present and future perfect in support of personal
information management. Available at:
http://www.firstmonday.dk/issues/issue9_3/jones/index.html. 2004

169. Jones, W.P., The Memory Extender personal filing system. in Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, (Boston, Massachusetts, 1986), 298-
305.

170. Jones, W.P. and Dumais, S.T. The Spatial Metaphor for User Interfaces: Experimental Tests
of Reference by Location versus Name. ACM Transactions on Office Information Systems, 4,
1 42-63.

171. Kaplan, S.J., Kapor, M.D., Belove, E.J., Landsman, R.A. and Drake, T.R. Agenda: a personal
information manager. Communications of the ACM, 33, 7 105-116.

172. Karvounarakis, G., Christophides, V. and Plexousakis, D., Querying Semistructured (Meta)
Data and Schemas on the Web: The case of RDF & RDFS. Available at:
http://www.ics.forth.gr/isl/publications/paperlink/querying-semistructured-metadata-and.pdf.
2000

173. Kifer, M., Lausen, G. and Wu, J. Logical foundations of object-oriented and frame-based
languages. Journal of the ACM, 42, 4.(July 1995), 741-843.

174. Kintsch, W. Learning, Memory, and Conceptual Processes. John Wiley & Sons Inc., 1970.

175. Kiryakov, A. and Ognyanov, D., Tracking changes in RDF(S) repositories. in Proceedings of
the 13th International Conference on Knowledge Engineering and Knowledge Management,
(Siguenza, Spain, 2002).

176. Klas, W., Aberer, K. and Neuhold, E. Object-oriented modeling for hypermedia systems using
the VODAK modeling language (VML). in Sellis, T. ed. Advances in Object-Oriented
Database Systems, Springer-Verlag, Berlin, 1993.

177. Kosslyn, S. Ghosts in the Mind's Machine. W.W.Norton & Co., New York, 1983.

178. Kovalainen, M., Robinson, M. and Auramaki, E., Diaries at work. in Proceedings of the 1998
ACM Conference on Computer Supported Collaborative Work, (Seattle, Washington, 1998),
49-58.

 184

179. Koy, A.K., Computer Aided Thinking. in Proceedings of the 7th International Conference on
Thinking, (Singapore, 1997).

180. Kushmerick, N. Wrapper induction: Efficiency and expressiveness. Artificial Intelligence,
118, 1-2 15-68.

181. Landauer, T. and Dumais, S.T. A solution to Plato's problem: The Latent Semantic Analysis
theory of acquisition, induction, and representation of knowledge. Psychological Review, 104,
2 211-240.

182. World Wide Web Consortium. Resource Description Framework (RDF) Model and Syntax
Specification. Available at: http://www.w3.org/TR/1999/REC-rdf-syntax-19990222/. 1999

183. Le Grande, B., Soto, M. and Dodds, D., XML Topic maps and semantic web mining. in XML
Conference and Exposition 2001, (Orlando, Florida, 2001), IdeAlliance.

184. Leger, A., Michel, G., Barrett, P., Gitton, S., Gomez-Perez, A., Lehtola, A., Mokkila, K.,
Rodrigez, S., Sallantin, J., Varvarigou, T. and Vinesse, J., Ontology domain modeling support
for multilingual services in e-commerce: MKBEEM. in Fourteenth European Conference on
Artificial Intelligence (ECAI-'00): Workshop on Applications of Ontologies and Problem-
Solving Methods, (Berlin, Germany, 2000).

185. Lenat, D.B. and Guha, R.V. Building Large Knowledge-Based Systems: Representation and
Inference in the Cyc Project. Addison-Wesley, Boston, 1990.

186. Levine, J., Tate, A. and Dalton, J. O-P3: Supporting the planning process using open planning
process panels. IEEE Intelligent Systems, 15, 5.(Sept/Oct 2000), 56-62.

187. Levy, A.Y., Rajaraman, A. and Ordille, J.J., Querying heterogeneous information sources
using source descriptions. in Proceedings of 22th International Conference on Very Large
Databases, (Mumbai, India, 1996), Morgan Kaufmann, 251-262.

188. Micro Logic. Info Select 8. Available at: http://www.miclog.com/is/index.shtml. 2005

189. Lewis, P.M., Bernstein, A. and Kifer, M. Databases and Transaction Processing: An
Application-oriented Approach. Addison-Wesley, 2002.

190. Lieberman, H. Personal assistants for the web: an MIT perspective. in Klusch, M. ed.
Intelligent Information Agents: Agent-Based Information Discovery and Management on the
Internet, Springer-Verlag, Berlin, 1999, 279-292.

191. Lieberman, H. and Selker, T. Out of context: computer systems that adapt to, and learn from
context. IBM Systems Journal, 39, 3 617-631.

192. IEEE Distributed Systems Online. Amazon.com recommendations: item-to-item collaborative
filtering. Available at: http://dsonline.computer.org/0301/d/w1lind.htm. 2003

193. Liu, B., Chin, C.W. and Ng, H.T., Mining topic-specific concepts and definitions on the web.
in Proceedings of the 12th International World Wide Web Conference, (Budapest, Hungary,
2003), ACM, 251-260.

194. Logie, R.H. and Marchetti, C. Visio-spatial working memory: visual, spatial, or central
executive? in Denis, M. ed. Mental Images in Human Cognition, Elsevier Science Publishing
Company, Inc., New York, 1991, 105-115.

195. Lorayne, H. and Lucas, J. The Memory Book. Stein and Day, New York, 1974.

196. SHOE 1.01 (proposed specification). Available at:
http://www.cs.umd.edu/projects/plus/SHOE/spec.html. 2000

197. University of California at Berkeley School of Information Management and Systems. How
Much Information. Available at: http://www.sims.berkeley.edu/research/projects/how-much-
info-2003/. 2003

198. MacGregor, R.M. Inside the LOOM Description Classifier. SIGART Bulletin, 2, 3 88-92.

 185

199. Retrospective on Loom. Available at:
http://www.isi.edu/isd/LOOM/papers/macgregor/Loom_Retrospective.html. 1999

200. MacNamara, J. Names for Things: A Study of Human Learning. The MIT Press, Cambridge,
1982.

201. Maedche, A. and Staab, S., Discovering conceptual relations from text. in Proceedings of the
14th European Conference on Artificial Intelligence, (Berlin, 2000), IOS Press.

202. Maedche, A. and Staab, S., Measuring similarity between ontologies. in Proceedings of the
13th European Conference on Knowledge Engineering and Knowledge Management,
(Madrid, Spain, 2002).

203. Maedche, A. and Staab, S., Mining Ontologies from Text. in Knowledge Acquisition,
Modeling, and Management: Proceedings of the European Knowledge Acquisition
Conference, (Berlin, 2000), Springer-Verlag.

204. Maedche, A., Staab, S., Stojanovic, Studer, R. and Sure, Y., SEAL - A framework for
developing SEmantic portALs. in Proceedings of the 18th British National Conference on
Databases, (Oxford, UK, 2001), Springer-Verlag, 1-22.

205. Mantei, M.M. Disorientation behavior in person-computer interaction. Communications
Department, University of Southern California, 1982.

206. Marshall, C., The future of annotation in a digital (paper) world. Available at. 1998

207. Marshall, C. NoteCards in the age of the web: practice meets perfect. ACM Journal of
Computer Documentation, 25, 3.(August 2001), 96-103.

208. Marshall, C., Halasz, F.G., Rogers, R.A. and Janssen, W.C., Aquanet: a hypertext took to hold
your knowledge in place. in Proceedings of the Third Annual ACM Conference on Hypertext,
(San Antonio, Texas, 1991), 261-275.

209. Marshall, C. and Shipman, F. Spatial hypertext: designing for change. Communications of the
ACM, 38, 8 88-97.

210. Masuda, Y., Ishitobi, Y. and Ueda, M., Frame-axis model for automatic information
organizing and spatial navigation. in Proceedings of the 1994 ACM European Conference on
Hypermedia Technology, (Edinburgh, Scotland, 1994), 146-157.

211. Matheus, C.J., Piatetsky-Shapiro, G. and McNeill, D. Selecting and reporting what is
interesting. in Uthurusamy, R. ed. Advances in Knowledge Discovery and Data Mining,
AAAI Press/The MIT Press, Menlo Park, California, 1996, 495-516.

212. McGuinness, D., Fikes, R., Rice, J. and Wilder, S., An Environment for Merging and Testing
Large Ontologies. in Proceedings of the Seventh International Conference on Principles of
Knowledge Representation and Reasoning, (Breckenridge, Colorado, 2000), Morgan
Kaufmann, 483-493.

213. FindUR: Knowledge-enhanced online search. Available at:
http://www.research.att.com/~dlm/papers/findur-chi98.ps. 1998

214. Mena, E., Illarramendi, A., Kashyap, V. and Sheth, A., OBSERVER: An approach for query
processing in global information systems based on interoperation across pre-existing
ontologies. in Conference on Cooperative Information Systems, (Eliat, Israel, 2000).

215. Micro Logic. Info Select for Windows, Version 8. Available at: http://www.miclog.com. 2005

216. Microsoft Corporation. Microsoft Outlook 2003. Available at: www.microsoft.com/outlook.
2003

217. Microsoft Corporation. OneNote 2003. Available at:
http://www.microsoft.com/office/onenote/prodinfo/default.mspx. 2003

 186

218. Miller, G.A. The magical number seven, plus or minus two: some limits on our capacity for
processing information. Psychological Review, 63 81-97.

219. Mind Technologies. Visual Mind 7, Business Edition. Available at: www.visual-mind.com.
2005

220. Mindjet. MindManager X5 Pro. Available at: www.mindjet.com. 2005

221. MindManager(R) by MindJET LLC. Test version V5.2.344. Available at. 2004

222. Missiontrek. Cartagio Home. Available at: http://www.missiontrek.com/cartagio/chome.asp.
2005

223. Montes-y-Gomez, M., Gelbukh, A. and Lopez-Lopez, A., Comparison of Conceptual Graphs.
in Proceedings of the First Mexican International Conference on Artificial Intelligence,
(Acapulco, Mexico, 2000), Springer-Verlag, 548-556.

224. Flying Meat, Inc. VoodooPad v2.0.2. Available at: http://www.flyingmeat.com/voodoopad/.
2005

225. Musen, M.A., Fergerson, R.W., Grosso, W.E., Noy, N.F., Crubezy, M. and Gennari, J.H.,
Component-Based Support for Building Knowledge-Acquisition Systems. in Conference on
Intelligent Information Processing of the International Federation for Information Processing
World Computer Congress, (Beijing, 2000).

226. Nakakoji, K., Yamamoto, Y., Takada, S. and Reeves, B.N., Two-dimensional spatial
positioning as a means for reflection in design. in Proceedings of the Conference on
Designing Interactive Systems: Processes, Practices, Methods, and Techniques, (New York,
2000), 145-154.

227. Neches, R., Abhinkar, S., Hu, F., Eleish, R., Ko, I.-Y., Yao, K.-T., Zhu, Q. and Will, P.
Collaborative information space analysis tools. D-Lib Magazine, 1998.

228. Nelson, T.H. The heart of connection: hypermedia unified by transclusion. Communications
of the ACM, 38, 8 31-33.

229. Nelson, T.H. Literary machines : the report on, and of, Project Xanadu concerning word
processing, electronic publishing, hypertext, thinkertoys, tomorrow's intellectual revolution,
and certain other topics including knowledge, education and freedom, 1987.

230. Nelson, T.H. Xanalogical structure, needed now more than ever: parallel documents, deep
links to content, deep versioning, and deep re-use. ACM Computing Surveys, 31, 4.

231. NetManage, Inc. Ecco Pro. Available at: www.netmanage.com. 1997

232. Netscape Communications Corporation. The Open Directory Project. Available at: dmoz.org.
2004

233. Nosek, J.T. and Roth, I. A comparison of formal knowledge representation schemes as
communication tools: predicate logic vs. semantic network. International Journal of Human
Computer Studies, 33, 2 227-239.

234. Nosleep Software. Idea Pad 3.1. Available at: www.nosleep.net. 2005

235. Novak, J.D. The promise of new ideas and new technology for improved teaching and
learning. Cell Biology Education, 2 122-132.

236. Novak, J.D., The theory underlying concept maps and how to construct them. Available at:
Available at http://cmap.coginst.uwf.edu/info. 2003

237. NovaMind Software Pty Ltd. NovaMind v2.4.5. Available at: www.nova-mind.com. 2005

238. Novell, Inc. Novell Evolution 2. Available at:
http://www.novell.com/products/desktop/features/evolution.html. 2005

239. Nyce, J.M. and Kahn, P. From Memex to hypertext. Academic Press, Boston, 1991.

 187

240. Oberon, askSam Systems. Citation. Available at: http://www.citationonline.net/brochure.asp.
2005

241. Computer Systems Odessa. ConceptDraw MINDMAP v3.5. Available at: conceptdraw.com.
2005

242. O'Hara, K. and Sellen, A., A comparison of reading paper and on-line documents. in
Proceedings of CHI-97, Special Interest Group on Computer and Human Interaction, (1997),
335-342.

243. Omni Development, Inc. OmniGraffle 3. Available at:
http://www.omnigroup.com/applications/omnigraffle/. 2005

244. Omni Development, Inc. OmniOutliner 3. Available at:
http://www.omnigroup.com/applications/omnioutliner/. 2005

245. Oostendorp, K.A., Punch, W.F. and Wiggins, R.W., A Tool for individualizing the web. in
Proceedings of the 2nd International Conference on the World-Wide Web, (Chicago, IL,
1994), 49-57.

246. Open Source Applications Foundation (OSAF). Chandler. Available at:
www.osafoundation.org. 2005

247. Ostertag, E., Hendler, J., Ruben, P.-D. and Braun, C. Computing similarity in a reuse library
system: an AI-based approach. ACM Transactions on Software Engineering and
Methodology, 1, 3.(July 1992), 205-228.

248. Owsinski, J. Software review: "Decision Explorer" and "Frontier Analyst" from Banxia
Software. Control and Cybernetics, 30, 4 479-485.

249. Palen, L., Social, individual and technological issues for groupware calendar systems. in
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems,
(Pittsburgh, Pennsylvania, 1999), 17-24.

250. KRSS Group of the ARPA Knowledge Sharing Effort. Description-Logic Knowledge
Representation System Specification. Available at: http://www-db.research.bell-
labs.com/user/pfps/papers/krss-spec.ps. 1993

251. Pearl, A., Sun's Link Service: a protocol for open linking. in Proceedings of the Second
Annual ACM Conference on Hypertext, (Pittsburgh, Pennsylvania, 1989), 137-146.

252. Perlin, K. and Fox, D., Pad: an alternative approach to the computer interface. in Proceedings
of the 20th annual conference on computer graphics and interactive techniques, (1993), 57-
64.

253. Peters, R., Exploring the design space for personal information management tools. in
Proceedings of the 18th Conference on Human Factors in Computing Systems, (Seattle,
Washington, 2001), 413-414.

254. Pirolli, P. and Card, S.K. Information foraging. Psychological Review, 106, 4.(1999), 643-
675.

255. Pirolli, P. and Card, S.K., Information foraging models of browsers for very large document
spaces. in Proceedings of AVI'98, the Working Conference on Advanced Visual Interfaces,
(L'Aquila, Italy, 1998), ACM Press, 83-93.

256. Pirolli, P., Pitkow, J. and Rao, R., Silk from a sow's ear: extracting usable structures from the
Web. in Proceedings of the ACM SIGCHI Conference on Human Factors in Computing
Systems, (Vancouver, British Columbia, 1996), 118-125.

257. Pompi, K.F. and Lachman, R. Surrogate processes in the short-term retention of connected
discourse. Journal of Experimental Psychology, 75 143-150.

 188

258. Popsecul, A., Ungar, L.H., Pennock, D.M. and Lawrence, S., Probabilistic models for unified
collaborative and content-based recommendation in sparse-data environments. in Proceedings
of the Seventeenth Conference on Uncertainty in Artificial Intelligence, (San Francisco,
2001), Morgan Kaufmann.

259. Posner, M.I. Abstraction and the process of recognition. in Bower, G.H. ed. The Psychology
of Learning and Motivation, III, Academic Press, New York, 1969.

260. Powers, S. Practical RDF. O'Reilly & Associates, Inc., Sebastopol, California, 2003.

261. Quan, D., Bakshi, K., Huynh, D. and Karger, D., User interfaces for supporting multiple
categorization. in Proceedings of INTERACT 2003, (2003).

262. Quillian, M.R. Semantic memory. in Semantic Information Processing, The MIT Press,
Cambridge, Massachusetts, 1968.

263. Rada, R., Mili, H., Bicknell, E. and Blettner, M. Development and application of a metric on
semantic nets. IEEE Transactions on Systems, Man, and Cybernetics, 19, 1.(Jan/Feb 1989),
17-30.

264. Ralston Technology Group. Clarity 2.0. Available at: www.ralstontech.com. 2005

265. Raymond, D.R., Canas, A.J., Tompa, F.W. and Safayeni, F. Measuring the Effectiveness of
Personal Database Structures. International Journal of Human Computer Studies, 31.(Sept.
1989), 237-256.

266. Renda, M.E. and Straccia, U. A personalized collaborative digital library environment: a
model and an application. Information Processing and Management: an International
Journal, 41, 1 5-21.

267. Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P. and Riedl, J., GroupLens: an open
architecture for collaborative filtering of netnews. in Proceedings of the 1994 ACM
conference on Computer supported cooperative work, (Chapel Hill, North Carolina, 1994),
175-186.

268. Reyes-Farfan, N. and Sanchez, J.A., Personal spaces in the context of OAI. in Proceedings of
the Third ACM/IEEE-CS Joint Conference on Digital Libraries, (2003), 182-183.

269. Robin, F. and Denis, M. Description of perceived or imagined spatial networks. in Denis, M.
ed. Mental Images in Human Cognition, Elsevier Science Publishing Company, Inc., New
York, 1991, 141-152.

270. Rocha, L.M. and Joslyn, C., Simulations of embodied evolving semiosis: emergent semantics
in artificial environments. in Proceedings of the 1998 Conference on VirtualWorlds and
Simulation, (1998), The Society for Computer Simulation International, 233-238.

271. Rowley, J. and Farrow, J. Organizing Knowledge: An Introduction to Managing Access to
Information, 3rd Edition. Gower Publishing Limited, Hampshire, England, 2000.

272. Russell, S.J. and Norvig, P. Artificial Intelligence: A Modern Approach. Prentice Hall, 2003.

273. Sagonas, K., Swift, T. and Warren, D.S., XSB as an efficient deductive database engine. in
Proceedings of the 1994 ACM SIGMOD International Conference on Very Large Databases,
(Athens, Greece, 1994), Morgan Kaufmann, 266-275.

274. Sahuguet, A. and Azavant, F. Building intelligent Web applications using lightweight
wrappers. Data Knowledge Engineering, 36, 3 283-316.

275. Santini, S., Gupta, A. and Jain, R. Emergent semantics through interaction in image databases.
IEEE Transactions on Knowledge and Data Engineering, 13, 3.(May/June 2001), 337-351.

276. Santini, S. and Jain, R. Similarity measures. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 21, 9.(Sept 1999), 871-883.

 189

277. Sayer, P. Understanding Hypertext: Concepts and Applications. Windcrest Books, Blue
Ridge Summit, Pennsylvania, 1991.

278. Schneiderman, B., User interface design for the Hyperties electronic encyclopedia. in
Proceedings of the ACM Conference on Hypertext, (Chapel Hill, North Carolina, 1987), 189-
194.

279. Schohn, G. and Cohn, D., Less is more: active learning with support vector machines. in
Proceedings of the 17th International Conference on Machine Learning, (San Francisco,
California, 2000), Morgan Kaufmann, 839-846.

280. Schraefel, M.C., Zhu, Y., Modjeska, D., Widgdor, D. and Zhao, S., Hunter Gatherer:
interaction support for the creation and management of within-Web-page collections. in
Proceedings of the Eleventh International Conference on the World Wide Web, (2002), 172-
181.

281. Schultz, J., Cantrill, S. and Morgan, K., An initial operational problem oriented medical
record system. in AFIPS Proceedings, (1971), 239-264.

282. Selvin, A.M. Supporting collaborative analysis and design with hypertext functionality.
Journal of Digital Information, 1, 4.

283. Sereno, B., Shum, S.B. and Motta, E., ClaimSpotter: an environment to support sensemaking
with knowledge triples. in Proceedings of the International Conference on Intelligent User
Interfaces, (San Diego, California, 2005).

284. Seyer, P. Understanding Hypertext: Concepts and Applications. Windcrest Books, Blue
Ridge Summit, Pennsylvania, 1991.

285. Shahabi, C. and Chen, Y.-S., Web information personalization: challenges and approaches. in
Proceedings of the Third International Workshop on Databases in Networked Information
Systems, (Aizu-Wakamatsu, Japan, 2003).

286. Shardanand, U. and Maes, P., Social information filtering: algorithms for automating "word
of mouth". in Proceedings of the CHI-95 Conference, (Denver, Colorado, 1995), ACM Press.

287. Shepard, R. and Cooper, L. Mental Images and Their Transformations. The MIT Press,
Cambridge, 1982.

288. Sheth, A., Data Semantics: what, where and how? in Database applications semantics:
proceedings of the 6th IFIP Working Conference on Database Applications Semantics,
(Atlanta, Georgia, 1995), Chapman and Hall, 601-610.

289. Shipman, F., Hsieh, H. and Airhart, R., Analytic workspaces: supporting the emergence of
interpretation in the Visual Knowledge Builder. Available at: Available at
http://www.csdl.tamu.edu/~shipman/vkb/vkb.html. 2000

290. shirky.com. The Semantic Web, syllogism, and worldview. Available at:
http://www.shirky.com/writings/semantic_syllogism.html. 2003

291. Shneiderman, B. Creativity support tools. Communications of the ACM, 45, 10 116-120.

292. Shneiderman, B. Dynamic queries for visual information seeking. IEEE Software, 11, 6 70-
77.

293. University of Maryland. Information visualization: dynamic queries, starfield displays, and
LifeLines. Available at: http://www.cs.umd.edu/hcil/members/bshneiderman/ivwp.html. 2000

294. Shortliffe, E.H., Perreault, L.E., Wiederhold, G. and Fagan, L.M. (eds.). Medical Informatics:
Computer Applications in Health Care and Biomedicine. Springer-Verlag, New York, 2001.

295. Sintek, M. and Decker, S., TRIPLE - A query, inference, and transformation language for the
semantic web. in Proceedings of the First International Semantic Web Conference, (Sardinia,
Italy, 2002), 364-378.

 190

296. SMART Technologies, Inc. SMART Ideas Concept-mapping Software. Available at:
www2.smarttech.com. 2005

297. Smith, J.B., Weiss, S.F. and Ferguson, G.J., A hypertext writing environment and its
cognitive basis. in Proceedings of the ACM Conference on Hypertext, (Chapel Hill, North
Carolina, 1987), 195-214.

298. Sowa, J.F. Conceptual Structures: Information Processing in Mind and Machine. Addison-
Wesley Publishing Company, 1984.

299. Srikant, R. and Agrawal, R. Mining generalized association rules. Future Generation
Computer Systems, 13, 2 161-180.

300. Staab, S., Angele, J., Decker, S., Erdmann, M., Hotho, A., Maedche, A., Schnurr, H.-P.,
Studer, R. and Sure, Y. Semantic community Web portals. Computer Networks, 33, 1-6.(June
2000), 473-491.

301. Staab, S. and Maedche, A. Knowledge Portals - Ontologies at work. AI Magazine, 2001.

302. Staab, S., Maedche, A. and Handschuh, S., An annotation framework for the semantic web. in
Proceedings of the First Workshop on Multimedia Annotation, (Tokyo, Japan, 2001).

303. Staab, S., Santini, S., Nack, F., Steels, L. and Maedche, A. Emergent Semantics. IEEE
Intelligent Systems, Trends and Controversies, 2002, 78-86.

304. Staab, S. and Schnurr, H.-P. Smart task support through proactive access to organizational
memory. Knowledge Based Systems, 13, 5 251-260.

305. The StayAtPlay Co. Idea Knot. Available at: www.stayatplay.com. 2005

306. Stoffel, K., Taylor, M. and Hendler, J., Efficient Management of Very Large Ontologies. in
Proceedings of the American Association for Artificial Intelligence Conference, (Providence,
Rhode Island, 1997), AAAI/MIT Press, 442-447.

307. Strehl, A., Ghosh, J. and Mooney, R., Impact of similarity measures on web-page clustering.
in Proceedings of the 17th National Conference on Artificial Intelligence: Workshop of
Artificial Intelligence for Web Search, (Austin, Texas, 2000), 58-64.

308. Takkinen, J. and Shahmehri, N. Are you busy, cool, or just curious? -- CAFE: A model with
three different states of mind for a user to manage information in electronic mail. Human IT,
2, 1.(March 1998).

309. Tate, A. Roots of SPAR - Shared Planning and Activity Representation. Knowledge
Engineering Review, 13, 1 121-128.

310. Thacker, S., Sheth, A. and Patel, S. Complex Relationships for the Semantic Web. in
Wahlster, W. ed. Spinning the Semantic Web, The MIT Press, Cambridge, Massachusetts,
2003.

311. TheBrain Technologies Corporation. PersonalBrain v3.02. Available at: www.thebrain.com.
2005

312. Thuraisingham, B. XML Databases and the Semantic Web. CRC Press, 2002.

313. Tilley, S.R., Whitney, M.J., Muller, H.A. and Storey, M.-A.D., Personalized information
structures. in Proceedings of the 11th Annual International Conference on Systems
Documentation, (Waterloo, Ontario, 1993), 325-337.

314. Tong, S. and Koller, D., Support vector machine active learning with applications to text
classification. in Proceedings of the 17th International Conference on Machine Learning,
(San Francisco, California, 2000), Morgan Kaufmann, 999-1006.

315. Travers, M., A visual representation for knowledge structures. in Proceedings of the Second
Annual ACM Conference on Hypertext, (Pittsburgh, Pennsylvania, 1989), 147-158.

 191

316. Trigg, R.H. and Weiser, M. TEXTNET: a network-based approach to text handling. ACM
Transactions on Information Systems, 4, 1 1-23.

317. TruTamil, LLC. ndxCards. Available at: ndxcards.com. 2005

318. Tulving, E. Subjective organization and effects of repetition in multitrial free-recall learning.
Journal of Verbal Learning and Verbal Behavior, 5 193-197.

319. Tversky, A. Features of similarity. Psychological Review, 84, 4.(July 1977), 327-352.

320. Uren, V., Buckingham Shum, S., Li, G. and Bachler, M., Sensemaking tools for
understanding research literatures: design, implementation, and user evaluation. Available at:
Available at http://kmi.open.ac.uk/projects/scholonto/docs/ScholOnto-Evaluation-2004.pdf.
2004

321. Vdovjak, R. and Houben, G.-J., RDF-Based Architecture for Semantic Integration of
Heterogeneous Information Sources. in Workshop on Information Integration on the Web,
(2001), 51-57.

322. Vega, J., Gomez-Perez, A., Tello, A. and Pinto, H., How to find suitable ontologies using an
ontology-based WWW broker. in Proceedings of the International Work-Conference on
Artificial and Natural Neural Networks, (Alicante, Spain, 1999), Springer, 725-739.

323. The World Wide Web Consortium. Available at: www.w3c.org. 2004

324. The Wikimedia Foundation. Wikipedia. Available at: en.wikipedia.org. 2005

325. Wanner, H.E. On remembering, forgetting, and understanding sentences: A study of the deep
structure hypothesis. Harvard University, 1968.

326. Want, R., Pering, T., Danneels, G., Kumar, M., Sundar, M. and Light, J., The Personal Server:
changing the way we think about ubiquitous computing. in Proceedings of Ubicomp 2002:
4th International Conference on Ubiquitous Computing, (Goteborg, Sweden, 2002), 194-209.

327. Ware, M., Frank, E., Holmes, G., Hall, M. and Witten, I.H. Interactive machine learning -
letting users build classifiers. International Journal of Human Computer Studies, 55, 3 281-
292.

328. Watson, I. Applying Case-based Reasoning: Techniques for Enterprise Systems. Morgan
Kaufmann Publishers, Inc., San Francisco, 1997.

329. MIT. Footprints: Visualizing histories for web browsing. Available at:
http://web.media.mit.edu/~wex/Footprints/footprints1.html. 1997

330. Wiederhold, G. and Genesereth, M. The conceptual basis for mediation services. IEEE Expert
/ Intelligent Systems, 12, 5.(Sept/Oct 1997), 38-47.

331. Williams, M.D. What makes RABBIT run? International Journal of Human-Computer
Studies, 21, 4.(Oct 1984), 333-352.

332. Williamson, C. and Shneiderman, B., The dynamic HomeFinder: evaluating dynamic queries
in a real-estate information exploration system. in Proceedings of the 15th annual
international ACM SIGIR conference on Research and development in information retrieval,
(Copenhagen, Denmark, 1992), 338-346.

333. UserLand Software Inc. ThinkTank 2.41NP and MORE1.1c. Available at:
www.outliners.com. 2005

334. Winston, P.H. Artificial Intelligence. Addison-Wesley, 1992.

335. Witten, I.H. and Frank, E. Data Mining: Practical Machine Learning Tools and Techniques
with Java Implementations. Morgan Kaufmann Publishers, San Francisco, California, 2000.

336. Wittrock, M.C. Learning as a generative process. Educational Psychologist, 11 87-95.

337. Wjj Software. MyBase Desktop Edition. Available at: wjjsoft.com. 2005

 192

338. Wolber, D., Kepe, M. and Ranitovic, I., Exposing document context in the personal web. in
Proceedings of the 7th International Conference on Intelligent User Interfaces, (San
Francisco, California, 2002), 151-158.

339. Woods, W.A. What's in a Link: Foundations for Semantic Networks. in Levesque, J. ed.
Readings in Knowledge Representation, Morgan Kaufmann, 1985.

340. Yao, K.-T., Neches, R., Ko, I.-Y., Eleish, R. and Abhinkar, S., Synchronous and
asynchronous collaborative information space analysis tools. in Proceedings of the
International Workshop on Collaboration and Mobile Computing, (Fukushima, Japan, 1999).

341. Yates, F.A. The Art of Memory. William Cloves and Sons, London, England, 1966.

342. YellowPen, Inc. YellowPen Professional Service. Available at: www.yellowpen.com. 2005

343. ECECS Department, University of Cincinnati. Fuzzy similarity measures for signal pattern
classification. Available at: http://www.ececs.uc.edu/~fit/MAICS/PAPERS/Roshdy.pdf. 2003

344. Zoot Software, Delray Beach, Florida. The Zoot Information Processor. Available at:
http://www.zootsoftware.com. 2005

 193

APPENDIX A

DATABASE SCHEMA FOR POPCORN PROTOTYPE

 The Popcorn prototype interfaces with a MySQL database in order to store the

user’s knowledge persistently. The schema for this database is very straightforward,

consisting of only seven tables, and is presented here for completeness.

TABLE ids
 id : INTEGER (primary key)
 type : { ‘kernel’, ‘katom’, ‘relationship’ }

Each Popcorn “object” – whether kernel, note, or relationship – has a unique

ID in a row in this table. This globally unique ID approach was intended to allow an

as-yet-unimplemented feature of promoting a note to a kernel while still preserving

the relationships to other objects. Also, it gives room for relationships to be reified as

kernel-like objects to permit more sophisticated modeling.

TABLE kernels
 id : INTEGER (primary key; foreign key references ids[id])
 name : TEXT
 created : DATETIME
 lastModified : DATETIME

Every kernel has a unique ID and a (not necessarily unique) name.

Timestamps are not surfaced to the user, but were used to collect usage data. One

could imagine users being interested in such information, however, and even using it

as the basis for a chronological search as with Lifestreams[121, 126] or

PlanPlus[124].

 194

TABLE notes
 containerId : INTEGER (foreign key references kernels[id])
 id : INTEGER (primary key; foreign key references ids[id])
 content : TEXT
 source : TEXT
 created : DATETIME
 lastModified : DATETIME
 x : INTEGER
 y : INTEGER
 w : INTEGER
 h : INTEGER

Each row of this table represents a note that appears on some kernel view.

The containerId field contains the ID of the kernel. The source field is empty for

hand-created notes, but contains the URL of any note created via a drag-and-drop

operation from Mozilla. One could imagine other kinds of “sources” being used and

manipulated by the user directly; book titles, for instance, or the names of individuals

who relayed some bit of information. The x, y, w, and h fields store the position,

width, and height of the note in relative coordinates (ie., as a percentage of the

enclosing view’s width and height.)

TABLE containedObjects
 id : INTEGER (primary key)
 containerId : INTEGER (foreign key references kernels[id])
 containedId : INTEGER (foreign key references ids[id])
 x : INTEGER
 y : INTEGER
 zoomlevel : INTEGER
 collapsed : BOOLEAN

For each kernel that appears on a kernel view, a row in this table maintains the

spatial position within the view (x and y), the “zoomlevel,” or how large it is when

expanded (in relative coordinates identical to those in the notes table), and whether it

is currently expanded or collapsed. Note that this scheme permits a kernel to have

any number of other kernels as children, and also as parents, yielding full

transclusion.

 195

TABLE reltypes
 reltypeId : INTEGER (candidate key)
 reltype : TEXT (primary key)

Each unique type of relationship (“is married to”, “influenced”, “collaborated
against”) is held in a row of this table, and given a unique ID.

TABLE rels
 id : INTEGER
 participant1Id : INTEGER (together with participant2Id,
reltypeId

forms primary key; foreign key references ids[id])
 participant2Id : INTEGER (foreign key references ids[id])
 nav : { ‘fromleft’, ‘fromright’, ‘bi’, ‘non’ }
 reltypeId : INTEGER (foreign key references
reltypes[reltypeId])

Each relationship between two objects – be they kernels or notes – is

represented by a row of this table. The “nav” field indicates the directionality, and

the last field the type of relationship. Note that this scheme permits relationships

between relationships; ie., a kernel could have a relationship to a relationship, rather

than to a note or another kernel. This advanced modeling technique was not made

available through the prototype UI, but a few testers mentioned that this would have

been a natural solution to certain knowledge modeling problems they faced.

TABLE preferences
 prefkey : TEXT (primary key)
 prefvalue : TEXT

Finally, various bits of information that needed to be stored between Popcorn

sessions were stored in this table. Examples include the id of the active kernel when

the application was last shutdown, the size and position of the window, etc.

