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ABSTRACT
We study wealth accumulation dynamics in a population of het-
erogeneously mixed agents with a capacity for a certain primitive
form of cooperation enabled by static network structures. Despite
their simplicity, the stochastic dynamics generate inequalities in
wealth reminiscent of real-world social systems even in a popula-
tion without social structure. A simple form of social structure and
cooperation is introduced and is shown to enhance the viability
of agents. The interaction between social structures and dynamics
illuminates their role in the generation and persistence of inequal-
ity. The models developed here complement traditional modeling
approaches based on grid worlds.
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1 INTRODUCTION
In recent years, the concerns and debates regarding wealth in-
equality and socioeconomic mobility have been one of the few
unifying issues dominating the extremely polarized public spheres
of the Global North. While economic and political inequality used
to be discussed in heterodox economics circles, the contentious
discussions on the topic within mainstream economics since the
publication of Piketty’s book [25] suggest a lack of consensus about
basic foundational questions like the origins and persistence of eco-
nomic inequality. Not surprisingly, traditional theories and tools
of macro and micro economics are now being diagnosed for their
limitations. Simultaneously, insights from related disciplines, along
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with novel models for scientific inquiry not usually associated with
traditional econometrics, are being taken more seriously. This work
contributes to this effort by integrating substantive ideas from an-
thropology, economic sociology [6] and urban sociology [29] and
using modeling approaches from computational social science [15],
computational economics [33] and analytical sociology [8] to ex-
plore the origins of inequality in a simple model of wealth dynamics,
with social structures and a primitive form of cooperation .

The current work originated in our attempts to incorporate and
tease out the effects of social structures in simple models of wealth
dynamics in the presence of environmental stochasticity and a
simple form of resource pooling.We are interested in the interaction
between structure and dynamics, their role in the production and
persistence of inequality, and how they influence the system’s
robustness to scarcity shocks. We answer the former question using
Gini coefficients and the latter using survival time type analysis. As
we discuss in section 3, while Gini was found to be of limited value,
survival time analysis produced more insights on both questions of
inequality and robustness.

The model presented here was inspired by our search for analogs
of the grid world agent-based model (ABM) of Friesen and Mudi-
gonda [22] where foraging agents that pool their resources were
shown to on-average outperform non-pooling agents. This model
used foraging to mix the population and create opportunities for
interaction, and, when certain conditions were met, resource shar-
ing. Our model achieves agent interaction by postulating a static
network structure which partially mixes the agents. Of primary
interest is whether network effects alone can generate and sus-
tain differences in economic outcomes of otherwise homogeneous
agents.

The Friesen and Mudigonda model drew its inspiration from
historical sociology, in Katz’s influential study of middle of 19th
century Hamilton, Canada [14]. Retaining this original motivation,
we draw additional inspiration from economic sociology in thework
of Granovetter [5]; urban sociology, in the work of Sampson [30]
and others; and in anthropology, in the work on cooperation in
small to medium scale societies [7, 36], and others. The geographic
and economic scale of the systems and the nature of social actors
and time scale of interest in these different disciplineary approaches
are all very different from the ones used to develop models of
representative agents in macroeconomics [2], making the similarity
between macroeconomic wealth dynamics models and our models
not comparable without further justification. Elaborating on the
interplay of conceptual and methodological ideas among these
disciplines is beyond the scope of this article. Instead, we anchor
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this work in economic sociology and revisit the insights from the
above disciplines in the article’s concluding section.

The important role played by social structures in determining
economic outcomes of individuals in a society is not in doubt [5, 11].
Still, in the absence of a unifying foundation for sociology and
economics, the full impact of this two-way interpenetration of
economic and social structures is demonstrated only on a case-by-
case basis. The language of social and economic networks affords a
first principle integration by simplifying the non-trivial concept of
social and economic structure [21] to only dyadic (binary) relations
among actors.1

Models of wealth accumulation dynamics in both macro and
micro economics typically assume the presence of markets and
equilibria. Hence, such models are ill-suited to the study of collec-
tive phenomena at an intermediate level. Alternative explanations
of aggregate phenomena that match the expressiveness of economic
models are required. Analytical sociology [9], with its emphasis
on explanation of collective emergent phenomena using mathe-
matically formulated social mechanisms [10, 19] anchored at the
individual level, is an ideal candidate for this purpose. It is partic-
ularly powerful when combined with computational simulation,
because whenmathematically formulated models reach even a mod-
est level of complexity, they often become analytically intractable.
Simulation in silico can yield approximate results for these more
complex scenarios, which supplement the exact results reached by
analytically tractable models.

Models constructed here, like those used in scientific inquiry in
general, serve a specific purpose. In this work, we construct sim-
ple toy models to reproduce certain aspects of non-trivial wealth
inequality distributions in the presence and absence of primitive
forms of cooperation, clearly delineating the role of network struc-
ture in generating wealth inequality. We make no suggestions that
these models explain the phenomena of interest; we are only inter-
ested in constructing the simplest possible models, with no detailed
empirical grounding, but with the potential to generate heteroge-
neous wealth outcomes reminiscent of ones obtained using more
sophisticated models. As we discuss later, these simple mechanisms
are limited in their ability to stabilize wealth and inequality. Despite
this, the model still sheds light on the true social and economic
mechanisms underlying the genesis and persistence of economic in-
equality, and network structure alone can produce large differences
in economic outcomes.

The phenomenon under scrutiny is the emergence and evolution
of economic inequality in societies with non-trivial social structures
that enable economic interactions and cooperation mechanisms.
The model we use to answer questions surrounding this phenome-
nonmust possess a dynamic model of wealth accumulation, a model
of social structure, and a suitably useful measure of inequality. The
dynamics are modeled as Brownian-noise-driven linear dynamical
systems, here with constant growth rate; the structure is modeled
by networks, here with random graphs2; the measures of inequality
used are Gini coefficients, and survival time distributions of agents
in response to lack of resources. Just as with macroeconomic mod-
els, measures of wealth inequality like Gini coefficients are not so
1The “social structure” concept [21] is more general than the social network specifically,
despite the widely held belief in computational social science that they are synonyms.
2In this paper (as elsewhere) the terms graph and network are exact synonyms.

well suited for the non-market based wealth dynamics. We discuss
this more in section 4.

Although both the dynamical system and the network model
are quite well understood, the precise interplay of structure and
dynamics produces interesting emergent wealth distributions and
robustness to scarcity. To the best of our knowledge, this specific
combination of network structure and social dynamics has not been
discussed in the computational social science (CSS) or mathematical
sociology literature, and we consider this the primary contribution
of this work.

Apart from enabling interactions between social actors, social
structures like institutions also shape the form of cooperation and
coordination mechanisms. The institutions can take the form of
economic institutions, like banks and cooperatives; or the form
of norms, like resource-sharing practices in societies. The Friesen
and Mudigonda model [22] consists of a simple resource pooling
arrangement where aggregates of agents pool their excess wealth
in a common institution called a “proto-institution” (henceforth,
“proto”) agreeing to provide this saved resource to individual agents
in times of need. The model of resource pooling used in this work
is identical to this model.

The analysis to be presented in later sections focuses only on
homogeneous agents with simple drift-diffusion dynamics on Erdős-
Rényi network models (ER); space constraints unfortunately pre-
vent us from repeating the analysis on other standard textbook
networks like scale-free and small-world networks. We discuss
empirical evidence for the role of social network structures in the
concluding section of this paper, motivating the need for more
expressive social network models.

In the next section, we discuss the mathematical formulation of
the model. In section 3, we present the analysis of our simulation
experiments, summarize key findings, and discuss whywe chose the
Julia programming language [3] for our implementation. In section
5, we discuss the limitations of our simple models, extensions to
dynamics and networks more expressive than the ones presented
here and planned future work.

Before discussing our model in greater mathematical detail, we
discuss the model qualitatively, contrasting it with more familiar
modeling approaches. The model presented here has much in com-
mon with models used in social-reality-inspired models in statisti-
cal physics [28], dynamic process models in network science [23],
computational social science, and agent-based models [20]; how-
ever, our modeling philosophy is somewhere at the interface of
agent-based computational economics (ACE) [33] and analytical
sociology (AS) [9, 10]. We acknowledge ACE’s aspiration to develop
bottom-up models of economic systems at all scales, but restrain
from its enthusiastic use of complex but well-calibrated detailed
models of markets and agents [34]. We adhere to AS’s focus on
social mechanisms in explaining social phenomena, but instead
rely on simplified mechanisms with few parameters [19] with the
specific goal of extracting insights from stylized models.

More specifically, from statistical physics, we borrow the dynam-
ics: diffusion models and associated first-passage time techniques;
from network science, we borrow the structural aspects: Erdős-
Rényi network (ER) models; and from non-equilibrium statistical
physics, CSS and ACE, we borrow a form of cooperation: the con-
cept of coalescence, institution and coordination.
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2 MODEL
The model of cooperative wealth accumulation constructed here
is best thought of as a stochastic interacting particle system in-
fused with economic sociological semantics. The particle evolves
according to a one-dimensional diffusion process with constant
drift and is driven by Brownian noise with a boundary condition at
the origin corresponding to particle absorption. After crossing a pre-
determined threshold in state space, particles above the threshold
follow a protocol and coalesce together. In an ensemble of other-
wise identical particles, a given particle may coalesce with a subset
of other particles. In grid world ABMs, agents interact with other
agents by moving around this world. The precise movement pro-
tocol encodes how the agents interact (mix) among themselves. In
the social network setting, this mixing characteristic is encoded
via a graph. Both the conjoined particles and individual particles
die upon crossing the origin. This model of interacting diffusing
particles can be provided with substantive semantics as follows.

The one-dimensional state space of the particle is identified with
the wealth of a social actor (agent). We consider a homogeneous
population where all agents are required burn their wealth at a
constant specified rate in order to survive. In addition, the agents
all gain wealth at a constant rate. The resource draining rate and
the resource gaining rate are additive and constitute the drift of
the diffusion process. The environmental contingency is modeled
by a Brownian noise of a specified intensity. Agents can coalesce
to form a cooperative unit deciding to pool their resources and
their environmental contingencies into a single unit which we call
a proto-institution (proto), if they cross a specific wealth threshold.
The mixing characteristic of this ensemble is the social network
(here ER model).

The questions of interest to us, emergence and persistence of
inequality and robustness to scarcity, in the presence of social struc-
ture and uncertain environmental conditions, map onto questions
about the stochastic dynamical system (SDS). Inequality can be
quantified using Gini coefficients of the particle ensemble’s state
space. Robustness to scarcity can be measured using survival time
analysis for the particles to reach the absorbing boundary at the
origin by turning off the appropriate drift terms in the dynamics.

2.1 Mathematical formulation
The discussion of SDS closely follows [28]3.

The SDS can be defined through a stochastic differential equation
of the form

dx(t) = vdt +
√
2Ddw (1)

wherev is the wealth growth rate (the difference of the income and
metabolic rate of the agent) and D is the intensity of the Brownian
process (white noise process) w . x(t) is the state of the particle
(wealth) at time t . The dynamics can be started at any initial point
x0 > 0. Since simulations make use of discrete versions of these
equations, a slightly different notation is used4.

3The use of such analysis for studying wealth dynamics was presented by one of the
authors at CSSA18 [35]. Unlike the finite interval dynamics used there, the dynamics
here take place on a semi-infinite line.
4The discrete time step ∆t = 1. w in the discrete setting is a Gaussian distributed
random variable N(0, σ 2) = N(0, D∆t ).

While equation (1), in its discretized form, is the basis for simu-
lations, other formulations are used [28, 35]5.

For a single particle, the probability of survival S(t) up to time t
and the probability of reaching the origin can be calculated and are
functions of x0, v and D. For example, the expected probability of a
particle reaching the origin (E(x0)), when starting at x0 is given by

E(x0) =

{
e−vx0/D , for v > 0
1, for v ≤ 0

(2)

That is, there is always a non-zero probability of reaching the
origin, even when there is a constant positive drift away from the
origin; and, the return to origin is certain for negative or zero drift.
Similarly, survival probability, S(t) is given by

S(t) =

{
1 − e−vx0/D , v > 0√

4D
πv2t e

−v2t/4D , v ≤ 0
(3)

Since the particles are independent, they are independent dynam-
ical systems; proto formation is a higher-level construct imposed
on this system and is a constraint on what states are considered
viable and which are not. Consider two particles x1 and x2 that have
crossed xthresh, the threshold for coalescence. After the coalescence
event, the state (wealth) of individual particles x1(t) and x2(t) is
not relevant for survivability; only the aggregate wealth of the coa-
lescent (proto) determines whether the particles in the coalescent
survive. As long as x1(t) + x2(t) > 0, both particles survive. Effec-
tively, the proto is a two-dimensional SDS. Since the wealth of the
proto (p12) is additive, the aggregate wealth p12(t) = x1(t) + x2(t).
The aggregate dynamical variable satisfies a SDE67.

dx(t) = 2vdt +
√
2(2D)dw (4)

As one can see, only the coefficient of drift and diffusion in
equations (1) and (4) are different. So, the corresponding expressions
for E(x0) and S(t) are suitably scaled. This has implications for
both Gini coefficient calculations and survival analysis calculations.

For such ensemble of particles, the primary driver of difference in
paths (life histories) and wealth is the Brownian noise intensity D;
greater the D leads greater the diversity (and hence Gini). However,
Gini is a measure that is dependent on absolute magnitude. So, if
the drift (v) is large, then the variation generated by D gets washed
out byv8. On the other hand, the mathematical form of expressions
for S(t) suggest a clear dependence on D which separates the pop-
ulation of particles that are not in a coalescent and the population
of particles that are in one. Particles reaching the absorbing state
(death of the agent) without being part of a coalescent are called

5These formulations make use measure theoretical probability to convert SDEs to par-
tial differential equations known as Fokker-Planck equations. The provide numerical
and closed form estimates of probability density, survival time probabilities and other
quantities of importance.
6The result follows from the additivity properties of white noise.
7The two pictures: the particle perspective and the proto perspective, are equivalent.
While it is easier to mathematically analyze the system in the proto perspective, the
individual wealth of the particles carries meaning; it is just not useful for studying
survival of the proto or the particles within it.
8Preliminary investigations suggest that for simple non-network ensembles, Gini
either stays close to 0 or 1. We suspect that this is because of the constant wealth
growth rate used in our models, Gini is a partially useful measure. This is unlike in
macroeconomic models where exponential growth rate gives rise to stable non-trivial
Gini coefficients
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isolates9; the non-isolates, the particles that are in a coalescent
when they reach the absorbing state are called protos.

As the equations (2) and (3) show, all agents, irrespective of their
starting initial condition and luck, have a non-zero probability of
dying. The paper that inspired this work [22] studied inequality
dynamics in the context of extreme scarcity in their foraging world.
One can mimic this scarcity by simply “turning off” the income
at some point, starving the agents, and leaving the agents to all
inevitably die. The differential rate of death between the isolates and
the non-isolates then becomes an important quantity. In the absence
of tractable mathematical solutions, simulation experiments which
probe this expected difference in survival rates help illuminate the
role of protos.

We first evolve the system under favorable environmental con-
ditions with steady salary, during what we define as “Stages 1 and
2.” Stage 1 is the phase of the dynamic model before which any
agents have formed protos (since their wealth has not yet reached
xthresh), and Stage 2 is the phase during which agents are forming
protos. Once all non-isolate agents have joined a proto, Stage 3
commences, at which point we cut off the salary for all agents,
starving them and leaving them susceptible to the white noise pro-
cess. The effective dynamics are different in each stage, but the
form of the equations remains the same.

To break the homogeneity of this particle ensemble, we propose
to let the particles interact with only a random subset of other
populations. In other words, we embed the particles on a network
(graph); particles interact (form protos) with only their neighbors.
In this work, we focus on the simplest textbook example of network:
Erdős-Rényi network model [23]. ER models have only one param-
eter (λ), which is the average expected degree of any given node.
This determines the density of connections in the network, and in
this setting determines the expected number of particles available
for a particle to coalesce with and form a proto. Commonsense
reasoning suggests that a larger λ parameter may help increase the
average lifetimes of individual agents by enabling proto formation
by increasing the likelihood of contact with other particles.

Just as equations (2) and (3) offer insight into the role of dynamics,
the key feature of ER models is the high probability of the formation
of a “giant component” at λ ≥ 1. When a giant component exists, a
finite fraction of the population is connected. Networks with this
property also tend to have cliques of very high order, and other
useful properties that bear upon proto formation.

As its network properties are well-understood, the network’s
wealth dynamics allow us to understand more thoroughly the in-
teraction between dynamics and structure, and their role in global
behavior. Still, a full analysis of this model remains to be completed
and is part of a forthcoming work involving other more expressive
network models. As we note subsequently, even this simple setting
offers interesting insights regarding the role of network structure
in determining important outcomes for the agent.

2.2 Implementation
The model is realized in a discrete-time Julia simulation program,
in which each agent is represented as a mutable struct (a dedicated

9In the context of a system with non-trivial network structure, an isolate agent is one
with no graph neighbors.

area of memory whose contents change over time) that maintains
its state. An agent’s state includes its current amount of wealth
and which proto (if any) it is a member of. Additionally, using the
LightGraphs package [31], each agent is associated with a node
of a randomly generated ER graph. Protos are also represented as
mutable structs, each of which contains a list of member agent IDs
and a current wealth balance.

The simulation10 proceeds as follows. For configurable param-
eters N > 0, init_max > 0, salary > 0,m > 0 (metabolic rate),
xthresh > 0 (the “proto threshold”), σ 2 ≥ 0 and 0 ≤ λ ≤ 1:

(1) Create N agents, each with a random initial wealth (uni-
formly distributed from 0 to init_max), and related to one
another as per a random ER network with parameter λ.

(2) Stages 1 and 2: Repeat until all non-isolate agents are mem-
bers of a proto:

(a) Each agent A whose current wealth ≥ xthresh, and who
is not currently a member of a proto, chooses at random
one of its graph neighbors (call it B) whose wealth also
exceeds xthresh. (If there are no such neighbors, proceed
to the next agent.) If B is already in a proto, have A join
B’s proto. If not, have A and B form a new proto.

(b) Each agent gains an amount of wealth equal to (salary −
m + ϵ), where ϵ ∼ N(0,σ 2) (white noise).11

(c) Each agent that is in a proto donates all its wealth in excess
of xthresh to that proto’s balance. (Agents not in a proto
maintain their current wealth.)

(3) Stage 3 (starvation): Repeat until all agents are dead:
(a) Each agent loses an amount of wealth equal to (m+ϵ), ϵ ∼

N(0,σ 2).
(b) If an agent’s wealth would drop below zero as a result

of this loss, and if it is not a member of a proto, it dies
and is removed from the simulation. If it is a member of a
proto, it withdraws the necessary amount from its proto’s
balance to remain at zero wealth. If the proto does not
have sufficient funds to cover the loss, both the agent and
the proto die and are removed from the simulation.

Various statistical counters are updated as the program executes
so that its behavior can be analyzed postmortem. The main simula-
tion loop can also be invoked from a “parameter sweep” program
which executes it multiple times over a range of parameter val-
ues, in order to determine how the model’s behavior changes in
response to key parameters.

We chose Julia for its flexible type system, its speed of execution,
its ease of programming, and the availability of useful packages,
such as LightGraphs, Gadfly [12] (plotting), and Bootstrap (confi-
dence intervals). Additionally, Julia easily allows the programmer
to invoke code from R packages when necessary, as we did for Gini
coefficient calculation with the R package DescTools [4].

3 VERIFICATION
We first verify that the simulation’s output matches obviously ex-
pected results. Then, in the following section, we investigate aspects

10All code for this work is available at https://github.com/WheezePuppet/specstar.
11Note that this “gain” could be negative, in which case the agent, and possibly its
proto, may be subject to death exactly as in step (3).
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of its behavior which are not computable analytically in order to
discover important consequences of the model.

3.1 Agent and proto life history
For a sensible range of parameter settings, the life history of a
single simulation run follows an expected pattern. Assuming a
positive growth rate (i.e., salary > metabolic rate), each agent’s
wealth rises unsteadily during Stage 1, until eventually the first pair
of neighboring agents who each reach the threshold form a proto-
institution. Throughout Stage 2, these agents contribute all wealth
in excess of the threshold to that proto, and so their proto’s balance
rises unsteadily while their personal wealth remains at the constant
threshold. Meanwhile, the other agents also reach the threshold at
various points in time, and also form or join protos, until every non-
isolate (that is, every node with at least one neighbor) is a member
of a proto. Stage 3 (the starvation period) then commences, with
isolates drawing on a greater personal wealth than the non-isolates.
When an isolate reaches zero wealth, it dies; when a non-isolate
reaches zero, it draws from its (shared) proto balance until that too,
reaches zero, and it dies.

This history can be seen in Figure 1. The top plot depicts agent
wealth at every iteration, and the bottom plot shows the balances
of the protos at the same points in time. (No protos exist until
Stage 2, by definition.) Note that the isolates (orange lines) never
form protos, and therefore begin the starvation stage with a higher
personal wealth to draw from.

Figure 2 shows the same information in another way: instead of
plotting each agent’s personal wealth (as in the top plot of Figure 1),
we show its effective wealth, defined as the sum of its personal
wealth and its “share” of its proto’s wealth (if any). After all, contri-
butions that a proto’s members make to its balance are available to
those members in times of need; therefore, a fair comparison be-
tween isolates and non-isolates should take this into account. From
the figure, it can be seen that isolates no longer have a systematic
advantage (as they appeared to in Figure 1.)

We verified that changes to basic parameters all have the ex-
pected effect: lowering the initial wealth delays the onset of Stage 2;
a higher σ 2 for the income distribution makes the lines less jagged;
a higher metabolic rate hastens extinction; etc.

3.2 Gini coefficient history
The Gini coefficient of the agent population as seen in the top plot of
Figure 3 is influenced by two distinct dynamics: loss/accumulation
of wealth and the formation/death of proto-institutions. Over the
course of Stage 1 and the beginning of Stage 3, this change in agent
wealth is exclusively responsible for changes in the Gini coefficient.
As agents accumulate wealth over Stage 1 and 2, the size of wealth
differentials shrinks relative to absolute agent wealth, leading to the
declining Gini coefficient. The opposite effect occurs during Stage
3 as agent starvation leads to the relative growth of these wealth
differentials. The variability in starvation rates further stimulates
the increasing Gini coefficient.

In addition, as indicated in the bottom plot, the proto formation
and proto death also influence the Gini coefficient during Stage 2
and the end of Stage 3, respectively. As expected, the formation of
protos during Stage 2 contributes to declining Gini coefficient as

Figure 1: A single run of the simulation, with λ=2. Each of 50
nodes is given an initial wealth of ∼ U(0, 50) units, a regular
income distributed as ∼ N(20, 5), a metabolic rate of 5, and a
proto threshold of 65.

the constituent agents of each proto have equivalent wealth values
and represent coalitions of perfect economic equality. Accordingly,
the death of protos, beginning around Iteration 20, contributes to
increase the Gini coefficient by removing the protos’ effect on the
system’s inequality.

(Note: As the population size decreases over the starvation pe-
riod, the Gini coefficient becomes increasingly unstable and suscep-
tible to small fluctuations in agent wealth; hence the erratic nature
of the red line at the extreme right of Figure 3.)

4 ANALYSIS
4.1 Gini coefficient
As mentioned in Section 1, the Gini coefficient is not the ideal
measure of inequality for our apocalyptic model. Nonetheless, it is
illustrative to see how it varies with respect to the ER λ parameter.
Figure 4 depicts the Gini computed at the onset of Stage 3 (before
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Figure 2: The same simulation run as Figure 1, but this time
depicting each agent’s effective wealth (its personal wealth
plus its share of its proto’s wealth, if any).

starvation) versus λ, and confirms that increasing λ leads to a de-
creasing Gini coefficient. Increasing λ fosters wealth uniformity
through the increased formation of and growth in size of protos.
Firstly, a higher percentage of agents join a proto as greater λ values
lead to fewer isolates in the ER network. As more agents join protos,
differences in agent wealth are eliminated as each proto establishes
perfect equality amongst its constituent agents, thereby lowering
system’s overall inequality. Secondly, higher λ values lead to larger
average proto sizes, as more densely-connected networks increase
the likelihood that an agent will join an existing proto rather than
form a new one. In much the same way, as smaller protos coalesce
into larger ones, the standard inequality between the fragmented
protos is eliminated in favor of perfect equality across the larger
proto, resulting in a corresponding decrease in the Gini coefficient.

4.2 Life expectancy
Rather than absolutewealth, which theGini coefficientmeasures, an
alternate measure of well-being is the ability to survive an economic
downturn. This, after all, is the chief benefit an agent should be
able to expect from joining a proto: it serves as a kind of insurance
policy against future poverty. It is therefore interesting to compare
the life expectancy of agents who join protos with those who do
not.

There are many factors at play here, one of which is the level of
white noise (σ 2) in the agents’ income. Figure 5 depicts how the
life expectancy of isolates and non-isolates depends on σ 2 for two
different values of λ. The top plot shows that for relatively stable
agent income levels, there is not much difference between the two
lines – and hence, not much advantage (or disadvantage) to an
agent’s joining a proto. Interestingly, however, the more volatile
the income stream becomes, the more benefit there is to pooling
resources. The effect is even more pronounced with more densely
connected graphs, as in the bottom plot: here, when income is more

noisy, agents who join protos live nearly twice as long as those
who don’t.

4.3 Interpretations, Conjectures and Next Steps
Unraveling the interplay of structure and dynamics is a major ob-
jective of this offshoot of the Milton and Mudigonda model. The
necessarily preliminary analysis reported here shows interesting re-
sults in this direction. As the two sources of heterogeneity, both the
ambient stochasticity and interaction probability seem to influence
the two kinds of inequality indicators.

As expected, Figure 4 shows the role of environmental noise:
larger environmental noise produces larger inequality measures.
Similarly, Figure 5 shows the role of noise in amplifying differences
between isolates and non-isolates: the larger the noise, the larger the
separation between the mean lifetimes of the two populations. Also,
as mentioned above, larger λ leads to a more egalitarian population

Figure 3: The simulated society’s wealth inequality over
time. (The same simulation parameters were used as in Fig-
ures 1 and 2, but this time with 500 agents.) The light blue
band represents a bootstrapped 95% confidence interval.
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(Figure 4); concurrently, larger λ leads to larger separation between
mean lifetimes of the two populations (Figure 5).

Ideally, we would like to derive these results mathematically,
especially the point beyond which the average lifespan of two
populations change. Since the SDS has only a few parameters, it
would easy to decompose the contributions of the various factors
response for mean differential lifetimes as it is unclear whether
the differences are due to wealth stabilization induced by proto
formation in Stage 2, or in Stage 3. Another interesting question is
whether the population can be further stratified along proto-size
dimensions.We conjecture that protos with larger number of agents
will have larger mean lifetimes than protos with smaller numbers
in the aggregate. We also conjecture that the time spent in a proto
positively influences the mean lifetimes of agents in it.

While the mathematical formulation of the model was presented
for a single particle, the system consists of a large ensemble of
particles. Many of the characteristics, the differentiation of the
system into isolates and non-isolates depend on the order rank
order statistics of wealth. Also, a more nuanced statistical analysis
that goes beyond the mean analysis presented here is required
to tease out the necessary and sufficient conditions for agents in
protos (non-isolates) to consistently outperform the isolates. We
are currently pursuing these questions.

5 CONCLUSION AND FUTUREWORK
This is one of the first phases of an ongoing project, and the next
directions are too many to enumerate here. Still, we mention a few
next steps that adhere to the spirit of our project. These directions
all alleviate some of the obvious limitations of the current work.

An obvious and important limitation of the current model is
the lack of stability in wealth inequality in the population; neither
the ER graph structure nor the Brownian noise stabilizes procured

Figure 4: The average Gini coefficient of effective wealth
(computed pre-Stage 3) for various values of the ER λ connec-
tivity parameter, and with both low-noise and high-noise in-
come. 500 agents were used in each simulation. The color
band represents a bootstrapped 95% confidence interval.

Figure 5: Life expectancy comparison between isolates (non-
protomembers) and non-isolates (protomembers) for differ-
ent values of λ and σ 2. The salary parameter was set to 20,
so the x-axis ranges from a nearly constant agent income to
a scenario when the noise is as high as the average.

wealth. Therefore, Additional mechanisms are required to maintain
the inequality.

While both the stochastic models and ER models are well un-
derstood, proto formation dynamics, as coagulation processes in
continuous time, remain to be better understood, mathematically.
Also, while the mathematical analysis of dynamics of discrete-time
stochastic models on networks is well studied, diffusion processes
on networks seem underexplored in the literature.

Even with only a few parameters, the simulation results are
challenging to visualize and interpret. As the number of parameters
increases, as expected in future models, ideas from design and
analysis of (computer) experiments may be required. Also, our
exploration of the time to death distributions of the population
show non-trivial structure. More careful statistical tests that go
beyond the mean analysis presented here are required to tease
out the necessary and sufficient conditions for agents in protos
(non-isolates) to consistently outperform the isolates.



CSS’19, October 24–27, 2019, Santa Fe, NM, USA Rajesh Venkatachalapathy, Stephen Davies, and William Nehrboss

The models used for our simulation are at best stylized models
of real world social and economic systems, especially in anthropol-
ogy [36] and historical and urban sociology [14, 29]. Research in
economic anthropology [13, 16–18, 24, 26, 27, 32] suggests complex
food and economic resource sharing rituals among members of
various communities. Such resource sharing social networks do not
look like any of the textbookmodels. Extending our analysis to more
expressive network models like exponential random graph models,
stochastic block models and latent space models is an important
research direction. This alongside the use of empirically observed
cooperation and coordination protocols have potential in making
our models better calibrated with real world systems.

Despite their simplicity, models like the ones constructed here
have several advantages. As ACE models, they offer insights about
economic systems in which the majority of the assumptions of neo-
classical economics like perfectly mixed agents [37] and presence
of equilibrium [1] do not hold. As AS models [8], they offer an
approach that adds models of social mechanisms to CSS models in
a graded manner.
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