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ABSTRACT
We present an agent-based model, inspired by the opinion dynamics
(OD) literature, to explore the underlying behaviors that may induce
societal polarization. Our agents interact on a social network, in
which adjacent nodes can influence each other, and each agent
holds an array of continuous opinion values (on a 0-1 scale) on a
number of separate issues. We use two measures as a proxy for
the virtual society’s “polarization:” the average assortativity of the
graph with respect to the agents’ opinions, and the number of issues
on which agents have persistent disagreement even after the model
reaches an equilibrium.

We look at two model parameters that affect polarization. The
first is the density of edges in the network: this corresponds to the
average number of meaningful social connections that agents in a
society have. Contrary to our early hypothesis, we find that lower
edge density results in higher levels of assortativity. The second
is the “openness” of agents to differing opinions; i.e., how close a
neighboring node’s opinion on an issue must be to an agent’s own
before the agent will adjust its opinion on a different issue. We
refer to this novel mechanism as cross-issue influence. Through
this mechanism, we find that when agents in the model are less
open to new opinions, there will be less consensus on any given
issue for all agents in the model.
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1 INTRODUCTION
The recent events that transpired at the U.S. Capitol on January 6th
were a vivid reminder of the deep divide within the nation. There
are signs that the United States is experiencing political polarization
now like it has never seen before. As individuals stormed the Capitol,
Americans watched in horror. Although this singular event is now
in the past, the underlying tension that preceded it still remains.

Polarization – reflected in echo chambers, entrenched views, and
the vilification of those whose opinion differs – can be harmful to
a democratic society. It can inhibit the reaching of consensus and
compromise upon which a democracy is built, and can result in
even greater amounts of damage than what ensued in the U.S. on
January 6th if left unchecked. Further, polarization affects not only
political actors, but also the interpersonal relationships among the
rank and file citizens of a country which bolster and strengthen
society.

In this paper, we look at two societal variables that we believe
may significantly impact polarization in a society. The first is the
density of social connections: in other words, the average number
of social ties a member of that society has. The second is the degree
of “openness” in the society: namely, how willing its members are
to consider changing their views. We suspect that both of these
factors play a role in determining the aggregate polarization of a
society.

In order to explore these phenomena, we created an Agent-Based
Model (ABM) of heterogeneous agents in the spirit of much of the
Opinion Dynamics (OD) literature. These agents interact with each
other on a random, static social network and change their opinions
on issues over time based on the opinions of their network neigh-
bors. One novel feature of our model, termed cross-issue influence,
is the way agents influence one another: one agent will not allow
another agent to influence its opinion on an issue unless the two
agents already have sufficient agreement on another (randomly
chosen) issue. The justification for this is related to the well-known
observation of “homophily” in social psychology: people are prone
to trust those who already agree with them on something, and
hence are more likely to be persuaded by them on other matters.

The goal of our research is to determine what micro behaviors
of individuals are sufficient to produce a change in the degree of
political polarization in the society. As explained below, we choose
tomeasure polarization in two different ways: the average similarity
of an agent to its neighbors (called “assortativity” in social network
terminology), and the likelihood that no consensus will be reached
on an issue (called opinion “clustering” in the OD literature).
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2 RELATEDWORK
2.1 Opinion Dynamics
Opinion Dynamics models seek to reproduce the phenomenon of
individual agents forming opinions over time via mutual influence.
They allow the researcher to explore the macro-level patterns that
may arise in a society from a set of simple influence rules defined
on the micro-level. For instance, the Binary Voter Model (BVM), the
original and perhaps most influential OD model ([3, 16]), features a
set of interacting agents, each of which holds a binary opinion. The
single influence rule is that agents periodically change their opinion
to match one of their influencers, chosen at random. Among other
things, the model demonstrates that such a system will always
eventually reach uniformity of opinion.

Many researchers (e.g., [13, 24]) have expanded this idea to model
continuous, rather than discrete, opinions: these are typically ex-
pressed as real numbers between 0 and 1. In addition to better
capturing the nuance of real-life viewpoints (which are not usu-
ally completely black or white on any issue), continuous opinions
lead naturally to incorporating a form of homophily[19] into the
model: agents will only choose to be influenced by agents whose ex-
isting opinion is already close to their own. Termed “bounded con-
fidence” (BC) by [15], this feature can result in non-convergence
to uniformity depending on the value of the threshold agents use to
gate influence.[7, 15, 23] The term “clustering” (or “opinion clus-
tering”) has been used to describe the resulting equilibrium reached
by such models, in which subsets of the agents each converge on a
different opinion value and are henceforth no longer persuadable
by other agents.

A smaller number of studies have considered “multidimensional
opinions,” in which each agent maintains a separate opinion on
each of several different “issues” rather than on just one.1 The opin-
ions in a multidimensional setting have been modeled as discrete
([7]) or even as boolean variables combined in arbitrary logic for-
mulas ([1, 2]). Oddly, modeling multidimensional opinions as an
array of continuous values is rarely seen. One purpose of using
multidimensional opinions could be to see how an agent’s opinions
on different issues interact with one another. This is explored by
the boolean expressions in [1] and [2]; in [7] the multidimensional
opinion for each agent is instead used merely as an element in a
vector space whose (Hamming) distance from other agents’ mul-
tidimensional opinions can be computed and compared to a BC
threshold.

With respect to these previous efforts, our model resembles the
BVM but gives the agents continuous, multidimensional opinions.
Our model also implements BC, but in a different way than models

1This is to be carefully distinguished from “opinion vectors,” which represent an
agent’s degree of support for each of several alternatives on the same issue. (See, e.g.,
[21].) Unlike multidimensional opinions, these opinion vectors are often restricted to
be members of a probability simplex.

To be concrete about the difference, an agent in a model with multidimensional
opinions might have a value of .8 for the “pro-gun control” issue, .9 for the “raise the
minimum wage” issue, and .4 for the “restrict fracking” issue. By contrast, an agent
in a model with opinion vectors might have a value of .2 for the “raise taxes to fund
infrastructure” alternative, .7 for the “cut military spending to fund infrastructure”
alternative, and .1 for the “increase IRS audits to fund infrastructure” alternative, all
possible solutions to the single “how to fund infrastructure” issue. In the latter case,
the options are considered mutually exclusive and must sum to 1 for any agent.

(Of course, the specific real-world examples here are only for illustration; OD
models represent “issues” and the “opinions” about them completely abstractly.)

like [23] do: before accepting the influence of a fellow agent on
an issue, an agent in our model must already be close in opinion
to that agent on a different issue. This mechanism we refer to as
cross-issue influence is meant to mimic a phenomenon of human
behavior: if I learn that your viewpoint on issue A is close to my
own, homophily suggests that I will trust you, and I will therefore
be willing to consider your viewpoint on issue B. To our knowledge,
this mechanism of agent influence has not been previously explored.

2.2 Polarization
Polarization can mean different things to different people; we there-
fore begin by briefly establishing a dictionary of terms that we will
refer back to throughout this paper.

Arguably themost familiar manifestation of polarization –which
we term “diametricity” – is when a group experiences opinions
shifting away from common ground to polar sides, leaving nobody
‘in the middle’ on a specific issue. We do not study this flavor of
polarization in this paper.

We use the graph theory term assortativity to represent a sec-
ond type of polarization, which is rooted in the tendency that
people have to form connections with people who have similar
views. This idea is supported by [18] which focuses on physical
proximity breeding connections, as well as [2] which states that we
are more likely to form connections with those that we already are
in agreement with on another issue. The well-known concept of
homophily comes into play here, as studied in [5] and [22]. Assor-
tativity is a way to quantify the presence of “echo chambers” in a
society, in which people are exposed mostly (or solely) to opinions
that confirm what they already believe.[4, 10]

Finally, a third form of polarization is one that can bemeasured as
follows: how often do opinions on issues result in clustering? For
example, if all individuals had the same belief, there would be one
opinion cluster. However, in a polarized society, there are clusters
of opinions for any given issue. In this way, higher clustering in a
society represents when individuals are entrenched and no longer
willing to change their opinion on a given issue. The mechanism
that we use in this paper to calculate the number of opinion clusters
will be explained later.

Regarding the role of a society’s “openness,” one question that
arises is the psychological basis for this attribute. Which person-
ality trait plays the biggest role in an individual’s likelihood to
change their opinions on a particular issue? The ‘Big 5’ personality
trait group[17], well-researched since the 1980s, contains Openness-
to-Experience (OE) as one of its five traits. OE can be defined as
“cognitive flexibility”[8], or “[openness can be] associated with hav-
ing a vivid imagination and [...] receptivity to one’s own and other’s
emotions; a willingness to try new experiences”[12]. As the research
shows, openness plays a crucial role in an individual’s ability to
relate to others, as well as to consider adopting outside ideas as their
own. More than the Big 5’s Agreeableness and Conscientiousness
traits, OE seems to reflect well what our model is attempting to
capture.
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3 VARIABLES
In this section we define the two important independent variables
whose effect on the model’s behavior we seek to discover, and the
two dependent variables we measure at simulation’s end.

3.1 Independent variables
3.1.1 Openness. Asmentioned earlier, research shows that open-

ness plays a crucial role in an individual’s ability to relate to others,
as well how easily they adopt outside ideas as their own. To quantify
this as a model parameter, we incorporate openness as a threshold
on a continuum from 0 to 1; this threshold is used to compare agent
opinions during their pairwise interactions. Low levels of openness
produce models in which agents only very rarely change their opin-
ions (namely, only when encountering neighboring agents whose
opinion on another issue is very close to their own). High levels
produce models in which agents eagerly incorporate the opinions
of others on almost every interaction.

3.1.2 Edge probability. The other parameter represented in our
model is the density of social connections. To implement the concept
of different degrees of social connection, we used the Erdös-Rényi
graph generation algorithm to generate a random graph of con-
nected nodes. With the Erdös-Rényi graph generation algorithm,
we can specify the edge probability which represents the prob-
ability that there will be an edge between any two given nodes.
Using the edge probability, we can control the density of the result-
ing graph. As a result, edge probability directly corresponds to the
density of social connections in our model.

3.2 Dependent variables
3.2.1 Graph assortativity. One way we measure the simulated

society’s polarization is through the resulting network’s “assorta-
tive mixing,” or simply graph assortativity. This represents the
degree to which an agent’s opinions will have similar values to
those of its network neighbors, on average.

The assortativity of a network has a value between −1 and 1,
where 1 indicates “perfect assortative mixing” – i.e., a situation
where every agent’s opinions are identical to each of its graph
neighbors’. An assortativity of 0 indicates that the agents’ social
connections have no correlation at all with their opinion values:
having a social tie with another agent does not mean an agent is
any more (or less) likely to have opinions similar to that agent.
This will be approximately true when the model is initialized and
before the iterative process begins. (Negative assortativity values
correspond to networks in which an agent is less likely to agree
with its network neighbors than with agents in general.)

Assortativity is thus a way to measure the extent to which agents
become surrounded by (only) like-minded agents, and are therefore
no longer exposed to alternative points of view. Since we need to
obtain the graph’s assortativity with respect to multiple attributes
(i.e., the opinions an agent has on all of the issues), we simply
compute the network’s assortativity for each issue separately (as
defined in [20], p.5) and average it over all the issues.

3.2.2 Opinion clustering. The second dependent variable of our
model is opinion clustering. This measures how often the opinions
that agents have on a given issue fail to converge to a uniform

value, instead remaining bifurcated among two or more values in
perpetuity. Each group of agents who, at simulation’s end, have
the same opinion on an issue (within some small tolerance 𝜖) are
termed an “opinion cluster” (a term used by [11]) on that issue.

For clarity, we refer to any issue on which all agent opinions
eventually converge to the same value as a “uniform issue,” and
any issue that instead produces opinion clusters as a “clustered
issue.”

One challenge is defining what qualifies as an clustered issue,
given that agent opinions are represented as real numbers that
may asymptotically converge to, but never actually reach, the same
value. We use the following mechanism. To calculate the number
of clusters for an issue, we add agents to a cluster after every step
of the model. If the absolute value of the difference between an
agent’s opinion and the average opinion of a pre-existing cluster is
within a threshold (0.05), the agent is added to that cluster. If this is
not the case, the agent is added to a new cluster in which it is the
first occupant.

4 MODEL
The model is presented using an abbreviated version of the ODD
protocol[14].

4.1 Purpose
The model simulates interactions on a random social network of
agents, each with an array of continuous, numeric opinion at-
tributes. Its purpose is to investigate the way in which two factors
contribute to the emergence of polarization in the network: the
edge_probability, a value reflecting the density of social connec-
tions in the network; and the openness, a value representing how
closely one of an agent’s opinions must be to that of a potential
influencer in order to accept influence. (See Section 4.3, below.)

Using the model, we hope to gain general insight on the emer-
gence of this polarization within social networks and how different
parameters affect this.

4.2 Entities, State Variables and Scales
The entities within the model are Agents, having the following
attributes:

ID A unique ID for the agent.
Opinions An array of numbers, representing opinions on is-

sues, each having a value between 0 and 1. This represents
the degree to which the agent “agrees” or “disagrees” with
an issue, with 0.5 being neutral.

Neighbors A subset of the other agents in the model, to whom
this Agent has a social connection. The entire set of Agents
and their social connections form an undirected graph (i.e.,
all social connections are bidirectional) and the graph is fixed
throughout the simulation.

4.3 Process Overview and Scheduling
After the model has been initialized, the following sequence is
executed for each of a fixed number of steps in the simulation:

(1) An agent 𝑋 is chosen at random.
(2) A neighbor of 𝑋 (call it 𝑌 ) is chosen at random.
(3) An issue 𝐼1 is chosen at random.
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(4) The absolute difference between 𝑋 ’s opinion on 𝐼1 and Y’s
opinion on 𝐼1 is measured.

(5) Another opinion 𝐼2 (≠ 𝐼1) is chosen at random.
(6) If the difference between 𝑋 ’s and 𝑌 ’s opinion on issue 𝐼1 is

less than or equal to the model’s openness parameter, set
𝑋 ’s opinion on 𝐼2 to be the average of 𝑋 ’s and 𝑌 ’s current 𝐼2
opinions.

4.4 Initialization
The simulation is initialized with 50 agents, each having 5 opin-
ions set to independent uniform random values between 0 and
1. The agents are then connected to each other using a random
undirected Erdös-Rényi graph[9] with parameters 𝑁 = 50, 𝑝 =

edge_probability. (If the graph is not connected, a new random
graph is generated until a connected one is obtained.)

The model’s step limit is usually set to 150, as most change in
the agent’s opinions after 150 steps is negligible.

5 HYPOTHESIS
We form the following hypotheses about the model’s behavior.

Hypothesis 1a: (𝐻1𝑎). Mean assortativity will increase with the
edge probability of an Erdös-Rényi graph.

Hypothesis 1b: (𝐻1𝑏 ). Mean assortativity will increase when
the openness parameter of agents in the model is lower.

Hypothesis 2a: (𝐻2𝑎). The number of clustered issues will be
negatively correlated with the edge probability of an Erdös-Rényi
graph.

Hypothesis 2b: (𝐻2𝑏 ). The number of clustered issues will in-
crease when the openness parameter is lower for all agents in the
model.

For 𝐻1𝑎 , we hypothesize that increasing the connectivity of an
Erdös-Rényi graph by raising the edge probability will result in
higher assortativity. This hypothesis is based mainly on real-world
observations: the number of social connections available to those
with Internet access has increased in the past few decades (due to
social media[6]), and the degree of homophily exhibited in members
of a social circle has also (at least anecdotally) increased. Since both
the density of connections and the homophily of those joined by
such connections has increased in the real world, we presume the
same effect will follow in our model.

For 𝐻1𝑏 , we hypothesize that when agents in the model are less
open to new opinions, there will be a higher average assortativity
and therefore polarization. When all agents have a lower level
of openness, they will only be interacting with agents that have
opinions similar to their own; therefore, we expect to see higher
levels of assortativity.

For 𝐻2𝑎 , we assume that raising the connectivity of an Erdös-
Rényi graph by increasing the edge probability will result in fewer
clustered issues. As a graph becomes more densely connected,
agents will have a wider variety of neighbors to receive influence
from. As a result, agents should merge to the consensus opinion
for any given issue more often in a more densely connected graph.

For 𝐻2𝑏 , we believe that lowering the openness parameter of
agents in the model will result in more clustered issues across the
model. When agents are less open to distant opinions, there will be
more variety of opinion for any given issue.

Figure 1: Average Assortativity across all Issues and Edge
Probability

6 RESULTS
6.1 𝐻1𝑎 and 𝐻1𝑏
To test 𝐻1𝑎 , we first establish a model with 50 agents, 5 issues, and
an openness parameter of 0.40. In order to measure the impact of
varying edge probability on average assortativity across all issues,
we run each combination of parameters 20 times starting with an
edge probability of 0.05 and ending with an edge probability of 0.95,
in increments of .05. The results of this model run are shown in
Figure 1.

We see that as the edge probability (or density of social connec-
tions) increases, the average assortativity across all issues decreases.
This is the exact opposite of our hypothesis. One possible explana-
tion for this result is that when connections are more dense, there
is a higher chance that agents will be exposed to a more diverse set
of opinions. There is thus a higher chance that agents will be pulled
to the ‘average‘ opinion for a given issue, which would produce
lower assortativity. From this finding, we may be able to infer that
societies where individuals are more densely connected may ex-
perience less polarization than more sparsely-connected societies
do.

In addition to the negative correlation between density of social
connections and polarization, we also see that the relationship be-
tween these two variables appears negative-exponential in nature.
The variance was too high, however, for us to draw a solid con-
clusion on whether the relationship truly conforms to a negative-
exponential, a power-law, or any other standard distribution.

To test 𝐻1𝑏 , we first establish a model with 50 agents, 5 issues,
and an edge probability of 0.50. In order to measure the impact of
varying the openness parameter on average assortativity across all
issues, we ran each combination of inputs 20 timeswith an openness
parameter ranging from 0.05 to 0.95 in increments of .05. The results
of this model run are shown in Figure 2. As is depicted, there is no
obvious relationship at all between the openness parameter and
the average assortativity across all issues.

This is an interesting result. Agents in the model are influenced
when they are close in opinion (within our openness parameter)
to another agent on the same issue. Therefore, we believed that
openness would play a role in determining the assortativity of
a society. It should be noted that we tested this hypothesis with
multiple different values of the edge probability (0.15, 0.40, and
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Figure 2: Average Assortativity across all Issues and Open-
ness Parameter

Figure 3: Number of Opinion Clusters and Edge Probability
(0.05 - 0.95)

0.50), to ensure that the edge probability was not having an impact
on our results. Even still, we hope to investigate this hypothesis
further in future research.

6.2 𝐻2𝑎 and 𝐻2𝑏
To test 𝐻2𝑎 , we establish a model with 50 agents, 5 issues, and
an openness parameter of 0.30. First, we ran a parameter sweep
varying the edge probability from 0.05 to 0.95 to measure the impact
of this parameter on the number of opinion clusters. The results of
this parameter sweep are shown in Figure 3.

We noticed that as with 𝐻2𝑎 , there appears to be a tipping point
with the number of opinion clusters and the edge probability. To fur-
ther explore this hypothesis, we ran another parameter sweep, this
time varying the edge probability from 0.05 to 0.40 incrementing by
0.01 for each suite of 20 model runs. The results of this parameter
sweep are depicted in Figure 4.

Our results confirm 𝐻2𝑎 ; the number of opinion clusters and
edge probability have a negative relationship. We believe this may
be explained by the implications of a high density for a graph of
nodes. For example, when a graph of 50 nodes has a density of
0.05, the average number of social connections will be 2.5. We
are able to calculate the average number of social connections by
multiplying the chance there will be an edge between any two
nodes (edge probability) and the number of nodes. When the edge

Figure 4: Number of Opinion Clusters and Edge Probability
(0.05 - 0.40)

Figure 5: Number of Opinion Clusters and the Openness Pa-
rameter (0.05 - 0.95)

probability, or density of the graph, increases slightly to 0.2, the
average number of social connections will rise to 10 connections.
As a result, the geodesic distance between two nodes decreases
rapidly because each node is proportionately connected to more
nodes in the graph. This may reveal why we saw that only a certain
level of density is required for the number of opinion clusters to
drop sharply. Undeniably, a tipping point exists with the number
of opinon clusters when increasing the density of an Erdös-Rényi
graph in our model.

To test𝐻2𝑏 , we establish a model with 50 agents, 5 issues, and an
edge probability of 0.50. First, we ran a parameter sweep varying
the openness parameter from 0.05 to 0.95 to measure the impact of
varying the openness parameter on the number of opinion clusters.
The results of this parameter sweep are shown in Figure 5.

We noticed that there was little to no difference between an
openness parameter of 0.5 and 0.7. However, we observed that the
openness parameter had more impact on the number of opinion
clusters when the parameter was closer to 0.10. To further explore
this result, we ran another parameter sweep with 50 agents, 5 issues,
an edge probability of 0.50, and a suite size of 20. This time, we
varied the openness parameter from 0.05 to 0.40. Our results are
depicted in Figure 6.

This graph indicates that there is a tipping point for the openness
parameter. When the openness for agents in the model is very low,
the agents did not agree on many issues. However, as Figure 6
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Figure 6: Number of Opinion Clusters and Openness (0.05 -
0.40)

indicates, when we increase the openness parameter slightly, the
number of opinion clusters across the model quickly drops. As a
result, we can infer that low levels of openness in a society may
induce more polarized societies. When agents in the model are less
open to distant opinions, there are more opinion clusters for any
given issue. However, the tipping point leads us to believe that
slightly higher levels of openness are sufficient to reach uniformity
on a given issue for all agents in the model. To conclude, when using
the cross-issue influence mechanism, marginally higher levels of
openness led to to less polarization in the model.

7 DISCUSSION AND FUTUREWORK
Multiple results in this research surprised us. Firstly, the results
from testing 𝐻1𝑎 did not reflect our anecdotal experiences. When
increasing the density of a society’s connection, we instead saw
lower assortativity. We believe this may be due to the static nature
of the model’s social network. In the real world, homophily not only
causes existing friends to become more like each other, but also
causes people to select (or reject) friends based on their similarity. In
future work, we intend to add this feature to the model, producing
a dynamic graph, and discover whether this addition is sufficient
to produce a positive density/assortativity relationship.

The lack of a relationship for 𝐻1𝑏 was another surprising result.
We extensively tested this hypothesis, but the results did not indi-
cate any statistically significant relationship. This result remains
unexplained.

The tipping points observed when testing hypotheses 𝐻2𝑎 and
𝐻2𝑏 were compelling results. When even slightly increasing the
density of a graph, the number of clustered issues can drop quickly.
This would seem to indicate that the degree to which a society
forms consensus can be quite sensitive to the average number
of social connections people maintain, at least within a certain
range. Too, the openness of a society’s members – however that
might be quantified in a real population – produced an even steeper
tipping point. One interpretation would be that even small changes
in the tolerance people have for dissenting views can produce
great gains in reducing polarization. We also plan to investigate
the behavior of models with agents that are heterogeneous with
respect to openness, since OE and other traits are obviously not
uniform across a real population.

Another mechanism we hope to explore more in future research
is cross-issue influence. This concept is an extension of Hegselmann
and Krause’s bounded-confidence mechanism. In this research we
explore cross-issue influence with only attracting forces. However,
we hope to investigate the results that would be produced when a
repelling force is implemented into the cross-issue influence mech-
anism. Rather than only having agents move closer to one another
on issue X, we could also have them be pushed away from each
other on issue X if they disagree above a certain threshold on a
separate issue Y.
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